Cap 6 elasticidad 156-168

21
Cuaderno de Actividades: Física I 6) ELASTICIDAD Lic. Percy Víctor Cañote Fajardo 156

Transcript of Cap 6 elasticidad 156-168

Page 1: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

6) ELASTICIDAD

Lic. Percy Víctor Cañote Fajardo 156

Page 2: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

6) ELASTICIDAD

6,1) Introducción

Cuerpos ← Deformables{Descripción adecuada}

→ Esfuerzo

→ Deformación

→ Módulos elásticos

Y

S

B

→ Régimen elástico

6.2) Esfuerzo y deformación

Experimentalmente:

Li ≡ L

A: sección transversal

Se observa:

Lic. Percy Víctor Cañote Fajardo

L A

F

F

F

∆L

L

F

F

157

Page 3: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

→ los ∆L van a depender de las F

y A {siempre en régimen elástico}

→ los ∆L dependen de L

Se define:

a) Esfuerzo, s: (Fuerza por unidad de área)

FEsfuerzo s

A= =

b) Deformación, e: (Deformación unitaria)

L

Deformación eL

∆= =

Con estas definiciones se observa relación directa entre los esfuerzos y las deformaciones.

Módulo elástico = Esfuerzo/Deformación

EM

D

= 1

→ s

s Me Me

→≡ ≡

Lic. Percy Víctor Cañote Fajardo

D

E

Régimen elástico

158

Page 4: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

M ∼ 1010 2

N

m

¿? Podría describir curvas s-e donde se muestren las 3 fases: elástica, plástica y de ruptura.

¿? Podría describir curvas s-e especiales.

6.3) Módulos elásticos

i) Modulo de Young, Y

Describe la resistencia del material a las deformaciones longitudinales.

/

/

F AY

L L≡

∆ N/m2

ii) Modulo de corte, S

Describe la resistencia del material al desplazamiento de sus planos por efecto de fuerzas aplicadas según sus caras (fuerzas tangenciales o de corte)

Lic. Percy Víctor Cañote Fajardo

A F

h

f

F

∆x

h

xtg

∆=θ

h θ f

159

Page 5: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Para pequeñas fuerzas F la cara de área A se desplaza relativamente una pequeña distancia ∆x hasta que las fuerzas internas del cuerpo logran equilibrar dicha fuerza.

La resistencia al desplazamiento ∆x se describirá en base al modelo S,

/

/

Esfuerzo de corte F AS

Deformación de corte x h≡ ≡

→ Fh

SA x

≡∆

iii) Modulo volumétrico, B

Describe la resistencia del material a deformaciones volumétricas.

Lic. Percy Víctor Cañote Fajardo

F A

F

F

F

160

Page 6: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Supongamos que el cubo de área A esta sometido a las fuerzas F sobre cada una de sus caras. El cubo está sometido a compresión, el modulo volumétrico esta definido por,

Si esta presión, F

pA

≡ , se escribe como una variación

de presión, p∆ ,

/

pB

V V

∆≡ −∆

En estas condiciones se introduce el “- “para obtener un B > 0.

Compresión: ∆p > 0 ∧ ∆V < 0→ B > 0.

Dilatación o expansión: ∆p < 0 ∧ ∆V > 0→ B > 0.

¿? Existirán otros módulos elásticos.

Ejercicio 1:

1° Ideal

Lic. Percy Víctor Cañote Fajardo 161

/ /

/ /

F A F AB

V V V V≡ − ≡ −

∆ ∆

Page 7: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

v2(0) ≡ 0

→ MRUV Polea idealCuerda ideal, ∃ m

m1,m2 , puntuales

L = 2 m1 = 3, m2 = 5

φ = 4 x 10-3

¿? t

2° Polea real → a afectada → I=I (m,r) , f ← polea

⇒ CR⇒ MRUV

3° Cuerda real→ Deformación→ CR→ MRUV

4°→1º) t ≡¿?

2,54

ga ≡ = → t(y2 ≡0) ≡?

y(t) ≡y (0)+ v(0) t - 2

1at2

2

2

5,2010 t−+≡

Lic. Percy Víctor Cañote Fajardo

y

m2

h2 ≡1mm1

162

Page 8: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

5,2

2≡t

5º→3°) Considerando sólo deformación de la cuerda, T=?, t=?

w2 – T = m2 a T = w2 – m2 a≡ 50 – 5 x 2,5T ≡ 37,5

/

/

F A FLY L F T

L L YA≡ → ∆ = ¬ =

Yacero ≡ 20 x 1010

( ) mxx

xL µ

π6,27

1021020

25,372310

=≡∆→−

t ≡ ¿?

Ejercicio 2: La deformación causada a la barra de longitud L, x, mediante la aplicación adecuada de la fuerza F, es decir, el trabajo efectuado por F sobre el sistema elástico, queda almacenado como energía potencial elástica en el sistema…veamos que es asi,

Lic. Percy Víctor Cañote Fajardo

Acero

A

-F F

-L 0 x x

163

Page 9: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Mostraremos que en el sistema queda almacenada energía potencial elástica que puede expresarse de esta manera,

,1

2p elEF AL

uA L unidad de volumen

≡ ×

Al aplicar la fuerza F, tal como muestra la figura, producirá una deformación x, descrita por,

/

/

AYF A

x Lx FY

L ÷

≡ ≡→

De tal forma que la fuerza del sistema será,

elast

AYF x

L→ ≡ − {En todo momento la fuerza aplicada F es tan intensa como

la respuesta elástica del sistema, siempre que el proceso se realice muy lentamente, estado cuasiestacionario}

Ahora, calculando el trabajo de esta fuerza,

{ , , , , , , , ,elF

p el p el f p el i p el f p elW E E E E E≡ −∆ ≡ − + ≡ − ≡ −

20 , ,0

1/

2el

LF Lp el p el

AY AYW x dx x E E

L L

∆ ∆ ≡ − × ≡ − ≡ −∆ ≡ − ÷ ∫

2,

1

2 p el

AYL E

L→ × × ∆ ≡

2,

1

2 p el

AYL E

L → ∆ ≡

Lic. Percy Víctor Cañote Fajardo 164

Page 10: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

1

2

A→ ×L

( /F A× )

( L∆ / )L2L× ∆ ,p elE≡

,

1

2 p elF L E→ ∆ ≡

,1

2p elEF L

uAL AL

∆→ ≡ ≡

→ 1

2

F Lu

A L

∆ ≡ ÷ ÷

1

2s e u≡

¿? Aplicaciones tecnológicas de la deformación de los cuerpos en sus tres fases notables: elástica, plástica y de ruptura.

S6P10) Se cuenta con una barra troncocónica maciza cuya sección circular varía uniformemente a lo largo de su longitud L, entre los diámetros d y D. Los extremos están sujetos a una fuerza axial F, determine la deformación unitaria ó específica debido a dicha fuerza.

SOLUCION:

Lic. Percy Víctor Cañote Fajardo

d/2 D/2F F

L

165

Page 11: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

De ( )

2,

2 2

D dFL Fdx dL dL y x

YA Y y Lπ−

∆ ≡ → ≡ ≡ +

( ) ( )2 20

0

2 2

2

L

I

Fdx F dx FdL L

Y YD d D dYd x d x

L

dD

L L

π ππ

≡ ≡→ ∆ ≡ ≡

− − + +

144424443

?I→ ≡

D du d x

L

− ≡ + ÷

D ddu dx

L

− ≡ ÷

( ) 2

*

D

d

I

L du LI

D d u dD → ≡ ≡ − ∫

* 1 1 1D

dI

u d D → ≡ − ≡ − ÷ ∫

02FLL

Y dDπ→ ∆ ≡ →

2L F

L Y dDπ∆ ≡

Lic. Percy Víctor Cañote Fajardo

b/2d/2

L

Y

A(x) D/2 d/2 y F 0 x X Ax L

166

Page 12: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

S6P8) Una masa de 1 kg cuelga de un cable de acero de 2 m de longitud (longitud sin estirar) con un diámetro de 0,1 mm. El sistema es puesto en movimiento como un péndulo cónico con un ángulo θ en el vértice.

a) Calcule la deformación del alambre.b) El periodo del movimiento rotacional cuando la tensión en el alambre

en dos veces el peso de la masa (Yacero = 21 x 1010 Pa).

SOLUCION:

DCL (m):

T θ

m

w

Datos: m=1, l=2, d=φ=10-4, Yacero = 21x 1010.

Del equilibrio en la vertical,

...cos secT mg T mgθ αθ≡ → ≡

Y de la dinámica circular,

2

...' , 'tcp cp

vF Tsen ma m R l sen l l l

Rθ βθ≡ ≡ ≡ ¬ ≡ ≡ + ∆

De α y β, 2

..t n .a'tvmg m

l senθγθ ≡

a) Del modulo de Young,

Lic. Percy Víctor Cañote Fajardo

θ

m

167

Page 13: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

2 22

4sec

2

FL Tl TlY Y l T mg

LA Y ddl

θπ

π≡ → ≡ → ∆ ≡ ¬ ≡

∆ ∆ ÷

2 2

4 seclmgl

Y d

θπ

∆ ≡

b) T (periodo)=?, con la condición 23

T mgπθ≡ → ≡ ( T: tensión)

2( )T periodo

w

π≡

La frecuencia angular la obtenemos de β,

2cpF Tsen mθ≡ ≡ g senθ m≡ 'l senθ 2w

2 2'

'

g gw l l l w

l l l→ ≡ ¬ ≡ + ∆ → ≡

+ ∆

Con lo que el T queda,

22

l lT

gπ + ∆≡ 0,0242usando l∆ ≡ → 0,6T π≡

Lic. Percy Víctor Cañote Fajardo 168

Page 14: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

S6P1) La barra mostrada, en la figura tiene las siguientes características: peso = w, área transversal = A, longitud = L y módulo de Young = Y. Si una pesa de peso 2 w es colocado en la parte inferior, halle la deformación de la barra considerando la deformación por peso propio.

SOLUCION: Primero determinaremos la deformación causada por el peso propio de la barra, para lo cual tomamos un elemento de la barra de longitud infinitesimal dx, como se muestra en la figura, sobre la cual actúa la fuerza w(x), es decir, la fuerza debido al peso del trozo de barra de longitud x,

( )x

w x wL

≡ ÷

Esta fuerza producirá un elemento de deformación dado por,

Lic. Percy Víctor Cañote Fajardo

barra

L

2w

X

dx w(x) x

0 w w(x)

169

Page 15: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

{ } { }( )( )

wx dx

w x dxFLY

A

wLd L xdx

AY AY LAYL

÷ ∆ ≡ ≡ ≡→≡

Para calcular la deformación total integramos para toda la barra,

0 1 2

L wLL L

AY

wL xdx

LAY∆ ≡ → ∆ ≡ ∆ ≡∫

Ahora, para la deformación total, consideramos la deformación que produce la pesa 2w,

2

(2 ) 2w L wLL

AY AY∆ ≡ ≡

Con lo que la deformación total es, 1 2

2

2

wL wLL L L

AY AY∆ ≡ ∆ + ∆ ≡ +

Lic. Percy Víctor Cañote Fajardo 170

Page 16: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

S6P4) Una varilla de cobre de 1,40 m de largo y área transversal de 2,00 cm2

se sujeta por un extremo al extremo de una varilla de acero de longitud L y sección de 1,00 cm2. La varilla compuesta se somete a tracciones iguales y opuestas de 6,00 x 104 N en sus extremos.a) Calcule L si el alargamiento de ambas varillas es el mismob) ¿Qué esfuerzo se aplica a cada varilla?c) ¿Qué deformación sufre cada varilla?Modulos de Young:Cobre: 11 x 1010 PaAcero: 20 x 1010 Pa

SOLUCION: Representamos a la varilla compuesta en el siguiente diagrama,

a) Determinamos L de la condición . Mostramos DCL de cada varilla en la

dirección de interés y aplicamos la condición,

Lic. Percy Víctor Cañote Fajardo

F A1 L1 L A2 F

171

Page 17: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Calculando,

b) Calculando los esfuerzos,

c) Calculando las deformaciones,

Lic. Percy Víctor Cañote Fajardo

F ∆L1 F

F ∆L F

172

Page 18: Cap 6 elasticidad 156-168

d

Cuaderno de Actividades: Física I

S6P14) Si el esfuerzo de corte en el acero excede aproximadamente 4,0 x 108, el acero se rompe. Determine la fuerza de corte para, a) cortar un perno de acero de 1 cm de diámetro, y b) hacer un hoyo de 1 cm de diámetro en una plancha de acero de 0,50 cm de espesor.

SOLUCION:

a) Determinación de la fuerza de corte,

F

De la ecuación del esfuerzo de corte,

Por lo tanto, una fuerza mayor que F cortara al perno.

b) Ahora, determinamos la fuerza de corte para hacer el hoyo,

w

d

F

Lic. Percy Víctor Cañote Fajardo 173

Page 19: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Lic. Percy Víctor Cañote Fajardo

w

174

Page 20: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

S6P2) Una barra homogénea de longitud L, área A, masa M, módulo de Young Y, gira libremente con velocidad angular w = cte, sobre una mesa horizontal sin fricción y pivoteando en uno de sus extremos.Determine:a) La deformación producida en la barrab) En donde se produce el esfuerzo máximo

SOLUCION:

a)

b) De ,

por lo tanto, en r=L,

Lic. Percy Víctor Cañote Fajardo

M w L dm dFcp

r dr O

175

Page 21: Cap 6 elasticidad 156-168

Cuaderno de Actividades: Física I

Lic. Percy Víctor Cañote Fajardo 176