Clase 004

download Clase 004

of 9

Transcript of Clase 004

  • 7/30/2019 Clase 004

    1/9

    Chapter 4: Blackbody radiation and the birth of quantum physics: Problems

    Luis M. Molina

    Departamento de Fsica Teorica, Atomica y Optica

    Quantum Physics

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 1 / 5

    http://find/
  • 7/30/2019 Clase 004

    2/9

    Problem 1.1

    QuestionExpress Plancks formula for the density of energy T() in a blackbodycavity in terms of the wavelenght . Then, prove Wiens displacementlaw, calculating Wiens constant.

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 2 / 5

    http://find/
  • 7/30/2019 Clase 004

    3/9

    Problem 1.1

    QuestionExpress Plancks formula for the density of energy T() in a blackbodycavity in terms of the wavelenght . Then, prove Wiens displacementlaw, calculating Wiens constant.

    SolutionWe start from:

    T() =82

    c3

    h

    eh/kT 1(1)

    Then, as = c/, we have:

    T() = T()

    dd

    = 8h c3

    c33c

    21

    ehckT 1=

    8hc

    51

    ehc/kT 1(2)

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 2 / 5

    http://find/
  • 7/30/2019 Clase 004

    4/9

    Problem 1.1

    Solution (cont.)Now, to find the wavelength max for which T() reaches a maximum, we equalthe derivative of the function to 0:

    T()

    = 8hc

    hc

    kT7ehc/kT

    `ehc/kT 12

    1

    65

    ehc/kT 1! = 0=

    hc

    kT

    ehc/kT

    ehc/kT 1 5 = 0 (3)

    Now taking x = hc/kT, we need to solve the equationxex

    ex 1= 5.

    This can only be solved numerically, with the result x = 4,965114. Then, finally:

    maxT =hc

    xk=

    6,626 1034J s 2,9979 108m/s

    4,965114 1,3806 1023J/K= 2,897 103m K (4)

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 3 / 5

    http://find/
  • 7/30/2019 Clase 004

    5/9

    Problem 1.2

    QuestionA cavity at 6000K has an energy distribution corresponding to a blackbody. We make asmall hole in it with 1mm diameter. Calculate the power irradiated through the hole in thewavelength interval between 5500 and 5510 A, as well as the total power

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 4 / 5

    http://find/
  • 7/30/2019 Clase 004

    6/9

    Problem 1.2

    QuestionA cavity at 6000K has an energy distribution corresponding to a blackbody. We make asmall hole in it with 1mm diameter. Calculate the power irradiated through the hole in thewavelength interval between 5500 and 5510 A, as well as the total power

    Solution

    As the wavelength interval is rather small, we can approximate the total backbody radiancywithin that interval as:

    RT =

    ZBA

    c

    4

    8hc

    5d

    ehc/kT 1

    2hc2

    5Mehc/MkT 1

    () (5)

    with = B A and M = (B + A)/2

    Then, the total power will be the radiancy times the area of the hole:

    P =2 6,626 1034J s (3 108)m2/s2

    (0,5505 106m)51

    e4,359 1 109m (106 m2) = 0,301W

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 4 / 5

    http://find/
  • 7/30/2019 Clase 004

    7/9

    Problem 1.3

    Solution (cont.)

    For the total power, we use Stefans law:

    RT = T4 = 5,6704 108 Js1m2K4 (6000K)4 = 7,3488 107 W/m2

    P = RT A = 7,3488 107W/m2 (3,1416 106m2) = 230,87W

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 5 / 5

    http://find/
  • 7/30/2019 Clase 004

    8/9

  • 7/30/2019 Clase 004

    9/9

    Problem 1.3

    Solution (cont.)

    For the total power, we use Stefans law:

    RT = T4 = 5,6704 108 Js1m2K4 (6000K)4 = 7,3488 107 W/m2

    P = RT A = 7,3488 107W/m2 (3,1416 106m2) = 230,87W

    QuestionIn a thermonuclear explosion the temperature in the fireball is momentarily 107K. Find thewavelength at which the radiation emitted is a maximum.

    SolutionWe apply Wiens law, obtaining:

    max =2,897 103m K

    107K= 2,897 1010m = 2,897 A

    which represent rather energetic X-rays.

    Luis M. Molina (FTAO) Chapter 3 Quantum Physics 5 / 5

    http://find/