3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

4
3.4 Ecuación de cantidad de movimiento para un volumen con aceleración rectilínea (Álabes con aceleración) La ecuación de la continuidad es un caso especial de la ley física general de la conservación de la masa. Pude enunciarse con sencillez para un volumen de control: Razón de entrada de masa = Razón de almacenamiento de masa + razón de salida de la masa La ecuación del impulso-cantidad de movimiento es una aplicación del principio de la conservación de la cantidad de movimiento y se deduce basándose en la segunda ley de Newton; se utiliza para calcular las fuerzas ejercidas sobre una frontera sólida, por una corriente en movimiento. En virtud de que la velocidad, así como la fuerza, tienen magnitud y dirección, son vectores. La ecuación del impulso-cantidad de movimiento puede escribirse para las tres direcciones: ) ( ) ( ) ( 1 2 1 2 1 2 z z z y y y x x x V V m F V V m F V V m F Con frecuencia se aplica la ecuación del impulso-cantidad de movimiento, en conjunción con las ecuaciones de continuidad y de la energía, para resolver problemas de ingeniería. Debido a la amplia variedad de aplicaciones posibles, se dan algunos ejemplos para ilustrar los métodos de tratamiento. Fuerzas sobre paletas (álabes) y deflectores En la figura 3.3.17, se muestran las fuerzas impuestas sobre un chorro de fluido, cuya velocidad es Vj , por una paleta que se mueve con una velocidad Vb ,alejándose del chorro. Las ecuaciones que se dan a continuación se obtuvieron a partir de la aplicación de la ecuación del impulso-cantidad de movimiento, para un chorro abierto (p2 = p1) y para un flujo sin fricción: ) cos 1 ( ) ( 2 b j j x V V A F sen V V A F b j j y 2 ) ( ) 2 / ( ) ( 2 2 sen V V A F b j j

description

ES UN TEMA DE LA UNIDAD DE HIDRODINÁMICA DE LA ASIGNATURA MECÁNICA DE FLUIDOS , CONTIENE TEORÍA Y UN EJEMPLO

Transcript of 3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

Page 1: 3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

3.4 Ecuación de cantidad de movimiento para un volumen con

aceleración rectilínea (Álabes con aceleración)

La ecuación de la continuidad es un caso especial de la ley física general de la conservación

de la masa. Pude enunciarse con sencillez para un volumen de control:

Razón de entrada de masa = Razón de almacenamiento de masa + razón de salida de la masa

La ecuación del impulso-cantidad de movimiento es una aplicación del principio de la conservación de la cantidad de movimiento y se deduce basándose en la segunda ley de Newton; se utiliza para calcular las fuerzas ejercidas sobre una frontera sólida, por una corriente en movimiento. En virtud de que la velocidad, así como la fuerza, tienen magnitud y dirección, son vectores. La ecuación del impulso-cantidad de movimiento puede escribirse para las tres direcciones:

)(

)(

)(

12

12

12

zzz

yyy

xxx

VVmF

VVmF

VVmF

Con frecuencia se aplica la ecuación del impulso-cantidad de movimiento, en conjunción con las ecuaciones de continuidad y de la energía, para resolver problemas de ingeniería. Debido a la amplia variedad de aplicaciones posibles, se dan algunos ejemplos para ilustrar los métodos de tratamiento. Fuerzas sobre paletas (álabes) y deflectores En la figura 3.3.17, se muestran las fuerzas impuestas sobre un chorro de fluido, cuya velocidad es Vj , por una paleta que se mueve con una velocidad Vb ,alejándose del chorro. Las ecuaciones que se dan a continuación se obtuvieron a partir de la aplicación de la ecuación del impulso-cantidad de movimiento, para un chorro abierto (p2 = p1) y para un flujo sin fricción:

)cos1()( 2 bjjx VVAF

senVVAF bjjy

2)(

)2/()(2 2 senVVAF bjj

Page 2: 3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

Turbina de acción. En una turbina, el total de las fuerzas que actúan simultáneamente sobre cada paleta es igual a la causada por el gasto combinado de masa M, descargado por la tobera, o sea,

bbjbx VVVmVFP )cos1)((

Page 3: 3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

Ejemplo

Un chorro con una velocidad de 30 m/s golpea un álabe que se mueve a una velocidad de 12 m/s como se muestra en la figura 3-19. Determinar a) la potencia trasmitida al álabe y b) la velocidad absoluta del chorro que abandona el álabe.

a) la potencia trasmitida al álabe es igual al producto de la fuerza en la dirección del movimiento del álabe por la velocidad del álabe. Así,

VFPotencia x

La fuerza del fluido sobre el álabe puede determinarse de la ecuación de cantidad de movimiento para un volumen de control que se mueve a la misma velocidad que el álabe, como se muestra en la figura 3-20. La ecuación de cantidad de movimiento para el volumen de control es

)( 12 xxx VVmF sobre el fluido

xF en este caso es la fuerza ejercida sobre el álabe por la parte externa, La razón de flujo

de la masa relativa a la superficie de control es )( VVAm Las velocidades para la

dirección x que entran y salen del volumen de control son

60cos)(y )( 21 VVVVVV xx . Sustituyendo,

alabe el sobre8,10

o fluido el sobre8,10

)160(cos)1230(00065,08,9

1000

}160{cos)()}(60cos)){((

2

2

fx

f

x

kgF

kg

VVAVVVVVVAF

Page 4: 3.4 Ecuacion de Cantidad de Movimiento Para Un Volumen Con Aceleracion Rectilinea

La velocidad del fluido que sale del álabe puede hallarse sumando la velocidad del fluido relativa al álabe a la velocidad del álabe. Entonces la velocidad absoluta que sale del álabe en la dirección x es

smVVV relativaxx 211260cos)1230(2

La velocidad del fluido que sale del álabe en la dirección y es

smsenV y 5.1560)1230(2

La velocidad absoluta del fluido que sale del álabe es

smVVV yx 2.26)5.15()21(2/122

2/12

2

2

22

La dirección del fluido que abandona el álabe está dada por tan θ=15,5/21 = 0,741 ó θ = 36,6°. El diagrama vectorial de las velocidades para el fluido que abandona el álabe se muestra en la figura 3-21.

Ejemplo tomado del libro Dinámica de Fluidos por William F. Hughes y John A. Brighton de la serie

Schaum.