Análisis Fingerprint - library.e.abb.com · caldera − Más fiabilidad − Mejora de la seguridad...

4
32 revista ABB 4|12 ROBERT HORTON – Las calderas industriales se utilizan como fuente de vapor en una amplia variedad de instalaciones industriales. Para muchos operadores, la factura anual de energía de sus calderas asciende a millones o decenas de millones de dólares. A menudo se utilizan sofisticados procesos de control y supervisión para asegurarse de que las calderas funcionan de manera óptima, pero con el paso del tiempo el hardware y el software encargados de ello pueden degradarse. Cuando están en juego grandes facturas de energía, es evidente que las medidas para evitar esta degradación, y reducir así el consumo de energía, son muy bien recibidas. Esa es la razón por la que se ha hecho popular el análisis Fingerprint de ABB con dichas instalaciones. El análisis Fingerprint identifica dónde hay que renovar o reparar los bucles de control y el hardware, y lleva invariablemente a importantes reducciones de las facturas de energía y las emisiones de carbono asociadas. Como se pone de manifiesto en un ejemplo, el análisis Fingerprint se amortiza en un plazo muy corto. Vale la pena optimizar la eficiencia de las calderas Análisis Fingerprint

Transcript of Análisis Fingerprint - library.e.abb.com · caldera − Más fiabilidad − Mejora de la seguridad...

32 revista ABB 4|12

RoBERT hoRTon – Las calderas industriales se utilizan como fuente de vapor en una amplia variedad de instalaciones industriales. Para muchos operadores, la factura anual de energía de sus calderas asciende a millones o decenas de millones de dólares. A menudo se utilizan sofisticados procesos de control y supervisión para asegurarse de que las calderas funcionan de manera óptima, pero con el paso del tiempo el hardware y el software encargados de ello pueden degradarse. Cuando están en juego grandes facturas de energía, es evidente que las medidas para evitar esta degradación, y reducir así el consumo de energía, son muy bien recibidas. Esa es la razón por la que se ha hecho popular el análisis Fingerprint de ABB con dichas instalaciones. El análisis Fingerprint identifica dónde hay que renovar o reparar los bucles de control y el hardware, y lleva invariablemente a importantes reducciones de las facturas de energía y las emisiones de carbono asociadas. Como se pone de manifiesto en un ejemplo, el análisis Fingerprint se amortiza en un plazo muy corto.

Vale la pena optimizar la eficiencia de las calderas

Análisis Fingerprint

33Análisis Fingerprint

miento de las calderas. Tenerlas en buen estado de funcionamiento aporta muchas ventajas:

− Ahorro de energía− Mejor respuesta a las demandas de

vapor del proceso− Mayor margen de funcionamiento de la

caldera− Más fiabilidad− Mejora de la seguridad− Huella de carbono reducida

Ganancias en el bucleComo muchos equipos industriales, las calderas que producen vapor dependen de controladores PID para regular el pro­ceso, reducir la inestabilidad del producto y mejorar las operaciones. Sin embargo, ABB está descubriendo lo siguiente en la automatización con PID:− Los bucles de los PID no se mantienen− Los bucles de los PID se degradan− Los bucles de los PID obstaculizan la

producción y el rendimiento− Los equipos asociados no funcionan

adecuadamente

L os precios del petróleo constitu­yen un buen indicador de los cos­tes generales de la energía. Entre 1989 y 2003, el precio medio del

barril de petróleo era de unos 20 dólares, subió a 50 dólares en 2005 y llegó a un máximo de casi 150 dólares a mediados de 2008. Aparte de los dolores de cabeza asociados a la planificación financiera que causa esa volatilidad, las enormes facturas de energía que llegan a la puerta de las empresas afectan significativamente a la rentabilidad. Para los equipos que hacen un intenso uso de energía, como las cal­deras industriales, el problema es espe­cialmente grave: una caldera industrial de 150 klb de vapor/h (68.040 kg/hora) que funcione con gas natural habría tenido una factura de combustible anual de cerca de 5 millones de dólares entre 1989 y 2002, que habría subido a 10 millones de dólares en 2007 y a 20 millones de dólares en 2008. No está claro hacia donde apuntan las futuras tendencias.

Un punto para intentar aliviar los costes se encuentra en el hardware y el software dedicados a la optimización del funciona­

Imagen del títuloEl control de las calderas industriales debe hacerse de forma estricta para sacar el mayor provecho de esos recursos. El análisis Fingerprint de ABB ayuda a conseguirlo.

Debido a esto, ABB ha presentado un servicio de análisis Fingerprint que mejo­rará el rendimiento de las calderas.

Finger print examina el estado del hard­ware y los contro­les, comprueba la estabilidad y el fun­cionamiento de la caldera, efectúa pruebas de carga de combustión y ejecuta tests de respuesta escalo­nada dinámica. En el proceso Finger­

print, se evalúa el funcionamiento de las calderas para definir los niveles de rendi­miento existentes y establecer una base para identificar y valorar las posibilidades de mejora. Se examinan las mejoras recomendadas para estimar la rentabili­dad de la inversión (ROI) y a continuación se las prioriza según su rentabilidad. Acciones posteriores resuelven los pro­blemas y mantienen el rendimiento ➔ 1. Hay tres fases en el análisis:

Diagnóstico (Fingerprint)

− Medir las desviaciones de rendimiento− Predecir la ROI− Emitir un plan de acción

Aplicación (práctica)

− Corregir desviaciones de rendimiento− Definir plan de supervisión

Conservación (exploración/seguimiento)

− Controlar desviaciones de rendimiento− Programar mantenimiento

Un punto para buscar reduc­ción de costes se encuentra en el hardware y el software dedicados a la optimización del funcionamiento de las calderas.

1 Metodología del servicio de optimización

Desviación del rendimiento100%

Tiempo (años)Puesta en marcha Funcionamiento continuo

3) Conservación (ProcessPRO)

1) Diagnóstico (Fingerprints)

2) Aplicación

Pot

enci

al d

e re

ndim

ient

o d

el p

roce

so

Ideal

Automático

Manual

34 revista ABB 4|12

de Fingerprint se inició con la segunda caldera ya que es la utilizada con más frecuencia y la menos eficiente.

Un examen inicial reveló que el movimiento del posicionador del ventilador ID era brusco, indicando que un cilindro neumáti­co o el conjunto del pistón estaba posible­mente dañado. También se descubrió que el ventilador FD presentaba problemas ➔ 3.

El equipo de ABB observó una trampilla suelta cerca del sensor de oxígeno que permitía que se perdiera aire en el conduc­to antes del ventilador ID. Asimismo, los dos sensores de oxígeno de la caldera seguían dando una lectura que era un 2 por ciento mayor que la proporcionada por un analizador portátil.

La pérdida significaba que se estaba aña­diendo aire para una cantidad de combus­tible que no llegaba en realidad a la calde­ra. En consecuencia, las mediciones del suministro de aire y combustible subían y bajaban. Ambos valores mostraban histé­resis, por lo que trabajaban de forma opuesta y producían variabilidad.

Por otra parte, una prueba del tiro del hor­no indicaba que el aire que se fugaba era aspirado por el ventilador ID y expulsado por la chimenea como energía desperdi­ciada. Basándose en las pruebas de car­ga, se corrigió el ajuste de la relación

− Definir activadores de condición− Mantener las condiciones

De nuevo a puntoEl análisis Fingerprint que se llevó a cabo en cuatro pequeñas calderas industriales de la empresa química Arkema de Calvert City (Kentucky), una instalación que incluye la mayor planta de producción de refrige­rante HFC 32 del mundo, ofrece un buen ejemplo de la potencia del mismo.

La planta de Arkema tiene cuatro calderas. Estas producen vapor a niveles ligera­mente diferentes porque son de distintos tamaños y se instalaron en diferentes momentos ➔ 2. Las dos primeras calde­ras, ambas instaladas en 1952, son de ladrillo con tomas de tiro forzado (FD) y ventiladores de extracción de tiro inducido (ID). Ambas tienen una capacidad nominal de 40 klb/h. La tercera caldera, un econo­mizador de 1965, solo dispone de un ven­tilador FD y tiene una capacidad nominal de 75 klb/h, aunque trabajaba normal­mente a un máximo de 60 klb/h.

La cuarta caldera, un economizador de 1996, del tipo de recirculación de los gases de combustión (FGR), trabajaba de forma idéntica a la tercera.

Las cuatro calderas producen vapor a aproximadamente 165 psi, pero ninguna ha trabajado a la máxima carga. La labor

3 La unidad de ventilador de tiro forzado.

2 El esquema de la instalación de Arkema

Agua (Klb/h.)

Caldera 1

Punto de consigna de carga del Plan Director (Klb/h.) 29,57

30,92

3,19 % de oxígenoAutomático (libre)

8"

Gas natural (Lb/Hr.) 1544,82

Aire (Klb/h.) 31,02

27,45

24,93 Klb/h. •

167 PSIG

Agua (Klb/h.)

Caldera 3

Punto de consigna de carga del Plan Director (Klb/h.) 39,77

35,30

2,54 % de oxígenoAutomático (libre)

8"

Gas natural (Lb/Hr.) 1908,17

Aire (Klb/h.) 45,42

37,15

35,67 Klb/h. •

163 PSIG

Agua (Klb/h.)

Caldera 3

Punto de consigna de carga del Plan Director (Klb/h.) 39,77

39,62

3,07 % de oxígenoAutomático (libre)

8"

Gas natural (Lb/Hr.) 2176,06

Aire (Klb/h.) 50,52

38,74

Klb/h.

161 PSIG

Calc. ha fallado 2,828 Lb/h.

13 Klb/Hr.

14,066 Lb/h.

13,159 Klb/h.

18,505 Klb/h.

3,926 Klb/h.

4,196 Klb/h. 1,550

7,5­16 Klb/h.

Caldera aux.

Colector Norte

143 PSIG

149 PSIG

149 PSIG

154 PSIG

Unidad F

168 PSIG

167 PSIG

Unidad B ReacciónUnidad B Dist

Unidad D Oeste

Unidad C

Unidad D Este Unidad E

Unidad A

Caldera 5 •

• Caldera 5 no se usa en este momento• MassProBar

Agua (Klb/h.)

Caldera 2

Punto de consigna de carga del Plan Director (Klb/h.) 15,00

1,68

19,75 % de oxígenoAuto (bloqueado)2% real de oxígeno <Indicado en la caldera 2

8"

Gas natural (Lb/Hr.) 40,93

Aire (Klb/h.) 2,80

2,41

0,00 Klb/h. •

7 PSIG

10"

10"

10"

10"

12"

12"

6"

6"

6"

6"

8"

12"

Presión del colector

SPC

24,34 S1,54 P

47,22 ºC

35Análisis Fingerprint

ción de sólidos que se produce por el agua/vapor)

− Ajustar, limpiar o sustituir las mirillas de vidrio para comprobar el nivel de los tambores

Para la lógica de control, se elaboró esta lista de tareas:− Realizar pruebas de combustión total

para ajustar con precisión las curvas de vapor/aire, especialmente para el combustible

− Actualizar la lógica de control a las normas de aplicación actuales

− Ajustar la lógica para indicar cuándo es incorrecta la relación combustible/gas

− Actualizar el cálculo del exceso de aire

Y para el ajuste, lo siguiente:− Reajustar los bucles para que sean

menos agresivos− Reducir las tendencias a picos y

oscilaciones en la salida− Añadir un pequeño filtro al medidor de

niveles para reducir el traqueteo de la toma de agua

− Disminuir el filtrado en el medidor de caudal de vapor antiguo

Como resultado de las medidas correcto­ras, las lecturas de oxígeno, que estaban en el intervalo del 6 al 7 por ciento, se han reducido a menos del 5 por ciento ➔ 5. Esta disminución de los niveles de oxígeno refleja menos aire que entra, menos aire que se calienta y menos aire expulsado, lo que se traduce en un ahorro considerable de combustible.

El ahorro aproximado fue de 75.000 dóla­res solo para la segunda caldera, y todo ello sin inversión de capital importante.

aire/combustible. (El compensador de oxí­geno que afina la relación aire/combustible se había infrautilizado en los últimos años, llevando a una operación subóptima.)

Existe una regla práctica en la industria que dice que pasados seis meses desde la instalación, el rendimiento de cerca del 50 por ciento de los bucles de control de los procesos se degrada hasta cierto pun­to. En consecuencia, se supervisaron los bucles de control con la herramienta Loopscan y se encontraron varias defi­ciencias ➔ 4.

El análisis Fingerprint dio lugar a una lista completa de tareas. Se identificaron las siguientes mejoras en el hardware:− Reparar las unidades de control de

FD e ID− Resolver los problemas de lectura del

transmisor de oxígeno: comprobar calibrado, localizar fugas, cambiar ubicación

− Sellar adecuadamente todas las puertas

− Recalibrar los caudales de vapor− Aumentar la vigilancia de los volúmenes

de purga (la purga elimina la acumula­

Robert horton

ABB Optimization Service

Atlanta, GA, Estados Unidos

[email protected]

La tercera caldera presentaba un proble­ma porque se paraba inexplicablemente durante las tormentas. El equipo de ABB rastreó el origen del problema hasta un ventilador FD con una toma en el tejado. La posición expuesta en el tejado lo hacía susceptible al error porque el efecto de cizalladura del viento afectaba a las medi­ciones en los tubos de Pitot que salían de la toma del ventilador. Arkema constru­yó una cubierta de protección contra la cizalladura del viento y eso resolvió el problema.

De paso, se demostró que era seguro hacer funcionar la caldera con cargas mayores, sacándose así un mayor prove­cho de los bienes de equipo instalados.

En total, Fingerprint consiguió un ahorro total anual de energía en la planta de unos 237.000 dólares. Como el coste del servicio fue de unos 25.000 dólares por caldera, el tiempo de amortización fue muy corto.

El análisis Fingerprint se ha aplicado a otras instalaciones de calderas industria­les con éxito parecido. Además de dismi­nuir el consumo de energía, el procedi­miento permite a los clientes reducir sus emisiones de gases de efecto invernade­ro. Como es probable que ambas cuestio­nes aumenten su importancia en los próxi­mos años, lo mismo pasará con el servicio de análisis Fingerprint de ABB.

Las mejoras reco­mendadas se exa­minan para estimar la ROI y se priorizan los resultados se­gún su rentabilidad.

4 Resultados de la supervisión del ciclo de control

Control Proceso Condición de la señal

C1: Manual P1: FCE fuera de márgenes S1: Cuantificado

C2: Punto de consigna

oscilante P2: Tamaño FCE S2: Ruido excesivo

C3: Banda inactiva P3: Problema FCE S3: Espigas

C4: Desplazado P4: Fuga FCE S4: Fuera

C5: Sobre control P5: Perturbación intermitente S5: Compresión

C6: Control lento P6: Perturbación persistente S6: Sobre filtrado

C7: Desplazamiento FCE P7: Cuestionable S7: Tasa de muestreo

FCE: Elemento de control final

5 La reducción del caudal de oxígeno aporta ahorros considerables.

% d

e ox

ígen

o

Carga de vapor

Ahorro de combustible

O2 en función de la carga en la caldera 2 (media de 1 hora))

15 20 25 30 40 45 50 5535

5

6

7

4

3

2