Avances Traducido

download Avances Traducido

of 47

Transcript of Avances Traducido

  • 7/26/2019 Avances Traducido

    1/47

    UNIVERSIDAD NACIONAL DEEL CALLAO

    FACULTAD DE INGENIERIA PESQUERA Y DE ALIMENTOSESCUELA PROFESIONAL DE INGENIERIA DE ALIMENTOS

    Nuevo Modelo de Funcionalidad de las

    !o"e#nas de los Ali$en"os

    Cu!so% Avances en Ciencia & Tecnolo'#a de Ali$en"os(

    Docen"e% D!) In'( Ole'a!io Ma!in(

    Alu$no% Ro$e!o Valve!de *avie!(

    CALLAO-BELLAVISTA

  • 7/26/2019 Avances Traducido

    2/47

    JFS Special Issue: 75 Years of Advancing FoodScience, and Preparing for the Next 75

    Food Protein Functionalit!A Ne" #odel$% Allen Foegeding

    A&stract: Proteins in foods serve dual roles as nutrients and structural building blocks. The concept of protein function-ality

    has historically been restricted to nonnutritive functionssuch as creating emulsions, foams, and gelsbut this places sole

    emphasis on food quality considerations and potentially overlooks modifications that may also alter nutritional quality or

    allergenicity. A new model is proposed that addresses the function of proteins in foods based on the length scales!

    responsible for the function. Properties such as flavor binding, color, allergenicity, and digestibility are e"plained based on

    the structure of individual molecules# placing this functionality at the nano$molecular scale. At the ne"t higher scale,

    applications in foods involving gelation, emulsification, and foam formation are based on how proteins form secondary

    structures that are seen at the nano and microlength scales, collectively called the mesoscale. The macroscale structure

    represents the arrangements of molecules and mesoscale structures in a food. %acroscale properties determine overall

    product appearance, stability, and te"ture. The historical approach of comparing among proteins based on forming and

    stabili&ing specific mesoscale structures remains valid but emphasis should be on a common means for structure formation

    to allow for comparisons across investigations. 'or applications in food products, protein functionality should start withidentification of functional needs across scales. Those needs are then evaluated relative to how processing and other

    ingredients could alter desired molecular scale properties, or proper formation of mesoscale structures. This allows for a

    comprehensive approach to achieving the desired function of proteins in foods.

    'e"ords: foam, gel, protein, protein functionality, sol

    ntroduction(t could be argued that proteins are biology)s most versatile

    polymers. The other main biological polymerspolysaccharides

    and nucleic acid polymers *+A and +A!are structurally re-

    stricted because being composed of ust a few monomers limits the

    chemical properties that can be imparted in the final struc-ture. (n

    contrast, proteins with / amino acids have the ability to take on a

    range of structures that provide catalytic activity en-&ymes!,

    building material for tissues collagen!, and mechanisms for

    movement myosin and actin!, to name a few of the numerous

    biological functions. The history of proteins has been eloquently

    covered in a book by 0harles Tanford and 1acqueline eynolds

    titled 2+ature)s obots Tanford and eynolds //3!.4 As the name

    implies, proteins are molecules that play an active role in biology

    and the concept of activity is usually e"pressed as bio-logical

    function. The central dogma of protein chemistry is that the

    sequence of amino acids determines the 5 dimensional struc-ture,

    and the 5-dimensional structure determines the biological function

    0reighton 3665!. This is fitting for biological functions whereprotein structure is the result of evolutionary pressure to survive and

    be passed on to the ne"t generation. A fascinating e"-ample of this is

    the umami receptor in hummingbirds evolving to essentially become

    a sweetness receptor, allowing hummingbirds to adapt to a different

    food source 7aldwin and others /38!. Proteins take on a broader

    functionality role in foods. They can function in foods by an

    e"tension of their biological activity, by

    MS 20151269 Submitted 7/27/2015, Accepted 9/21/2015. Auto! i" #it$ept. of %ood, &iop!oce""ing ' (ut!ition Science", (o!t )a!olina State*ni+., .. &o 762, aleig, (.). 27695-762, *.S.A. $i!ect inui!ie" toauto! %oegeding 3-mail4 allenfoegedingnc"u.edu.

    being building blocks for food structures that biology had notintended, or they can bind a variety of small molecules and altertheir availability during ingestion.

    9ne e"ample of proteins functioning in foods as an e"tension of their

    biological "t!uctu!e and functionis en&ymes. The ability of en-&ymes to

    cataly&e reactions can produce desirable meat tenderness altered withproteolytic en&ymes! or undesirable fruit browning caused by

    polyphenol o"idase! changes in food. (n other cases, the polyme! and

    colloidal p!ope!tie" of proteins are manipulated to pro-duce desirable

    food structures, as is the situation with dairy foods. The biological

    function of casein micelles is not to make cheese or yogurt# however,

    the colloidal and polymer properties of casein micelles allow for the

    production of a wide range of dairy prod-ucts. 'inally, protein surfaces

    have different degrees of polarity and potential binding "ite" for small

    molecules such as flavor compounds and polyphenols 'ran&en and

    :insella 36;8# 9)0onnell and 'o" //3# 7andyopadhyay and others

    /3!. This binding could alter the ability to perceive a flavor einers

    and others ///! or could be used to decrease loss of a bioactive

    polyphenol

  • 7/26/2019 Avances Traducido

    3/47

    Ne" food protein functionalit 4odel % % %

    assessment. (tbuilds and e"pandson a previousevaluation of pro-tein functionality'oegeding and*avis /33!.

    6nderstanding

    o" ProteinsFunction in aFood fro4 the8asis of FoodStructure

    Proteins are

    generally part of a

    comple" structure in

    foods that

    determines hedonic

    properties and may

    contribute to the

    bioavailability of

    nutrients and other

    bioactive

    compounds. @ome

    e"amples of foods

    and properties

    associated with

    proteins are seen in

    Table 3. ach food

    property can be

    e"plained by

    structural elements

    according to scale

    'igure 3 and Table

    3!. 'rom this

    perspective, %ood"t!uctu!e is the

    combined

    representation of a

    food starting with

    the molecules, the

    primary structures

    formed from the

    molecules, and the

    overall structure

    observed by the

    consumer 'igure

    3!. The molecula!

    "cale /nm! is the structure

    of the individual

    molecule. (n

    proteins, this

    encompasses

    primary, secondary,

    tertiary and, when

    applicable,

    quaternary structure

    0reighton 3665!.

    The mac!o"copic

    le+el is the highest

    level and represents

    the overall

    organi&ation of

    molecules and

    substructures in a

    food. This

    structural level is

    observed when

    viewing food and

    evaluated when

    eating.

    (ntermediate

    between molecular

    and macroscopic

    scales is the

    me"o"cale. This

    has also been

    referred to as

    microscale due to

    features with si&es

    in the range of

    micrometers, but

    me"o meaning

    2middle or

    intermediate4

    from ancient

    Breek for

    2middle4! is more

    accurate as nanosi&e structures can

    also be involved.

    @tructures viewed

    at the microscale

    have historically

    been the focus of

    2food structure

    analysis,4 for

    e"ample see

    review by =eerte

    /38!, but a more

    recent and

    comprehensiveapproach to food

    structure is to take

    on the perspective

    of soft matter

    physics and view

    structures across

    length scales

    Cbbink and others

    //?# van der

    @man /3!.

    'oods can be

    defined on a soft

    matter physics

    length-scaleperspective as a

    collection of

    molecules

    molecular scale!

    assembled into

    various

    mesostructures

    mesoscale! that

    are assembled into

    the overall food

    structure

    macroscale!.

    =edonic sensationsof a foodthose

    associated with

    appearance, taste,

    a

    r

    T

    h

  • 7/26/2019 Avances Traducido

    4/47

    the biological

    mesostructures for

    e"ample,

    myofilaments and

    sarcomeres! and

    how physiological

    events occurring

    during conversion of

    muscle to meat alter

    those

    mesostructures. This

    often requires in "itu

    investigations to

    under-stand

    structural changes

    associated with meat

    tenderness. 'orma-

    tion of processed

    meats such as a hot

    dog$frankfurter is a

    different matter.

    %yofibrillar

    proteins are

    e"tracted

    dispersed! from

    their biological

    structures and

    form interfacial

    films around

    dispersed fat

    droplets

    colloidal$polymer

    mesostructure!

    and, upon heating,

    a gel network

    colloidal$polymer

    mesostructure! is

    formed that traps

    the dispersed fat

    phase 'oegeding

    and amsey 36?;!.

    (n processed

    meats, proteinfunctionality is

    related to the

    ability of muscle

    proteins to form

    and stabili&e

    colloidal

    structures. =ow-

    ever, post-mortem

    events may alter

    the proteins and$or

    the ability to

    e"tract the proteins

    from the biologicalstructures for use

    in forming

    colloidal

    structures.

    A contrast to

    meats would be

    milk and milk

    products. The bi-

    ological structure

    of milk is actually

    a colloidal

    dispersion of pro-

    teins whey and

    casein micelles!

    and fat globules in

    a true solution

    serum phase!

    containing salts,

    lactose, and other

    compounds. 0a-

    sein micelles are

    naturally dispersed

    in milk and

    stabili&ed against

    aggregation by

    steric and

    electrostaticmechanisms that

    are also used to

    stabili&e synthetic

    c

    o

    T

    h

    P

    e

    ol% 1*, Nr% +), )*+5 Journal of Food Science()37+

  • 7/26/2019 Avances Traducido

    5/47

  • 7/26/2019 Avances Traducido

    6/47

    (:Food(he4istr

    :

    oo

    e4

    sr

    Ne" food protein functionalit4odel % % %

    Table 1Properties of foods associated

    with proteins and their related structural

    element.

    topic by stating that

    2The possession of

    these characteristics

    by a much lower-

    priced product made

    from whey, either

    naturally or as the

    result of permissible

    physical or chemicaltreatment, would

    result, therefore, in its

    e"tended use4 Peter

    and 7ell 365/!. This

    type of investigation

    continues today with

    additional

    motivations beyond

    lower cost! of dietary

    restrictions gluten

    free or vege-tarian!

    and a more

    sustainable ingredient

    source, to name a few

    goals. 7ased on the

    food structure model

    'igure 3!, successful

    substitution of one

    protein for another

    changing the

    moleculscale!

    is based on the ability

    of various proteins to

    form the same

    mesostructures. (n

    other words, Peter

    and 7ell worked on

    the hy-pothesis that if

    they could show how

    to produce wheyprotein foams with

    properties similar to

    egg white foams, then

    whey pro-teins could

    be substituted for egg

    white. This is a

    logical yet often

    incomplete approach

    that will be discussed

    in subsequent

    sections.

    @cientists have

    used both top down

    and bottom up

    approaches to

    understand protein

    functionality, and this

    has produced con-

    fusion on the precise

    meaning of p!otein

    functionality.

    *ifficulties

    Structural elements by scale

    Food Food property Molecules Mesostructures Macrostructure

    @keletal meat Te"ture %yofibrillar proteins and @arcomere, connective Amount and location of connective tissuecollagen tissue and muscle fibers

    0olor %yoglobinDater holding %yofibrillar proteins and @arcomere, connective Amount and location of connective tissue

    collagen tissue and muscle fibers0heese Te"ture 0aseins and whey proteins mulsion, Bel Phase volumes of emulsion and gel# gel

    structure# emulsion droplet si&e%elting and flow 0aseins and whey proteins Bel Phase volume and structure of gel

    Tofu Te"ture @oy proteins Bel Bel structureDater holding @oy proteins Bel Bel structure

    7everages Te"ture Earious proteins @ol @i&e and shape of solid particlesmouthfeel!

    0larity Earious proteins @ol @i&e and shape of solid particles7read and 0akes Te"ture Earious proteins 'oam, mulsion Phase volume of foam and emulsion# bubble

    foam! and droplet emulsion! si&e

  • 7/26/2019 Avances Traducido

    7/47

    Figure +9Protein functionalit &ased on lengthscale of structural ele4ents deter4iningfunctionalit%

    ()37) Journal of Food Scienceol% 1*, Nr%+), )*+5

    Ne" food protein functionalit4odel % % %

    Table 2Molecular scale functional

    properties of proteins.

    Molecular property

    0olor %yoglobin@weetness Thaumatinn&ymatic activity 0hymosin

  • 7/26/2019 Avances Traducido

    8/47

    Food(he4istr

    in applying the term

    2functionality4 to

    food proteins and

    food applications

    were addressed by

    Pour-l 36?3! in

    stating that 2+o

    subect in the generalarea of food

    chemistry and

    technology has

    suffered more from

    inconsistency,

    confusion, and

    ambiguity than the

    field of

    functionality.4 Pour-

    l 36?3! proposed a

    list of food types and

    associated protein

    functionalities. @ome

    of the so-called

    functionalities

    mentioned by Pour-l

    36?3! are directly

    related to molecular

    or mesoscale

    structures that can be

    characteri&ed by a

    range of chemical and

    physical properties

    associated with

    molec-ular structure

    color and comple"

    formation! or formation and

    stabili&ation of

    colloidal

    mesostructures. The

    colloidal systems

    cov-ered are sol

    solid dispersed in

    liquid!, emulsion

    liquid dispersed in a

    liquid!, foam gas

    dispersed in a liquid!,

    and a gel continuous

    solid network

    surrounded by a

    fluid!. 9ther

    functionalities were a

    bit more ambiguous

    and dependent on

    specific empirical

    tests solubility, fat

    holding capacity,

    liquid holding

    capacity, and water

    absorption!. (n

    addition, some were

    associated with

    sensory per-ceptionof macroscale

    structures hardness,

    chewiness, cohesion,

    and adhesion!. (f a

    protein has a

    function, and the

    function is due to

    chemical$physical

    aspects of the

    protein structure or

    mesostruc-tureformed, then there

    should be a way to

    assay that function.

    =all 366F!

    proposed that

    protein functionality

    can be analy&ed by

    methods that cover

    solubility, viscosity,

    gelation, foam

    formation and

    stabili&ation,

    emulsion formation

    and stabili&ation,

    water and fat

    holding properties,

    and surface

    hydrophobicity.

    These can be

    grouped into

    molecular

    hydrophobicity and

    viscosity!, molec-

    ular and

    mesostructure

    solubili ty of a

    powdered protein!,and mesostructure

    gel, foam,

    emulsion, and fat

    and water holding!

    scale properties.

    This is generally

    valid as a point of

    comparison that is

    independent of a

    specific food

    application.

    =owever, these tests

    must cover a range

    of solution

    conditions protein

    concentra-tion, p=,

    ions, and ionic

    strength! to be

    robust enough to

    cover a broad range

    of food

    applications. The

    advantage of this

    approach is that

    there are numerous

    physical and

    chemical tests thatcan be use to

    characteri&e

    molecular and

    m

    e

    #

    A

  • 7/26/2019 Avances Traducido

    9/47

    The model consistsof 5 structuralscales andfunctionalpropertiesassociated witheach structuralscale.

    Molecula! "cale

    properties are those

    that can be

    e"plained primar-ily

    on protein structure

    considerations.@ome e"amples of

    molecu-lar scale

    properties are seen

    in Table .

    n&ymatic activity,

    binding of proteins

    to biological

    receptors, color, and

    binding of ligand

    compounds for

    e"ample, flavor

    compounds or

    polyphenols! are the

    result of specific

    properties of protein

    structure. These

    func-tions are

    analogous to

    biological structureG

    function

    relationships and

    amenable to a broad

    range of physical,

    chemical, and

    molec-ular biology

    tools that are used to

    determine howproteins func-tion in

    biology. 'or

    e"ample, a

    molecular docking

    computational tool

    can be used to

    evaluate how

    ligands flavor

    compounds or

    polyphenols! bind to

    proteins rickson

    and others //8!.

    There are molecularproperties that have

    a direct impact on

    health and nutrition.

    Proteins are the

    source of amino

    acids and bioactive

    pep-tides# therefore,

    it is essential that

    modifications that

    reduce these

    contributions be

    avoided.

  • 7/26/2019 Avances Traducido

    10/47

    stabili&e colloidal

    mesostructures is a

    good way to

    compare !elati+e

    functionality among

    proteins, or the

    result of protein

    modification, but

    may miss a critical

    element needed to

    perform in a specific

    food product. (f

    there were

    standardi&ed

    conditions for

    forming colloidal

    structures, then the

    properties of those

    structures could be

    considered an

    ine!ent

    functionality of a

    protein.

    The final level is

    the mac!o"cale,

    which accounts forall elements

    comprising a food.

    The science of soft

    matter physics is

    based on the

    premise that the

    behavior of soft

    matter materials

    can-not be predicted

    from molecular

    constituents and

    originates from

    mesostructuresCbbink and others

    //?# van der @man

    /3!. The

    macrostructure can

    be viewed as the

    amount and spatial

    dis-tribution of

    definable

    mesostructures and

    molecules. (t can be

    very simple, as in a

    gelatin gel, or the

    comple" structures

    found in ice cream,

    cakes, or cheese, to

    name a few.

    'urthermore, there

    are

  • 7/26/2019 Avances Traducido

    11/47

    (:

    ol% 1*, Nr% +), )*+5 Journal of FoodScience ()370

    (:Food(he4istr

    Ne" food protein functionalit4odel % % %

    Table 3Locations and properties of proteins

    in colloidal systems relatie to formation and

    stabili!ation.

    "olloidal system "ontinuous phase #ispersed phase $nterface

    @ol Eiscosity relative to a second Protein aggregate si&e, shape, and +Adispersed phase density

    'oam Eiscosity, formation of a network, +A Protein film thickness, gasinteraction with interface permeability# surface properties

    electrostatic or steric stabili&ation!#and rheological properties

    mulsion Eiscosity, formation of a network, +A Protein film thickness# surfaceinteraction with interface properties electrostatic or steric

    stabili&ation!# dispersed phasepermeability# and rheologicalproperties

    Solid continuous phase Li%uid continuous phaseBel 0ontinuous gel network of Eiscosity and interactions with the +A

    characteristic strand thickness, gel network connectivity, and phase volume

    +A, indicates not applicable.

    some foods whereprocessing producesan initial 2green4structure, but thetarget structure isthe result of slowchanges duringaging, such as incheese. Productslike cheese requirean aging process toallow for slow

    transitions at themolecular andmesoscales toproduce the desiredmacroscalestructure.

    #acroscaleStructure 8asedon For4ing andSta&iliing the

    Appropriate#esostructures

    As seen in Table 3,processed foods that

    rely on proteins for

    food structure can be

    modeled as one or a

    combination of the

    ba-sic colloidal

    structures of sol,

    emulsion, foam, or

    gel. This has led to

    producing and

    stabili&ing said

    colloidal structures as

    being a pri-mary

    focus in measuring

    protein functionality.

    %oreover, forming

    and stabili&ing

    colloidal structures

    have a solid

    foundation in the-

    oretical and

    e"perimental science

    for e"ample,

    *ickinson 366#

    7irdi //6! that

    provides useful

    models to determine

    mechanisms

    responsible for

    formation and

    stability in foods

    *ickinson 366#

    Dalstra //5!. ach

    colloidal structure has

    various elements.

    @ols, foams, and

    emulsions have a

    di"pe!"ed pa"e

    surrounded by a

    contin-uou" pa"e

    and the inte!face

    where the phases

    meet. Proteins canfunction as being the

    dispersed phase sol!,

    forming an interfacial

    film emulsion or

    foam! or as part of

    the continuous phase

    sol, emulsion, or

    foam! Table 5!. This

    means that several

    parameters need to be

    determined when

    evaluating protein

    functionality, even ina simple colloidal

    system.

  • 7/26/2019 Avances Traducido

    12/47

    $4ulsions9ne of the most

    common approaches

    for evaluating protein

    functionality in an oil-

    in-water emulsion is to

    compare several

    proteins at

    concentrations where

    there is sufficient

    protein to coat oil

    droplets and minimal

    remaining in the

    dispersed phase. (f one

    protein produces

    smaller droplets, does

    it have a higher

    emulsifying abilityH

    Ies, if your goal is to

    ust produce small

    droplets. =owever,

    most emulsions have

    to be stable for an

    e"tended time, so the

    sta-bility of the system

    is often more

    important than the

    initial physical state

    that is, droplet si&e

    distribution!. *o small

    droplets make for a

    more stable emulsionH

    Ies, if the

    destabili&ation

    mechanism is ust

    based on the creaming

    rate of the oil droplets

    as described by the

    @tokes)

  • 7/26/2019 Avances Traducido

    13/47

    such as other

    surfactants or sugars.

    'or e"ample,

    increasing sucrose

    concentration in egg

    white foams will

    increase the

    interfacial dilatational

    elasticity of egg

    white protein films

    and foam stability

    Iang and 'oegeding

    /3/, /33!.

    Therefore a key

    functional property,

    forming a protein

    film with high

    dilatational elasticity,

    depends on inherent

    properties of the

    protein and how other

    ingredients modify

    them. This would

    suggest that a

    p!ima!y functionality

    to compare amongproteins is properties

    of an airGwater

    interfacial film from

    a standard aqueous

    solutionwith

    application to a

    specific food

    formulation requiring

    accounting for

    additional

    constituents. This is

    evident when

    comparing the ability

    of egg white proteins

    or whey proteins to

    be used in making

    angel food cakes. A

    complete replacement

    of egg white with

    equal amounts of

    whey protein

    produces a cake that

    collapses upon

    baking Pernell and

    others //!. 7oth

    proteins have

    relatively similar

    abilities to form wet

    foams Iang and

    'oegeding /3/,

    /33! and have

    similar structural

    transitions when

    heated 7erry and

    others //6!. They

    differ when flour and

    sugar are folded into

    the foam to make the

    cake batter. Thisinitiates

    destabili&ation in the

    whey protein foam

    and has minimal

    effect on the egg

    white foam 7erry

    and others //6!. (n

    this case, the critical

    difference in protein

    functionality is not

    observed until a

    mesostructure is

    ()372 Journal of Food Scienceol% 1*, Nr%+), )*+5

  • 7/26/2019 Avances Traducido

    14/47

    Ne" food protein functionalit 4odel % % %

    mi"ed with otheringredients to formthe batter collection of mesostructures andmolecules to formthemacrostructure!.

    SolsProtein-

    containing

    beverages can be

    considered sols,

    with the dispersed

    solid phase being

    protein aggregates.

    7everages designed

    for meal

    replacement or

    workout recovery

    contain other

    ingredi-ents thatmay affect protein

    interactions. The

    effect of nonprotein

    ingredients need to

    be accounted for

    when determining

    how a protein will

    function is a given

    beverage. A

    functional concept

    that is used

    regarding beverages

    is 2thermal

    stability.4 This

    evokes the notion of

    comparing protein

    denaturation

    temperatures

    molecu-lar scale!,

    but in reality it is the

    stability of a

    colloidal sol of

    protein aggregates

    mesoscale! that

    determines

    producing a

    satisfactory productand shelf life.

    *enaturation and

    aggregation are

    some-what linked,

    but there are

    e"ceptions as with

    -lactalbumin that

    denatures at F8 K0

    but with minimal

    aggregation

    %cBuffey and

    others //>!. An

    acceptable quality

    beverage is one that

    after thermal

    processing has

    protein aggregates

    that create the

    desired clarity,

    viscosity, and

    mouthfeel.

    @tructures

    produced from

    pro-tein

    aggregation

    molecular scale

    interactions

    producing

    mesoscale

    structures! will

    depend on p=,

    ionic strength, type

    of ion, and pro-tein

    concentration, in

    addition to other

    molecules such as

    sugars +icolai

    and *urand /35!.

    Protein

    functionality in a

    beverage can berepresented based

    on a state diagram

    that shows

    relationships

    between or more

    vari-ables. Dith the

    goal of producing a

    fluid, a general

    approach is to use a

    fi"ed thermal

    process and vary the

    solution conditions

    to determine criticalconcentrations to

    produce a stable sol.

    This has been done

    for -lactoglobulin

    Ako and others

    //6! and whey

    protein isolate

    Dagoner and

    others /3>!. As

    seen in 'igure ,

    this allows for a

    comparison of

    &ones of stability

    based on forming a

    soland the sol

    region can be

    further subdivided

    to show proper-ties

    such as solubility.

    The state diagram

    approach is

    applicable to

    F

    i

  • 7/26/2019 Avances Traducido

    15/47

    comparison of

    relative stability

    among various

    protein ingredients

    or could be used to

    determine the

    stabili&ing$destabili&

    ing effect of other

    beverage

    components for

    e"ample, salts and

    polyphe-nols!.

    =owever, as with

    the e"ample of

    emulsions, this only

    shows conditions

    relevant to

    formation of a sol

    after thermal

    processing, and

    further analysis is

    need to determine

    shelf stability. @helf

    life is based in part

    on the protein

    particle phaseremaining dispersed

    and not forming a

    precipitate, gel, or -

    phase system over

    time. At the

    molecular scale,

    most proteins are 3

    to a few nanometers

    in diameter and

    sedimentation would

    be so slow as to not

    be a factor with a

    shelf life of up to ayear or . Therefore,

    forming a visible

    precipitate or gel

    network will depend

    on the si&e and

    amount of

    aggregates formed

    during thermal

    processing and their

    propensity to

    undergo secondary

    aggregation at

    storage temperatures

    yan and others

    /35!. (n theory,

    these elements

    should be

    predictable based on

    how molecular

    structure ability to

    form intermolecu-lar

    interactions during

    thermal processing!

    determines the type

    of mesostructure

    particle! formed.

    The desiredmesostructure par-

    ticle! is small in

    si&e, had a density

    approaching that

    of the contin-uous

    phase, and has a

    higher amount of

    repulsive than

    attractive surface

    forces to inhibit or

    prevent secondary

    aggregation.

    ;els

    'orming aprotein gel

    network can be

    considered under

    the same conte"t

    as sol formation.

    (n both cases, the

    primary concern is

    at the molecular

    scale in factors that

    favor interprotein

    aggre-gation. They

    differ in that the

    goal of forming a

    stable sol is tominimi&e

    aggregation while

    gelation requires

    directed

    aggregation of

    proteins into a 5-

    dimensional gel

    network. The

    mesostruc-ture of

    the gel network

    will determine

    macroscopic

    physical prop-erties of the gel

    van der

  • 7/26/2019 Avances Traducido

    16/47

  • 7/26/2019 Avances Traducido

    17/47

    (:Food(he4istr

    ol% 1*, Nr% +), )*+5 Journal of FoodScience ()375

  • 7/26/2019 Avances Traducido

    18/47

    Ne" food protein functionalit 4odel % % %

    (:Food(he4istr

    loss from soyprotein gels underdeformationCrbonaite andothers /38!. Aunique challengewith physicalproperties of foodgels is that thereare numerousmethods available

    to determine waterholding,rheological orfractureproperties#however, therelevance toperception duringconsumption maybe more comple".That requires anunderstanding ofhow foodmolecules andstructures areperceived byhumans.

    Interfacing"ith u4anPhsiolog

    There are several

    molecula! functional

    p!ope!tie" that are

    important to

    consumers regarding

    hedonic and health

    aspects of proteins.

    Proteins are

    nonvolatile, so

    aromas associated

    with protein ingre-

    dients are due to

    aroma compounds

    that are either

    present in the

    ingredient or formed

    upon storage. This is

    more a characteristic

    of the overall

    ingredient andshould not be

    considered a

    property of the

    protein per se.

  • 7/26/2019 Avances Traducido

    19/47

    f

    l

    (

    T

    h

    such as color,

    sweetness,

    en&ymatic activity,

    and ligand binding

    are observed at the

    molecula! "cale

    and should be

    predictable directly

    from protein

    structure. These

    properties should

    be invariant from 3

    manufacturer to

    another and could

    be found in a

    master list based on

    common assays.

    @ince food protein

    ingredients contain

    a mi"-ture of

    proteins, the

    molecular scale

    properties of the

    ingredient would be

    the proportionate

    sum of theindividual proteins.

    At the ne"t

    structural level,

    forming and

    stabili&ing sols,

    emulsions, foams,

    and gelsand their

    physical and

    sensory properties

    depend on

    forming specific

    me"o"cale

    structures. Themain challenge at

    this level is creating

    standardi&ed

    conditions for

    forming the

    structures that do

    not inherently favor

    one protein over

    another. (n

    comparing

    proteins, the one

    that forms a

    stronger gel or

    more stable foam

    may depend on p=,

    therefore

    comparing across

    p= and protein

    concentration is

    needed. 9nce

    standard conditions

    for formation are

    established, then a

    range of tests to

    assess structure and

    structural stability

    can be used. 9necautionary note is

    that processing

    equipment becomes

    outdated and

    conditions should be

    based on

    engineering

    principles that are

    independent of

    specific equipment.

    Also, methods to

    assess how

    structures are

    transformed during

    oral processing are

    needed.

    The mac!o"cale

    structure, which

    determines the

    overall properties of

    the food, is created

    by one or several

    mesoscale

    structures. As

    illustrated with angel

    food cakes, protein

    function-ality

    differences may not

    appear until themesostructures are

    mi"ed and processed

    in the final stage of

    food production.

    An analogy can be

    drawn with

    determining the

    bioactivity of a

    polyphenol. An

    isolated molecule

    can show chemical

    activity, say

    antio"idant activityor binding to a

    protein of interest,

    which can be

    conclusively shown

    at the molecular

    scale. The activity in

    a biological system

    can move from cell

    culture, to rodent

    studies, and finally

    to human studies.

    ach level of

    increased

    comple"ity provides

    another potential

    barrier to it

    producing the

    bioactivity predicted

    from the molecular

    structure.

    Protein

    functionality should

    start with defining the

    length scale and

    structural basis for the

    properties of interest.

    Those defined at themolecula! "cale are

    inherent to protein

    structure and can be

  • 7/26/2019 Avances Traducido

    20/47

    c

    a

    A

    @u

  • 7/26/2019 Avances Traducido

    21/47

    ()373 Journal of Food Scienceol% 1*, Nr%+), )*+5

  • 7/26/2019 Avances Traducido

    22/47

    Ne" food protein functionalit 4odel % % %

    Author(ontri&utions

    .A. 'oegedingis the solecontributor to thearticle.

    -eferencesAberle *, 'orrest 10,

    Berrard *, %ills D.//3. Principles of meatscience. 8th ed. *ubuqe,(owaM :indal l$=untPublishing 0ompany.

    Ako :, +icolai T, *urand *,7rontons B. //6. %icro-

    phase separation e"plainsthe abrupt structuralchange of denaturedglobular protein gels onvarying ionic strength orthe p=. @oft %atter >M8/55G83.

    Antmann B, Ares B,@alvador A, Earela P,'is&man @. /33."ploring and e"plainingcreaminess perceptionMconsumers) underlying

    concepts. 1 @ens @tudFM8/G;.

    Audebrand %, opers %-=,iaublanc A. /35.*isappearance of intermolecular beta-sheetsupon adsorption of beta-lactoglobulin aggregatesat the oil-water interfacesof emuls ions . 'ood=ydrocoll 55M3;?G?>.

    7aldwin %D, Toda I,+akagita T, 9)0onnell%1, :lasing :0, %isakaT, dwards @E, M 66G55.

    7andyopadhyay P, BhoshA:, 0handrasekhar B./3. ecentdevelopments on

    polyphenol-proteininteractionsM effects on teaand coffee taste,antio"idant properties andthe digestive system. 'ood'unct 5M >6GF/>.

    7arbana 0, Pere&J %*./33. (nteraction of -lactalbumin with lipidsand possible implicationsfor i ts emuls ifying

    propertiesa review. (nt*airy 1 3M ;;G83.

    7eecher 1D, *rake %A,>5-F/.

    7erry T:, Iang N,'oegeding A. //6.'oams prepared fromwhey protein isolate andegg white proteinM .0hanges associated withangel food cakefunctionality. 1 'ood @ci;8M F6-;;.

    7irdi :@. //6. =andbookof surface and colloidalchemistry. 5rd ed. 7ocaaton, '.

    *ickinson . 366. Anintroduction to foodcolloids. 9"ford, C:M9"ford Cniversity Press.*ickinson . /3.muls ion gels M thestructuring of soft solidswith protein-stabili&ing oil

    droplets. 'ood

    =ydrocoll ?M8G83.

    rickson 1A, 1alaie %,obertson *=, /.

    'oegeding A, *avis 1P./33. 'ood proteinfunctionalityM acomprehensiveapproach. 'ood=ydrocoll >M3?>5GF8.

    'oegeding A, amsey@. 36?;. heologicaland water-holding

    properties of gelledmeat batters containingiota carrageenan, kappacarrageenan or "anthangum. 1 'ood @ci>M>86G >5.

    'oegeding A, Einyard01, ssick B, Buest @,0ampbell 0. /3>.Transforming structural

    breakdown into sensoryperception of te"ture. 1Te"ture @tud 8FM3>G;/.

    'ran&en :

  • 7/26/2019 Avances Traducido

    23/47

    %cBuffey %:, pting :5M53?G6/.

    +icolai T, *urand *. /35.0ontrolled food proteinaggregation for newfunctionality. 0urr 9pin0olloid (nterf @ci 3?M86->F.

    9)0onnell 1, 'o" P'. //3.@ignificance andapplications of phenoliccompounds in the

    production and quality ofmilk and dairy productsM areview. (nt *airy 133M3/5G/.

    Pascua I, :oc =, 'oegedingA. /35. 'ood structureMroles of mechanical

    properties and oralprocessing in determiningsensory te"ture of softmaterials. 0urr 9pin0olloid (nterf @ci 3?M58G55.

    Pernell 0D, ->3.Peter P+, 7ell D. 365/.

    +ormal and modifiedfoaming properties ofwhey-protein and egg-albumin solutions. (ndustng 0hem M338-?.

    Poms , :lein 0G>.

    Tanford 0, eynolds 1.//3. +ature)s robots ahistory of proteins.9"ford, C:M 9"ford Cni-versity Press.

    Taylor A1, . Cbbink

    1, 7urbridge A, %e&&enga

    . //?. 'ood structure and

    functionalityM a soft matter

    perspective. @oft %atter8M3>F6G?3.

    Cdenigwe 00, Aluko ./3. 'ood-protein-der ived bioact ive

    peptidesM production,process-ing, andpotential healthbenefits. 1 'ood @ci;3M33G8.

    Crbonaite E, de 1ongh==1, van der .

    Eisschers D, 1acobs

    %A, 'rasne lli 1,=ummel T, 7urgering%, 7oelruk A%.//F. 0ross-modalityof te"ture and aroma

    pe

    Da

    D

    a

    Ian

    Ian

  • 7/26/2019 Avances Traducido

    24/47

    (:Food(he4istr

    $ntroducci&n

    @e podrSa argumentar

    que las proteSnas sonpolSmeros ms

    verstiles de la

    biologSa.

  • 7/26/2019 Avances Traducido

    25/47

    e"tensiUn de su

    actividad biolUgica,

    por

    siendo componentes

    de estructuras de

    alimentos que la

    biologSa no habSan

    previsto, o pueden

    unirse a una variedad

    de molWculaspequeYas y alterar su

    disponibilidad

    durante la ingestiUn.

    Cn eemplo de

    proteSnas que

    funcionan en los

    alimentos como una

    e"tensiUn de su

    estructura y funciUn

    biolUgica es en&imas.

    el instituto de tecnolog?a de ali4entos

    mailto:[email protected]:[email protected]
  • 7/26/2019 Avances Traducido

    26/47

    aYadir con la

    intenciUn de formar

    estructuras coloidales

    especSficas, pero

    tienen un efecto

    secundario no

    deseado. Por

    eemplo, en las

    bebidas que

    contienen proteSnas

    de suero se austa el

    p= a un p= de 5. a

    5.> para aumentar laestabilidad coloidal

    del sol de proteSnas,

    pero tambiWn imparte

    astringencia

    indeseable 7eecher

    y otros //?!. Cn

    obetivo ideal serSa

    tener una Vetiqueta

    funcionalidadV en un

    ingrediente proteSna

    alimentaria que

    proporciona medidas

    de la eficacia del

    ingrediente serSa enuna gama de

    aplicaciones de

    alimentos.

  • 7/26/2019 Avances Traducido

    27/47

    pueden estar

    implicados.

    structuras vistos en

    la microescala

    histUricamente han

    sido el foco de

    Vanlisis de la

    estructura del

    alimentoV, por

    eemplo vWase la

    revisiUn de =eerte

    /38!, pero un

    enfoque ms recientey completo de la

    estructura del

    alimento es para

    asumir la perspectiva

    de la fSsica y ver las

    estructuras de

    materia blanda a

    travWs de escalas de

    longitud Cbbink y

    otros //?# van der

    @man /3!.

  • 7/26/2019 Avances Traducido

    28/47

    :itabatake //3# 0

    Akir y otros /3!.

    l papel de

    mesoestructuras se

    puede ilustrar

    adicionalmente por

    los eemplos de la

    leche y los productos

    crnicos.

  • 7/26/2019 Avances Traducido

    29/47

    Nuevo $odelo de

    Funcionalidad delas !o"e#nas de losAli$en"os

    temen al afirmar que

    V

  • 7/26/2019 Avances Traducido

    30/47

    n otras palabras,

    Peter y 7elltrabaaron en el

    hipUtesis que si

    pudieran mostrar

    cUmo producir

    espumas de proteSna

    de suero con

    propiedades

    similares a las de

    huevo espumas

    blancas, a

    continuaciUn, suero

    de leche pro-

    proteSnas podrSan ser

    sustituidos por laclara de huevo. ste

    es un enfoque lUgico,

    aunque a menudo

    incompleto que ser

    discutido en las

    secciones siguientes.

  • 7/26/2019 Avances Traducido

    31/47

    rodeado por un

    fluido!. 9tras

    funcionalidades eran

    un poco ms

    ambiguo y depende

    de las pruebas

    empSricas especSficas

    solubilidad,

    capacidad de

    retenciUn de grasa,

    capacidad de

    retenciUn de lSquido,

    y la absorciUn deagua!. Adems,

    algunos se asociaron

    con sensorial la

    percepciUn de las

    estructuras

    macroescala dure&a,

    masticabilidad,

    cohesiUn y

    adherencia!. @i una

    proteSna tiene una

    funciUn y la funciUn

    es debido a aspectos

    fSsicos quSmicos $ de

    la estructura de laproteSna o

    mesostructura

    formado, entonces

    debe haber una

    manera de ensayo

    que funciUn. =all

    366F! propone que

    la funcionalidad de la

    proteSna se puede

    anali&ar por mWtodos

    que cubren la

    solubilidad, la

    viscosidad, la

    gelificaciUn, laformaciUn de espuma

    y de estabili&aciUn,

    la formaciUn de

    emulsiUn y

    estabili&aciUn, el

    agua y propiedades

    de sueciUn de grasa,

    y la hidrofobicidad

    de la superficie.

    stos se pueden

    agrupar en molecular

    hidrofobicidad y

    viscosidad!,

    %olecular ymesoestructura

    solubilidad de una

    proteSna en polvo!, y

    mesoestructura gel,

    espuma, emulsiUn, y

    la grasa y retenciUn

    de agua! Propiedades

    de escala. sto es

    vlido en general

    como un punto de

    comparaciUn que es

    independiente de una

    aplicaciUn de

    alimento especSfico.@in embargo, estas

    pruebas deben cubrir

    una gama de

    condiciones de

    soluciUn

    concentraciUn de

    proteSnas, p=, iones,

    y la fuer&a iUnica!

    para ser lo

    suficientemente

    robusta como para

    cubrir una amplia

    gama de aplicaciones

    de alimentos.

  • 7/26/2019 Avances Traducido

    32/47

    proteSna. sto se

    logra mediante la

    definiciUn de la

    funcionalidad en

    base a la

    funcionalidad que

    determina la escala

    estructural crStica

    'igura 3!.

    l modelo consta de

    5 escalas

    estructurales ypropiedades

    funcionales

    asociados a cada

    escala estructural.

  • 7/26/2019 Avances Traducido

    33/47

    geles, emulsiones, y

    espumas son

    propiedades

    procedentes de

    mesoestructuras.

  • 7/26/2019 Avances Traducido

    34/47

    Puede ser muy

    simple, como en un

    gel de gelatina, o las

    compleas estructuras

    que se encuentran en

    los helados, pasteles,

    o queso, para

    nombrar unos pocos.

    Adems, hay algunos

    alimentos cuando el

    tratamiento produce

    una estructura inicial

    VverdeV, pero su

    estructura de destino

    es el resultado de

    cambios lentos

    durante el

    enveecimiento,

    como por eemplo en

    el queso.

  • 7/26/2019 Avances Traducido

    35/47

    formando unapelScula interfacialemulsiUn o espuma!o como parte de lafase continua sol,emulsiUn o espuma!Tabla 5!. stosignifica que varios

    parmetros necesitanser determinados enla evaluaciUn de lafuncionalidad de la

    proteSna, incluso enun sistema coloidalsencillo

    +mulsiones

    Cno de los mWtodos

    ms comunes para la

    evaluaciUn de la

    funcionalidad de la

    proteSna en una

    emulsiUn de aceite en

    Agua es comparar

    varias proteSnas a

    concentraciones

    donde hay suficiente

    gotitas de aceite para

    la capa de proteSna y

    mSnima que queda en

    la fase dispersa. @i

    una proteSna produce

    gotas ms pequeYas,

    ]tiene una capacidad

    emulsionante

    superiorH @S, si su

    obetivo es

    simplemente

    producir pequeYasgotas. @in embargo,

    la mayorSa de las

    emulsiones tienen

    que ser estable

    durante un tiempo

    prolongado, por lo

    que la estabilidad del

    sistema es a menudo

    ms importante que

    el estado fSsico

    inicial es decir, la

    distribuciUn de

    tamaYo de las

    gotitas!.

    =acen pequeYas

    gotas de una

    emulsiUn ms

    estableH @S, si el

    mecanismo de

    desestabili&aciUn

    sUlo se basa en la

    tasa de formaciUn de

    la crema de las

    gotitas de aceite

    como se describe en

    la

  • 7/26/2019 Avances Traducido

    36/47

    compleos y no se ha

    descrito para Wl una

    prueba simple o

    propiedad fSsica.

    Tomemos por

    eemplo la capacidad

    de deformar un

    huevo blanco de

    merengue estable.

  • 7/26/2019 Avances Traducido

    37/47

    de suero produce un

    pastel que se hunde

    tras la cocciUn

    Pernell y otros

    //!. Ambas

    proteSnas tienen

    capacidades

    relativamente

    similares para formar

    espumas hXmedas

    Iang y 'oegeding

    /3/, /33! y tienen

    transiciones

    estructurales

    similares cuando se

    calienta 7erry y

    otros //6!. @e

    diferencian cuando la

    harina y el a&Xcar se

    doblan en la espuma

    para hacer la masa

    del pastel. sto inicia

    la desestabili&aciUnde la espuma de

    proteSna de suero y

    tiene un efecto

    mSnimo sobre la

    espuma de clara de

    huevo 7erry y otros

    //6!. n este caso,

    la diferencia

    fundamental en la

    funcionalidad de la

    proteSna no se

    observa hasta una

    mesoestructura quees un me&clado con

    otros ingredientes

    para formar la masa

    colecciUn de

    estructuras meso y

    las molWculas para

    formar la

    microestructura!.

  • 7/26/2019 Avances Traducido

    38/47

    %cBuffey y otros

    //>!. Cna bebida de

    calidad aceptable es

    uno que, despuWs del

    proceso de cocciUn

    tiene agregados de

    proteSnas que crean

    la claridad, la

    viscosidad, y

    sensaciUn en la boca

    deseada. structuras

    producidas a partir

    de la agregaciUn de

    pro-proteSna

    interacciones

    moleculares escala

    que producen

    estructuras de

    mesoescala!

    dependern de p=,

    fuer&a iUnica, el tipo

    de iones y la

    concentraciUn de

    pro-proteSna, ademsde otras molWculas

    tales como a&Xcares

    +icolai y *urand

    /35!.

  • 7/26/2019 Avances Traducido

    39/47

    mayorSa de las

    proteSnas son de a

    unos pocos

    nanUmetros de

    dimetro y

    sedimentaciUn serSa

    tan lento como para

    no ser un factor con

    una vida Xtil de hasta

    un aYo o . Por lo

    tanto, la formaciUn

    de una red de

    precipitado o gelvisible depender en

    el tamaYo y la

    cantidad de

    agregados formados

    durante el

    procesamiento

    tWrmico y su

    propensiUn a sufrir

    agregaciUn

    secundaria a

    temperaturas de

    almacenamiento

    yan y otros /35!.

    n teorSa, estoselementos deben ser

    predecibles en

    funciUn de cUmo la

    estructura molecular

    capacidad de formar

    interacciones

    intermolecular

    durante el

    procesamiento

    tWrmico! determina el

    tipo de

    mesoestructura

    partScula! formado.

  • 7/26/2019 Avances Traducido

    40/47

    a F` w $ v, a p= ;!

    produo soles, geles

    homogWneos, micro-

    fase separada geles,

    o precipita como la

    concentraciUn de

    +a0l se incrementa

    de /,/3 a 3 % Ako y

    9T=-@ //6!. l

    diagrama de estado

    que presenta la

    relaciUn entre la

    concentraciUn de+a0l y la

    concentraciUn de

    proteSnas a un p= de

    ;,/ muestra una

    concentraciUn

    mSnima para la

    gelificaciUn de

    alrededor de ` w $

    v# sin embargo, esto

    puede variar con un

    cambio en el p=.

    Cn enfoque integral

    para una proteSna

    individual serSagenerar diagramas de

    estado que cubren

    una amplia gama de

    valores de p= y las

    concentraciones de

    proteSna ,los puntos

    crSticos, y luego

    evaluar cUmo otros

    factores, tales como

    ingredientes

    aYadidos, cambiar

    los puntos crSticos en

    el diagrama de

    estado.%acroescala

    propiedades

    asociadas con los

    geles incluyen

    apariencia

    transparente u

    opaco!, la firme&a

    fuer&a $

    deformaciUn!, fuer&a

    la fuer&a para

    provocar la fractura!,

    y la retenciUn de

    agua. stos son

    pertinentes a laapariencia y la

    estabilidad del

    producto alimenticio

    y, posiblemente,

    asociados con la

    percepciUn sensorial

    de la te"tura

    @&c&ensiak //#

    Pascua y otros /35!.

    @e relacionan con

    elementos en

    molecular y

    mesoscales van

    Eliet //# van den7erg y otros //;a,

    b!. Cn eemplo

    reciente es el

    halla&go de que la

    escala de longitud

    micrUmetro

    mesoestructura! es

    el agua una factor

    mas determinante

    por la pWrdida de los

    geles de proteSna de

    soa bao

    deformaciUn

    Crbonaite y otros

    /38!.

    Cn desafSo Xnico,con propiedades

    fSsicas de los geles

    de alimentos es que

    hay numerosos

    mWtodos disponibles

    para determinar de

    retenciUn de agua,

    las propiedades

    reolUgicas o para

    fracturas# sin

    embargo, la

    relevancia a la

    percepciUn durante el

    consumo puede serms complea. sto

    requiere una

    comprensiUn de

    cUmo las molWculas y

    estructuras de

    alimentos son

    percibidos por los

    seres humanos.

    $nterfa! con

    Fisiolo)a umana

    =ay varias

    propiedadesfuncionales

    moleculares que son

    importantes para los

    consumidores en

    relaciUn con los

    aspectos hedUnicos y

    de salud de las

    proteSnas.

  • 7/26/2019 Avances Traducido

    41/47

    de la funcionalidad

    de la proteSna. @in

    embargo, como se

    mencionU

    anteriormente, los

    compuestos de sabor

    de uniUn es una

    forma en que las

    proteSnas pueden

    alterar el aroma

    general de un

    alimento. !.

  • 7/26/2019 Avances Traducido

    42/47

    se pueden austar a

    las transformaciones

    especSficas durante el

    preprocesamiento

    oral. n estos

    eemplos , 3 factor

    clave es la

    coalescencia de las

    gotitas de aceite

    durante el

    procesamiento oral.

    sto sugiere que,

    adems de lacomprensiUn de

    cUmo formar y

    estabili&ar

    mesoestructuras

    coloidales,

    propiedades que son

    esenciales para la

    aceptaciUn del

    consumidor en la

    compra, las

    transformaciones en

    la mesoestructura

    durante el

    procesamiento porvSa oral deben ser

    entendidos con

    respecto a que

    suscitan sensaciones

    de te"tura

    'oegeding y otros

    /3>!.

    bseraciones

    Finales

  • 7/26/2019 Avances Traducido

    43/47

    ilustra con pastel de

    ngel, no pueden

    aparecer diferencias

    proteSna de funciUn-

    lidad hasta que los

    mesoestructuras se

    me&clan y se

    procesan en la etapa

    final de la

    producciUn de

    alimentos.

    Cna analogSa sepuede e"traer con la

    determinaciUn de la

    bioactividad de un

    polifenol. Cna

    molWcula aislada

    puede mostrar

    actividad quSmica,

    por eemplo la

    actividad

    antio"idante o uniUn

    a una proteSna de

    interWs, que puede

    ser demostrado de

    forma concluyenteen la escala

    molecular.

  • 7/26/2019 Avances Traducido

    44/47

  • 7/26/2019 Avances Traducido

    45/47

    rickson 1A, 1alaie %,obertson *=, /.

    'oegeding A, *avis 1P./33. funcionalidad de la

    proteSna alimentariaM unenfoque integral. 'ood=ydrocoll >M 3?>5-3?F8.

    'oegeding A, amsey@. 36?;. . ->3.

    Peter P+, 7ell D. 365/.normal y propiedadesespumantes modificadas desoluciones de albXmina dehuevo, proteSna de suero y.

    (ndust ng 0hem M 338-33?.

    Poms , :lein 0

  • 7/26/2019 Avances Traducido

    46/47

    clases quSmicas. (mpactode la proteSna en la

    percepciUn del olor de lavainillina y eugenol. -3>.

    @ammis 1. luso de diagramas de estado

    para predecir la estabilidad

    coloidal de las bebidas deproteSna de suero de leche.

    1 Agric 'ood 0hem F5M855>-88.

    Dalstra P. //5.'isicoquSmica de losalimentos. +ew Iork, +IM%arcel *eckker, (nc.

    Iang N, 'oegeding A.

    /3/. fectos de lasacarosa en proteSna declara de huevo y proteSnade suero espumasM factoresque determinan las

  • 7/26/2019 Avances Traducido

    47/47