Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff...

31
Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía • Fundamentals of Powder Diffraction and Structural Characterization of Materials; by Vitalij K. Pecharsky and Peter Y. Zavalij. Springer Verlag 2003. • Elements of X - Ray Diffraction by B.D. Cullity 1967 • Métodos de difracción de rayos X. Principios y Aplicaciones; J. Bermudes-Polonio • International Table of Crystallography (ITC) Vol. A • Data bases “Powder Diffraction Files” (PDF) and “Inorganic Crystal Structure Database” (ICSD) • Program Fullprof by J. Rodriguez Carvajal, CEA-CNRS.

Transcript of Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff...

Page 1: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Curso: Estructura de Sólidos

Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz

Bibliografía

• Fundamentals of Powder Diffraction and Structural Characterization of

Materials; by Vitalij K. Pecharsky and Peter Y. Zavalij. Springer Verlag 2003.

• Elements of X - Ray Diffraction by B.D. Cullity 1967

• Métodos de difracción de rayos X. Principios y Aplicaciones; J. Bermudes-

Polonio

• International Table of Crystallography (ITC) Vol. A

• Data bases “Powder Diffraction Files” (PDF) and “Inorganic Crystal Structure

Database” (ICSD)

• Program Fullprof by J. Rodriguez Carvajal, CEA-CNRS. Saclay, France

Page 2: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.
Page 3: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Estructura de Sólidos

Tema-1: Conceptos básicos de cristalografía

Conferencia 1. El estado cristalino. Concepto de

cristal. Red cristalina y motivo estructural. Celda

unitaria. Celdas primitivas y centradas

Page 4: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Isotrópico Estadísticamente homogéneo

Principales características de los estados de agregación

gaseoso

LíquidoOrden local (cercano)

Page 5: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Principales características de los estados de agregación

Estado cristalino

- homogéneo periódicamente.

- presenta anisotropía respecto a sus propiedades.

- presenta simetría a nivel del cristal y a nivel de las propiedades del cristal.

El ESTADO CRISTALINO, se define macroscópicamente como un medio

simétrico, homogéneo y anisotrópico;

Page 6: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Sólido cristalino

Un sólido cristalino es aquel que presenta un diagrama de difracción discreto

En un sólido cristalino los átomos se repiten de manera ordenada y paralela y su distribución en el espacio presenta ciertas relaciones de simetría. Siendo la periodicidad su característica principal.

Un SÓLIDO CRISTALINO se define como: un arreglo períodico de un motivo estructural (átomos) en 3 dimensiones, con orden de alcance infinito.

Page 7: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

-En teoría, la periodicidad de los cristales es infinita.

-Los cristales reales no son infinitos, ( 10∼ 3 - 1020 distancias atómica o molecular.

- El colapso de la periodicidad se debe a los defectos e impurezas en el cristal.

Sólido cristalino

Conocer la estructura cristalina consiste en determinar las posiciones de todas las

especies constituyentes del cristal.

Mediante una red cristalina, podemos representar una estructura cristalina; sin embargo:

Estructura Cristalina ≠ red cristalina

Page 8: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Red cristalina y motivo estructural

La periodicidad se describe a través de una red de puntos que tienen

determinadas coordenadas en el espacio y el motivo estructural se define por

el arreglo de los átomos, los que estarán colocados en cada punto de la red.

Red cristalina = Red de puntos + motivo estructural

Red: es un arreglo regular, repetitivo, de puntos (uni, bi y tridimensional).

Page 9: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

El motivo esta determinado por la posición de los átomos que lo conforman

Red cristalina y motivo estructural

- El origen del motivo es irrelevante, solo cambian las coordenadas de los átomos dentro del motivo respecto al origen

- Hay infinitas formas de escoger el motivo

Page 10: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Red cristalina y motivo estructural

En general, el origen de la red y el motivo estructural pueden ser seleccionados arbitrariamente. Estos cambios no afectarán el contenido en la celda unitaria

Page 11: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

La menor unidad repetitiva dentro del retículo se

denomina cristalográficamente celda unitaria, y

es una pequeña fracción del cristal que se usa

para generar o construir el retículo interno,

moviéndose de acuerdo con ciertas reglas.

La celda unitaria es la menor unidad cristalina que presenta las propiedades del cristal como un todo. Formada por tres vectores conjugados, que por traslación genera toda la red de puntos.

Estructura cristalina = n x celda unitaria

Page 12: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Red cristalina y motivo estructural

A partir de la celda unitaria (incluyendo los átomos en su interior) podemos completar todo el espacio del cristal aplicando:

• Translación siguiendo una distancia igual a la longitud de una de sus aristas

• Translación en una dirección perpendicular a esa arista.

Page 13: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Red cristalina y motivo estructural

Vector de posición: localiza un nodo en la redu, v, w: números enteros

Los vectores de posición (r), representan traslaciones en la red.

Page 14: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

a

bc

Una celda unitaria podemos definirla por 6 parámetros (a, b, c, ), conocidos como parámetros de celda:

Longitud de sus lados (a, b, c) ángulos entre los lados

()

a

b

c

Celda Unitaria

Parámetros de red : 3 vectores linealmente independientes a, b, c tomados a partir de un punto de la red, siendo este el origen. Estos vectores definen la celda y son llamados ejes cristalográficos de la celda. Pueden ser descritos en términos de su longitud (a,b,c) y los ángulos entre ellos ( (bc), (ca), (ab)).

Page 15: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Las coordenadas (x, y, z) de un átomo

dentro de la celda unitaria son

expresadas en fracciones de los valores

de los parámetros de celda y estos

varían entre 0 y 1. Conocer la posición

exacta de estos átomos conlleva al

arreglo atómico de todo el cristal0, 0, 0 (x = 0, y = 0, z = O), origen de la celda unitaria

1/2, 0, 0 (x = 1/2, y = 0, z = O),

0, 1/2, 0 (x = 0, y = 1/2, z = O),

0, 0, 1/2 (x = 0, y = 0, z = 1/2),

Page 16: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

La menor parte del motivo

estructural a partir del cual la celda

unitaria puede ser construida por

simetría, se denomina Unidad

asimétrica.

Unidad asimétrica

Celda

Cristal

Translaciones3D

Operaciones de simetria

Red cristalina y motivo estructural

Page 17: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.
Page 18: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Tipo de punto

en la red

Contribución para

una celda unitaria

Vértice 1/8

Arista 1/4

Caras 1/2

En el interior 1

NV = número de puntos en el vértice;

NA = número de puntos en las aristas;

NF = número de puntos en las caras;

NI = número de puntos en el cuerpo.

4128AIFV

total

NNNNn

Número de puntos por celda

Page 19: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Las celdas unitarias se diferencian en los parámetros lineales, angulares y en el número de puntos.

•Las celdas unitarias a, b y c son denominadas primitivas porque poseen solamente un punto (la contribución de los puntos en los vértices). • Las celdas d y e, contienen puntos adicionales y se denominan no primitivas (centradas).

Analizando las celdas a y f

verificamos que aparentemente

difieren en el número de puntos.

Estas celdas son equivalentes si

definimos una celda primitiva

como aquella que posee un

punto por celda estando en el

vértice o no.

Page 20: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Finalmente, existe un tipo de celda denominada romboédrica que se identifica por el símbolo R.

Una celda que posee apenas un punto se denomina primitiva (P).

Si la celda contiene más de un punto (en el centro del cuerpo), se denomina celda centrada en el cuerpo (I).

Si existen puntos en las caras opuestas, se denomina celda centrada en dos caras opuestas A, B, o C, dependiendo de que par de caras opuestas está centrado.

En tanto, si todas las caras son simultáneamente centradas, se denomina celda centrada en las caras (F).

Celda Primitiva y Centrada

Page 21: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Tipo de red números de puntos por celda (N)

Posición de los puntos

P- primitiva NI=0, NF=0, NV=8;

ntotal = 1

0, 0,0

I- centrada en el cuerpo NI=1, NF=0, NV=8;

ntotal= 2

0, 0,0; ½ ½ ½

A, B, C centrada en las caras de la celda unitaria A (100), B(010), C (001)

NI=0, NF=2, NV=8;

ntotal= 2

0, 0,0; 0 ½ ½ (A)0, 0,0; ½ 0 ½ (B)0, 0,0; ½ ½ 0 (C)

F- centrada en las caras NI=0, NF=6, NV=8;

ntotal= 4

0, 0,0; 0 ½ ½; ½ 0 ½; ½ ½ 0

4128AIFV

total

NNNNn

Page 22: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Estructura del cloruro de sodio, NaCl.

Red: F- centrada en las caras

Motivo:

Celda asimétrica : Na (0, 0, 0) ; Cl (½, 0, 0)

Estructura cristalina del tungsteno.

Red: I- centrada en el cuerpo

motivo :

Celda asimétrica: (0, 0, 0);

Estructura de la fluorita, CaF2

Red : F- centrada en las caras

Motivo:

Celda asimétrica: Ca2+(0, 0, 0) ; F(¼, ¼, ¼); (¾, ¼, ¼)

Red cristalina y motivo estructural

Page 23: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Sistemas CristalinosSistemas Cristalinos

Cada celda unitaria viene definida por sus parámetros de celda

(longitud y ángulos) y sus distintos valores dando lugar a 7 sistemas cristalinos:

1. Cúbico

a = b = c; 90°

Simetría esencial: 4 ejes de orden 3

Page 24: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

2. Tetragonal

a = b c90°Un eje de orden 4

3. Ortorrômbico

a b c90°3 ejes de orden 2 perpendiculares

Sistemas CristalinosSistemas Cristalinos

Page 25: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

4. Monoclínico

a b c90°, 90°Un eje de orden 2

5. Triclínico

a b cSin simetría

Sistemas CristalinosSistemas Cristalinos

Page 26: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

6. Hexagonal

a b c90°, 120°Un eje de orden 6

7. Romboédrico ( Trigonal)

a b c90°Un eje de orden 3

120°

Sistemas CristalinosSistemas Cristalinos

Page 27: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Sistema Longitud Ángulos Parámetros a especificar

Cúbico a = b = c º a

Tetragonal a = b c º a, c

Ortorrômbico a b c º a,b,c

Monoclínico a b c º a,b,c,

Triclínico a b c 90º a,b,c, , ,

Romboédrico a = b= c º a,

Hexagonal a = b c º

º

a,c

Sistemas CristalinosSistemas Cristalinos

Page 28: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Cúbico

Tetragonal

Hexagonal

Romboédrico

Ortorrômbico

Monoclínico

Triclínico

3aV

c2aV

c2a2

3V

3cos22cos313aV

abcV

abcsinV

coscoscos22cos2cos2cos1abcV

Volumen de la celda unitaria•

Sistemas CristalinosSistemas Cristalinos

Page 29: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Sistema Cristalino Tipo de red

Cúbico P, I, F

Hexagonal P

Trigonal (rombohédrica)

R

Tetrgonal P, I

Ortorrómbica P, C, I, F

Monoclínica P, C

Triclínica P

Redes de Bravais

Mediante una combinación de los

7 sistemas cristalinos con los 4

tipos de red (P, I, C, F) posibles,

se obtienen 14 redes de puntos

en 3D : Redes de Bravais.

Page 30: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Redes de Bravais

Page 31: Curso: Estructura de Sólidos Profesores: Joelis Rodríguez Hernández, Alicia Díaz, Denise Nassiff Pérez, Pedro Ortiz Bibliografía Fundamentals of Powder.

Estructura del Cobre.

Red:

Motivo:

Sistema Cristalino:

Celda asimétrica:

Estructura del Silicio

Red:

Motivo:

Sistema Cristalino:

Celda asimétrica:Estructura del uranio

Red:

Motivo:

Sistema cristalino

Celda asimétrica:

a = b = c; 90°

a = b = c; 90°

a b c; 90°