DATOS_SIMULACIÓN

download DATOS_SIMULACIÓN

of 16

Transcript of DATOS_SIMULACIÓN

  • 7/30/2019 DATOS_SIMULACIN

    1/16

    .q

    SPEsQck3t uurPebakturl l mxnem3

    SF% 22357

    Defining Data Requirements for a Simulation StudyA, K. Dandana, F! . E3.l ston,and FtW Braun, Texaco I nc.

    SPEMember s

    Copyright1992, Soclery of Pts!roleum2n@neers, Inc.

    This paper was prepared forpresmtahon a! the SPE internationalMeetingon petroleum En9meerin9 held in g~l i mahi na, ~- zpMarCh982.

    Thispaper was aelectod Ior presentationby an SPE ProgramCommitteefollowingrovlewof informationcontainedin an absfracl eubmittadby the author(a).C4nlents o! the paper,aa presented,have not been revmwedby Ihe Societyof Palroleum Engmaere.and are subjectto correctionbythe author(a).The ma!erial, as presented,doesnot necessarilyraflectany positionof lhe Socialy of PatrolaumEngineers, Itaofficers,or members.Papera presentedat SPE mealingsare subjectto publicationredw~byEditorialCommiltaesof the -societyofPetroleumEngineerk.Permsaionto coPyiarastnctadtoan abstractofnotmorethan200 worde.Ilh.mlra!iona maynotbe copied.The abslractalmuldcontainconepicuouaacknowledgmentof where and by whom the papar ispresented. Write Librarian,SPE, P.0. Box83S8SS,Rlchardaon,TX 75083-2SS5U.S.A. Telax, 730S89 SPEDAL.

    ! BSTRAC~(3) After the mstdeli s cal I hted by proper t rans-

    Thi s paper addresses t he i mport anceof ti mel y dataI ati onof reservoi rgeol ogi cdata and hi stori cproduct i on

    col l ecti on f or proper reservoi r management usi ngper f ormance data, sensi t i vi ty

    si mul ati onas a tool . Data requi rement sf or bl ack-studi es can be i ni ti atedto opti m zerecoveryand econom cs, Moreover, operati onal con-

    oi l , composi t i onal and steamsi mul ati onhave beendocument ed. The i nterpl ay between vari ous geo-

    si der at i on$, such as t he t i mng f or wat erhandl i ng f aci l i t i es or gas

    sci encesand the proper tr ansl ati onof data ensurecompressi on

    the successof suchan ef f ort .requi r ement s,can be f orecast .

    I NTRODUCTI ONTh$s paper addr esses t he t ype of dat a t hat i srequi red for bl ack- oi l , composi t i onal and enhanced

    Reservoi rsi mul ati oni s bei ngused i ncreasi ngl yas aoi l recovery (EOR) si mul at i ons.

    r eservoi r management t ool , I n r eal l i f e a gi ven I MPORTANCEOF GOODRESERVOI RD ATAreservoi rcan onl y be producedonce. A model w th aproper geol ogi cal descri pti onf ol l owedby a hi story Ther e i s a sayi ng: I f you thi nk know edge i smatch val i dati on can provi de the opportuni ty tohypothesi zeproducti on under di f f erent scenari os.

    expensi ve, j ust i magi nehowexpensi vei gnorancecanbee

    Sensi t i vi tystudi es can l ead to producti o~of thereservoi r i n the most opt i mumway. Coats def i nes The t emptat i onw l l al ways be to shor t - cut dat as imul at i onas the use of cal cul at i onsto predi ct acqui si ti onto reducecost s. I t must be rememberedreservoi rperf ormance,f orecast r ecovery, or co; ~e; l ~ that cer t ai ntypes of dat a, such as core der i vedeconom+cs of al t ernat i ver ecovery methods. i nf ormati on, i ni t i al f l ui ddescri bessi mul ati onas a basi c extensi onof we?l -

    propert i es, f l ui d

    known rzservoi r engi neer i ngt heor~es and concept s,contacts, and i ni ti al reservoi r pressures, can onl ybe obt ai nedat an earl y devel opmentstage, The dat a

    such as Buckl eyLeveret t , or materi al - bal anceequa-t i ons that t veredevel opedpri or t o 1960. Si mul ati on

    obt ai ned pl ays a vi t al r ol e i n eval uat i ng t he

    i s a powerf ul tool for the f ol l ow ngreasons:devel opmentopt i ons of a gi ven reservoi r.

    ( 1) I t pr ovi des t he abi l i t y t o si mul t aneousl yAn equal l yvi tal componentof reservoi rsi mul ati onI s

    i ncor por at e t he ef f ect s of a number oftransl ati onof thi s data i nt he proper f orm Some ofthe exampl esof thi s type of know edgeare tr ansl a-

    var i abl es such as gravi t y, mobi l i t y, rockheterogenei t y,rel ati vepermeabi l i t y,capi l l ary

    ti on of two- phase(gas-oi l and oi l - water) rel ati ve

    pressure, and f l ui dpropert i es,permeabi l i t ydata to si mul atet hree- phasef l ow condi -t i ons. An addi ti onal need i s understandi ngthe

    ( 2) The pr ocess i t sel f f or ces an engi neer t odi f f erencebetweenfl ash( separator)anddi f f erent i all i berat i on.( reservoi r)and the proper r epresent ati on

    cl osel yexamneall pi eces of a reservoi rand of t hi s dat a i nt o t he si mul at or. Transl at i onofal l geol ogi cal i nf ormati on. I nsi ght i s gai nedregardi ngregi onal perf ormancevari ati onsthat

    geol ogi cal model s i nto reservoi r f l ow uni t s orboundari esw th proper si ze andnumbgr of gri d cel l s

    can be i ncorporatedi nto si mul ati on, Thi s i nturn provi des momentumf or bett er reservoi r

    w l l havean i mpact on si mul at i ongeneratedresul ts.Two of t he most i nt er est i ng paper $ on model

    management . m sappli cati onhavebeenwri t t enby Coat s andStaggset al .

    Ref erencr?snd i l l ustrati onsat end of paper.

    255

  • 7/30/2019 DATOS_SIMULACIN

    2/16

    .q

    2 DEFININGDATA REQUIREMENTSFOR A SIMULATIONSTUDY SPE 22357

    l YPFsCI FsM ~ IN WEUL 1NDUSTR% geol ogi c and reservoi r engi neeri ngdata i s shown asFi gure 1 f romHarr i s.

    The reservoi rs most f ; quentl y si mul atedcontai nbl ack- oi l . dhe t erm I ack- of l means t hat oi l i s Reservoi rs can be broadl y cl assi f~ed as clas t ictreated as a singl e component w th no i nteracti on (sandstone)or carbonate. I t i s re l ati vel yi mpl etow t h t he gas or wat er phase. These model s ar e descr~be a sandstone reservotr si nce modern daycapabl e of si mul ati ngperf ormanceunder depl eti on, anal ogsprovi deessent i almodel s t o do so. Fi gure 2gas or wat er i nj ect i on, wat er i nf l ux and oi l f r om Har r i s and Hew t t 7 pr esent s t he t ypes ofdi spl acement by movement of gas/ oi l or oi l / water deposi t i onal sftes a sand reservoi r can provi de.contacts, They f urther classi fy these reservoi rs i nto three

    types of geometr i es. Fi gure 3 descr~bes these

    Composi t i onalmodel s account f or i nteract i onbetweenl ayouts graphi cal l y.

    vari ous hydrocarbonphases. Such i s the case f or ari chgas condensateor a vol ati l eoi l reservotr , EOR Carbonate res~afi ; ~e8ar& g~eral l y di ff i cul t toprocessescan redescri bed as: descri be. i n thei r paper

    ! Di st r i but i onndCont i nui t yof~arbonateReservoi rso Msci bl e - CO and hydrocarbonI nj ectI on document such an ef f ovt. Thei r experi encei s thate Chemcal - po! ymer and surf actanti nj ect i on these rocks are heterogeneousboth i n terms ofQ Thermal - steam hot water and i nsi t ucombust i on porosi t yand permeabi l i t y. The deposi t i onalprocess

    i t sel f i s compl ex. Dl ageneti c changes are veryM sci bl esi mul ati onsusual l yr equi r euseofcomposi - randomand can modi f y rock texture consi derabl y.t i onal si mul ati on,whereaschem cal processessuchas General l y dol omt i zati onhas a posi t i ve eff ect onpol ymerand sur f actantcan, besi mul atedbya modi f i ed modi f i cati onof porosi ty. Fi gure4 f romJ ardi ne8etbl ack- oi l si mul ator. Thermal si mul at orsare qui te al . shows how porosi ty i n carbonatesi s al teredbycompl exsi ncei n addi ti onto f l ui df l ow theycontai n var i ous processes.heat fl owequati ons. Thi s paper w l l descri bethedata r equi rement sf or st eami nj ect i ononl y. Duri ng the expl orati on stage exam nati onof core

    cut ti ngsand anal ysi sof core rocksampl esare key t oDATA RWEMENTS FOR~L CONSTRUCTION f ormul ati nga deposi t i onalmodel .

    The i nf ormat i on r equi r ed t o det ermne i ni t i al Reservoi r descri pti oni s a conti nuousprocess. i %di stri buti onof rock propert i esand f l ui dquanti ti es the f i el d i s devel opedthe model s shoul dbe revi ewedi s commont o al l typesof si mul ati ons. Types of data andmodi f i edas necessary. As reservoi rperf ormancerequi redare descri bedunder f ol l ow ngcategor i es: data becomes avai l abl e, t he know edgeof reservoi r

    di scont i nui ti essuchas f aul ts, barr i ers, boundari es1) Reservoi rdata - andst rati f i cati onbecomesmore refi ned.2) Fl ui dproper t i es3) Fi el dperf ormancedata Another powerf ul tool that has become avai l abl ef or4) Enhancedoi l recoveryconsi derati ons reservoi r descri pti on.~s 3- D sei smcdata. Recent

    papers by Pl et A Rui j tenbergQet al . descri be howRFSERVOI RDAT/ ) using 3- D sei smc data resul ts i n a more compl ete

    descri pti onof reservoi r boundari esand str ucture.l D. fWRAUQ&&!dKM Fi gure 5 ori gi n~~l y presented i n thef r paper IS

    shown. Robert son document show3- D sei sm ccan addThe amount of data avai l abl eto descri bea reservoi r reserves and faci l i tate cost-ef fecti vereservoi ri s dependent on the devel opment st age of t he reser- management , The number and l ocati onof devel opmentvoi r. At an earl y stageof reservoi rdevel opmentthe wel l s can be opt i m zedf or maxi mumrecovery,

    i nf ormati oni s avai l abl ef romonl y a f ewwel l s. Thef ol l ow ngi nf ormat i onsourcesare ut i l i zed: I nmany casesol der,two- di mensi onalsei sm cdata canbe reprocessedt o obt ai nmore det ai l edi nf ormati on.

    1) Sei smcdat a Three- di mensi onalsei smcdat a i s al so bei ngused i n2) Core anal ysi s moni tor i ng saturat i on f ront s and l ocat i ng oi l3) Wel l l ogs previ ousl ybypassed.4) Wel l t est dat a

    Tabl es 1 through4 i l l ustratethet ypeof i nf ormati onthat can be obt ai nedf romthese sources. Matr i x Reaui re ment S

    The core anal yses, wel l l og and wel l test data are The i ntegrati onof deposi ti onal model constructi onacqui redf or i ndi vi dualwel l s, An i ntegrati onof al l al ongw th i nf ormati onl i sted i n Tabl es 1 through4the i nf ormati onhas t~ b~ made i n order to descri be shoul dprovi det he necessaryi nf ormati onto descri bedi s t r ibut i onof proper t i es i n areal and ver t i cal t he vari at i oni n reservoi rrock propert i esal ongw thdi mensi ons. Thi s t ask t s cal l ed reservoi r di sconti nui ti esand strati f i cati on. Thi s vari ati ondescri pt i on. i s preparedas contourmaps. Tabl e5 provi desa l i st

    of maps t hat can be pr epar ed t o descr i be t hem voi r Desc rf oti om reservoi r.

    The t ask i s best accompl i shedbyan i nt erdi sci pl i nary Al ternate methods are avai l abl e to descri be waterteamconsi sti ngof geol ogi sts, geophysi ci sts,wel l saturat i onandpermeabi l i t ydi st ri but i on. Thesew l ll og anal ysts, product i onand reservoi rengi neers, An be descri bedl ater on. Other r eservoi rr el ateddataexampl e of how thi s i nterpl ay can occur between i t ems are:

    266

  • 7/30/2019 DATOS_SIMULACIN

    3/16

    .q

    SPE 2235? A. K. DANOONA,R. B. AISTON, R. S. JOWNSON,R. W. BRAUN 3

    1) Rel at i vepermeabi1i ty rel at i vepermeabi l i ti esarea i %ncti onaf thei r2) Capi l l ary pressure f or oi l - water and gas-oi l respecti vesaturati ons. I f three- phaserel a-

    system t i veperi neabi l i t i esr egeneratedf rommeasured3) Rockcompressi bi l i ty gas- oi l and oi l - wat er dat a, i t i s best t o4) Verti cal permeabi l i ty5) Absol ute permeabi l i tydi stri buti on

    ensure measurements are made w th proper

    6 I ni t i al water saturat i ondi s t r i but i onconsi derati onofwett abi l i t y.

    1 Pay thi cknesscut - of f s @ Ensure that r el at i vepermeabi l i ti eshonor t hedi recti onof change of wett i ng, phasesatura-

    ati ve Permeabi l i t y t i on. Drai nageref ers to a decreasi ngwet ti ng-

    Two- phaserel ati vepermeabi l i tysuchas t hat of oi l ti

    phase saturati onwhi l e i mbi bi ti onref ers t o an

    i ncreasi ngwett i ngphasesat urat i on. I nj ect i ongas or oi l - wat ercan remeasured i n the l aboratory.Both steady-st ate and unsteady-st atemet hods are

    of dry gas i nto an ai l reservoi ri s an exampl eof drai nage, whi l e i nj ecti onof water i nto an

    avai l abl e. Hassl er, Haf f ord, and di spersed f eed oi l reservoi r i s i mbi bi t i on.methodsmeasurerel at i vepermeabi li t i esunder st eady-. statef l ow Unsteady-st aterel ati ve permeabi l i ty @ The dependenceof waterf l oodresi dual oi l onmethods t ake l ess t i me. The Buckl eyLever et t t heor y t r apped gas sat ur at i on can be handl ed.by , ?as extendedby Wel ge can be used to comput erel ati ve method suggested by Dandona and Morse.permeabi l i tyrati o fr omthe f ol l ow ngrel ati onshi p: Stone stkprobabi l i tymethodal soaccountsf or

    such effects .f.=~=

    1+~; ~ ~. (1) Properanal ysi sof 3-phaserel ati vepermeabi l i t ydatak . PV i s qui te cri ti cal . The engi neershoul dtaket he ti me

    to ensure that the end poi nts of rel ati ve pwmea-bi l i t y dat a as wel l as t he r est of t he sat ur at i onrangeare proper l yhandl edw t h regardto rocl (wet t a-

    J BTmethod, capi l l arypressureandcent r i f ugemethods bi l i ty and gas entr apment .are used t; t~; ; erm ; ; ho~; ati vep&~- ~j ~i l i tyusi ng

    unst eady rel ati vepermeabi l i t ycan someti mesbeesti matedf romf i el d CaDi l 18rvPress~data, as f ol l ows: Capi l l ary pressure i s the di ff erence i n pressure

    & across the i nt erf acebetweenwett i ngand non- wett i ng

    k .= (Rp .R*)W2? fl ui ds. For a gas- oi l -wat er st udy, capi l l ar y

    Do P. pressurecurvesw l l be requi redf or gas- oi l andoi l -(2) water systems. The dat a can be acqui r ed i n the

    so= (1 - +?) (~) (1 Sw) l aboratory by measurements on core pl ugs. TheBoi mercury i nj ecti onmethod i s rapi d but destroys the

    core. Other l aboratory met hods are di spl acementt hrougha porousdi aphragmand cent r i f ugalmethods.

    In t he absenceof measureddata, two- phaserel ati ve Another good sourceof such i nf ormati oni s wel l l ogpermeabi l i t i escan be approxi mate~z rompubl i shed data where swel l has penet rat edthroughgas-oi l andcorrel ati onssuchas thoseof Corey , oi l - water contacts. Water saturati onvs. di stance

    fr omgas-oi l or oi l - water contact can be pl otted.The methodol ogy to esti mate two- phase rel ati ve The di stance from the oi l -water contact i s. thenpermeabi l i tyi swel l establ i shed. Measurf $data f or tr ansl at abl eto capi l l arypressure,t hree-phase rel at i ve permeabi l i ty seldomavai l abl e. Typi cal l y si mul at ors are programmedto Rock Com~ress bi l i t ycomput e 3- phase rel ati vepermeabi l i t yf rom2- phasegas-oi l and oi l - water rel ati vepermeabi l i ti es. The For normal l y pressuredsands, rock compressi bi l i tyend poi nts f or each of the~~, tf urvesare honoredi n can be ei ther measuredi n the l aboratoryor deri vel $the cal cul ati ons. Stone s p~obabi l i st i cmodel f rompubl i shedcorrel ati onssuchas that of Hal l .descri bed as a set of equati ons i s commonl y used. However , f or abnormal pressure sands such as thoseThe f ol l ow ngprecaut i onsshoul dbe consi deredwhen present i n U. S. Gul f Coast, good correl ati onsareprocessi ngthree- phaserel ati vepermeabi l i t ydata. unavai l abl eand i t i s best to carry out l aboratory

    measurement s.@ Examnet he end oi l saturati onto the type of

    di spl acementsi mul at ed. Themathemat i calmodel Vert i cal Permeabi l tyw l l not perm t oi l saturati ontogo bel owthatnumber. Many ti mes rel ati vepermeabi l i tyto Vert i cal permeabi l i tycan pl ay a si gni f i cantrol e i noi l at l ow oi l sat urat i on i s cr i t i cal i n some f l ow si t uat i ons, such as coni ng, gr avi t ypredi ct i ngreservoi rbehavi ortowardsthel ater overr i de, and cross- f l ow between sand l ayers .par t of the reservoi r l i fe. Geol ogi cal di sconti nui ti esor thi n, ti ght beds such

    as shal est hat separatevar i oushydrocarbonzonesar ee Much of the publ i shedl i teraty~ei s based on al s o i mpor tant t o ver ti cal f l ow Experi ence

    water- wet rock systems. Stone descri beswhy i ndi cates thatbe; ~e~nare si gni f i cant p~n~rmancehi s method i s appl i cabl eto both wat er- wet and di f f er ences non- permeabl e 1Owoi l - wet systems. I n a water- wetsystemwater permeabi l i tybarri ers. Aval ue of zero f or verti caland gas rel ati vepermeabi l i tyi s a dependent permeabi l i tycan i sol ate a hor i zontal l ayer f romf uncti on of water and gas saturati ononl y. communi cati on. ( l ntheotherhand, a l owpermeabi l i t ySi ml ar l y, i n anoi l -wet system oi l and gas (e. g. , one red. )can permt si gni f i cant cross- f l ow

    2!57

  • 7/30/2019 DATOS_SIMULACIN

    4/16

    , .

    4 DEFININGDATA REQUIREMENTSFOR A SIMULATIONSTUDY SPE 22357

    because of t he 1ar ge cross- secti onal areaperpendi cul arto hori zontal f l ow

    Pav ?hi . cl twssCULQ!Y

    Ver t i cal permeabi l i t yval ues can remeasured on coreTo determnethe amount.of oi l avai l abl efor depl e-t i on, net thi ckness has to be determned. I t iS

    pl ugs and adj usted downward to account f or shal el enses. Wel l test data such as i nterf erenceand

    qui te easy to rat i onal i zethat non- porous, non-permeabl erock vol ume such as shal emxedw t h sand

    pul se t est s can al so be used t o est i mat e t hese shoul dnot be part of the pay. However, many ti mesval ues. a geol ogi st, al soappl i escr i teri awhi ch are basedon

    f l ~sol utePmmeabi l i tv Di stri buti onporosi ty-permeabi l i tycutof f s as wel l as on water

    saturati oncut of f s. The rati onal ebehi ndt hi s type

    Convent i onal core anal ysis typi cal l y measuresof cr i ter i a i s that rock bel owcer tai nporosi tyorpermeabi l i t y val ues w l l not cont r i but e t o t he

    porosi t yandabsol ut eai rpermeabf li t y. Permeabi l i t y reserves. However, i t stands to reasont hat unl essi s one of themost di f f i cul tparameterstopredf ct I n thi s rock vol ume i s i n non- connectedporosi t y,gi venterms of vari ati onand di stri buti on. Wel l f l owtest enough t i me i t shoul dproduce. I n addi t i on i t al soanal ysi sfr ombui l d- upandf al l of f tests can provi de provi des addi ti onal pressure support to the reser-permeab$l i ty x thi ckness (kOh) for the i nterval voi r. Gas as a f l ui d can produce through mucht ested. The advantageof thi s method i s that i t ti ghter rock as comparedto oi l . Duri ngt he dep7e-measures permeabi l i t l esand total f l owcapaci t y of ti on phaseal most al l of the res+?rvoi r n conti nuoust he systemi n- si t u. I t must reemphasi zedt hat kh bythi s method i s fn eff ect kh or k$has the case may

    pore space shoul dcontr i butetu the recovery, Ho, w-

    be. A transformof severs!val ues of koh fr omtestever , dur! ngwaterf l oodor other recoveryprocesses,

    data shoul dbe comparedw t h core anal ystscomputedpart of the rock vol ume i n the ti ght pore spacemay

    kh. Asi gni f i cantl yhi ghrati oof kh/ kCO, , hndi catesnot contr i butet. orecovery, I nother words, cut- of f sare processdependent .

    presenceof vugs and f ractu+esi n ?he systemEnhanced oi l recovery processes requf re addi t i onal

    Si ncethe number of coredwel l s i s typi cal l yl i m ted, dat a. Tabl e 6 pr ovi des a l ~st of t he speci alt he areal di st r i but i on must be est i mat ed f rom reservoi r data needed for msci bl e, chemcal andporosi t y- permeabi l i t yt ransf orms. Core porosi ty st eamsi mul ati on.sampl e dat a i s pl ot ted on a l i near scal e vs.permeabi l i t y dat a on a l og scal e. Regressi on ~LUI DPR Op~RT1~anal ysi s i s perf ormedt o fi t a curve through suchdat a. Si nce por osi t y f or most wel l s i s al so We have provi ded gui del i nes for t ransl at i on ofavai l abl ef romwel l l ogs, thi s tr ansformcan then beused to cal cul atepermeabi l i t ydi str i but i on.

    geol ogi cal and rock data for a simul ati onstudy.Fl ui dproper t ydata acqui si t i onand anal ysl sare al sovi tal componentsof a data col l ecti onprogram One

    Fi gure 17 6 shows such a t ransf orm I t i s ourexperi encethat scatt er of data i s consi derabl eand

    of thel gmostcompl ete papers on thi s subj ect i s byMoses. He str essesthe i mport anceof accuratef l ui d

    as such i t i s di f f i cul t t o predi ct val ues of sampl es: Fl ui dsampl esmust be taken earl y i n thepermeabi l i t y, At t i mes some consi derat i on of l i f e of the reservoi rt o obtai nsampl estr ul y repre-deposi ti onal model , rock types and f aci es reduces sentati veof the reservoi r fl ui d. They shoul d bedegr ee of scat t er . i t i s r ecommended t hat a taken onl y af t er a careful l y pl anned wel l condi -tr ansformbe devel opedf or each maj or rock uni t or ti oni ng and testt ng program When the PVT dataf aci es to reducescatt er, obt ai nedf romthesesampl esare used, care shoul dbe

    takent o adj ust FVF s and gas- oi l rati os (GOR S) f or~ni tal Water Saturat i onOi str i but i oq surf aceseparatorcondi t i on.

    I ni t t al wat er saturat i onby l ayer can ei t her be The proper underst andi ngof the f l ui dbehavi orsystemmappedby averagi ngwater saturati onval uesover eachi nt er val ( Tabl e 5) or comput ed usi ng t he J

    as a f unct i on of pr essur e and t emper at ur e i sessenti al . Fi gure 7 i s a pressure. temperature

    - f unct i on.Act ual saturat~onval uesare computedFrom di agrami l l ustrati ngthat the i ni t i al fl ui d systemthe el ectri cl ogs based on resi st i vi tyval ues. TheJ f uncti onapproachi s essenti al l ya correl ati on

    can be broadl ycat egori zedas:

    t hat f i t s i ni t i al wat er sat ur at i on val ues t 18 bl ack- oi l sor l owshri nkageoi l s,permeabi l i tyand porosi t yval ues, Rose and Bruce : ]descri be the method i n detai l and express the J

    vol ati l eoi l s or hi gh shri nkageoi l s,3)

    f uncti onas f ol l ows:gas- condensat esyst ems, and

    4) gas systems,both wet and dry gas.

    J(SW) = ~ :;~e[

    I t i s noted that a gi ven fl ui d systemgoes through&

    (3)Ow c several changes as pressure on the systemchanges

    duri ngt he depl et tonphaseof reservof r.

    The reservoi rf l ui dsampl efor study i s obtai nedf romPorosi ty and permeabi l i tydi stri buti oni s obtai ned bott omhol esampl i ngor f romrecombi nati onof surf acefr omthe map of each l ayer. UOWi s the i nterraci al

    tensi onbetweenoi l and water and d i s the contact

    separator sampl es of gas and l i qui d. Anal yses of

    t hese separator sampl es are per formed i n theangl ebetweenthe i nt erf aceseparat i ngthe two f l ui ds l aboratoryand the f l ui ds are t hen recombi nedt o theand t he sur f ace of r ock. The advant ageof t hi s desi red reservoi r f l ui d composi t i on, produci nggas-method i s the abi l i ty to compute water saturati on oi l rat i o (R. , SCF/ ST13) . Fromthi s poi nt both thedi stri buti onfor each model cel l or node based on bot t omhol esampl eand recombi nedsa~l e are examnedporosi t yand permeabi l i t y. uti l i zi ngthe i denti cal procedure. The fol l ow ng

    258

  • 7/30/2019 DATOS_SIMULACIN

    5/16

    .

    SPE 22357 A. K, lMNKJONA,. B. ALSTO1

    i nf ormati onw l l be obtai nabl ezl f romhe seri es oftests on the bl ack- oi l sampl es.

    1) Composi ti onalanal ysi s

    2) ~; nstant mass studysaturati on ressure

    b) !ressure-voume rel ati onsc) oi l compressi bi l i tyat vari ouspressuresd1

    f l ui dr el ati vevol umef actorse vol ume per cent l i qui d as a f unct i on of -

    t he pressure

    3) I ) ; f f er ent i al vapori zati onstudysol uti ongas as a f uncti onof pressure

    b) f ormati onvol ume f actor as a f unct i onofpressurel i qui ddensi ty as a f uncti onof pressure

    : ] gas gr avi t y as a f unct i onof pr essur e

    4] Equi l i br i um l i qui ddet erm nati on

    phase vi scosi t y

    5) !$paratorf l ashopti m zati onstudyproduci nggas- oi l rati oas a f uncti onofseparatorpressureat roomtemperature

    b) oi l f ormati onvol umef actorbasedon roomt emperat uref l ashedoi l

    c) producedgas composit i on

    Tabl e 6 i s t he l i st of f l ui d dat a f or a bl ack- oi lsi mul at i on. As t he r eser voi r f l ui d pr oper t i esapproachthose of a hi gh shri nkageoi l / vol ati l eoi lsystem i t becomesmore advant ageoust o obt ai naddi -ti onal l aboratoryi nf ormati on norder to predi ct thef l ui d behavi or duri ng normal reservoi r depl eti on/ -producti on. I n addi t i on~~=t~~ anal yses perf ormedf or t he bl ack- oi l syst em t he f ol l ow ngt estshoul dbe perf ormedfor the vol ati l eoi l sampl es.

    1) Const ant vol umedepl et i onstudya) equi l i bri umvapor- phasecomposi ti onb) f racti onof wel l str eamproduced

    equi l i bri umgas devi at i onfactors: 1 l i qui d- vol umeshr i nkagebel owsaturat i on

    pressureto abandonmentpressure.

    Thegas- condensatesyst em25equi r esdata t hat i s verysi m l ar t o t hat of t he vol at i l eoi l syst em Unl i kethe bl ack- oi l . or vol ati l e oi l systems, bottomhol esampl es shoul d not be u$%d for obtathi ng gas-condensate. f l ui d sampl es. Al so because thi sreservoi r f l ui d i s gaseous at reservoi rcondi ti ons,no l i qui d- phase vi scosi t y or separ at or f l ashopti m zati ontests are perf ormed. Af ter successf ulseparator fl ui d anal yses, the f ol l ow ngtests areper f ormed:

    1) Modi f i edconstantmass study ( vi sual cel 1 onl y)f or a seri es of recombi nedgas-oi l rati osa) pressure- vol umerel ati onsb) dewpoi nt pressures

    l i qui dvol umesas a f uncti onof pressure~~ mxturedensi ti es

    gas phasecompressi bi l i ty actors .f ) gas f ormati onvol ume f actors

    2) ~; nstant vol umedepl eti onstudyhydrocarboncomposi t~onof t he l i berat edgas

    b) retrogradel i qui d-vol umemeasurement s

    R, S. JO!lMON,R, W. BRAON 5

    The f i nal t ype of r eser voi r syst em i s t he wet -gas/ dry-gas. As i ndi cat edby the~r desi gnati on,bothof these f l ui ds exi st i n the gaseous st at e underreservoi r condi t i ons. PVT data woul d gi ve onl y thef l ui d densit y and gas compressi bi l i tyf actor (Z).The onl y di f f erencewoul d occur at t he sur f acewherethe wet- gas systemwoul d produce some very l i ghtl i qui d, usual l y l ess than 10 STB/ f l MSCFof producedgas.

    The i ncr easedi nt erest i n EnhancedOi 1 Recovery{EOR)conf ronts the si mul ati oni stw th newprobl emsi n hi satt empts to successf ul l ypredi ct actual reservoi rperf ormance. Most CO or hydrocarbon msci bl ef l oodi ngoperati onswou?~requi rethe f ol l ow ngt estst o be perf ormed.

    1) Sl i mubedi spl acem~h~studi esa) det erm ne mni mum msci bi l i t y

    pressureat t he reservoi r t emperatureb) est imate the average resi dual oi l

    sat urat i onaft er COZ f l oodi ng,

    2) Si ngl econtactm sci bi l i tystudi es- - pressure-vol umer el ati onsf or a seri esof C02- reservoi rf l ui dm xturesa) bubbl epoi nt or dewpoi nt pressureb) si ngl e phase f ori yati onvol ume f actor

    ( swel1i ng f actor)si ngl ephasef l ui ddensi ty

    : ; l i qui dvol umesas a funct i onof pressure

    3) Li qui d phase vi scosi t y det ermnat i on - -preferabl yon two COz/ reservoi rf l ui dm xturesf romt he bubbl epoi ntr egi on

    4) Vapori zati onstudi esa) det er m ne t he opt i mum vapor i zat i on

    pressure ( OVP) at t he reservoi rt emperature

    b) det ermne the maxi mum recovery f romvapori zati ononl y

    c) determ ne hydrocarbon di stri buti onthroughC + on

    %toc t ank oi l; : producedli qui dcondensate3. resi dual l i qui d4. produced vapor ( i ncl udi ng l i qui d

    content as STB/ MMSCF)

    The af orementi onedw sh l i st basi cal l y summari zesdata requi red for vari ous types of fl ui d systems.Proper i nterpretati onof thi s data f o; o~e; l ~mul ati onstudy requi res addi ti onal ski l l s. i n hi spaper descri bes di ff erences between f l ash anddi ff erenti al l i berati on, I t i s comnonl y bel i evedthat a gi ven reservoi r resembl es the di ff erenti all i ber at i on pr ocess I n t he r eser voi r and a f l ashseparat i on occur s i n the product i on l fnes andseparator. However, the report ed producti on i sal ways stock tank bbl s. Thus, i t i s essent i al t ocombi neboth f l ash and di f f erenti al l i berati onsforFVF and GOR f unct i ons f or proper r e~resent ati onofdata i n bl ack- oi l si mul ati on. Moses descri bestheprocedureto do that i n hi s paper.

    Composi ti onal si mul ati ons f or ri ch condensate orvol ati l eoi l systemsr equi rerepresentati onof f l ui dbehavi or usi ng an equati on# state such as Peng-Robi nsonzbor Redl i ch-Kwong. I n order t o r educecomput at i onalt i me, hydrocarboncomponent sar e l umpedi nto subgroups such as Cl throughC3, C5 throughGb

    259

    -.,

  • 7/30/2019 DATOS_SIMULACIN

    6/16

    . .

    6 DEFINING DATA REQUIREMENTS Ff)R A STMTIT.ATTC!M STIMV Sm? 29?57.-. .-. .-.--- .-. . -- ------- ------ ----- --- ---~.

    and CT+. For i ncreaseddetai l , the C, + group i s descr t pt~on. The earl y breakthroughof i nj ectedfrequent l y broken i nto two or three subgroups. f l ui ds may i ndi catehi gh permeabi l i tystreaks. I fLaboratorymeasureddat a such as retr ogradel i qui d breakthrough t i mng does not match, r el at i vedrop- out (Fi gure 8) i s matched usi ng component permeabi l i t yshoul dal so be re- examned.groupi ng. The computati onalt i mes are t hreet o f i vet i mesmore comparedtothe bl ack- oi l systems. Model s Cont i nuousf l owmeter l ogs or spi nner surveyscarr i edare general l yunstabl enear thecri ti cal l ocusof theP- T di agram

    out on i nj ect i on and pr oduct i onwel l s can hel pdet ermne the ent ry and exi t poi nt of f l ui ds. Foropenhol e compl eti ons,el ect ri cl ogs canhel pmoni t or

    Addi ti onal data requi rementsf or EOR are gi ven i n gas/ oi l and water/ oi l contacts or changes i n waterTabl es 7, 8, and 9. saturati on. For cased hol e compl et i onsTDT l ogs can

    be usef ul i n provi di ngdetai l sof f l ui dmovement. Af 3ELDpERFORMANCE0A7A model capabl eof dupl i cati ngthe measuredf i el ddata

    provi des a hi gh l evel of conf i dencei n predi ct i ngf l ~aui st i on and pe r f ormancePred cti o~ f uture behavi or of the reservoi r. Vari ous f uture

    operat i ngst r ategi essuch as recompl eti onprograms,The simul ator cal cul ates the f l ui ds i n-pl ace and t i mngof gas l i f t i nst al l at i ons,et c. , can nowbethei r di stri buti onaf ter geol ogi cal , rock and f l ui d examned.data are properl yi nput i nto t he.model .

    Si mul at i on f or a f ul l y devel oped r eser voi r i sFor the purposeof thi s di scussi onwe can consi der basi cal l y an extensi onof the I ntermedi atesta e.t he f i el d to be i n var i ous st ages of devel opment . !owever, by t hi s t i me reservoi rdescri pti onhasf u l yThesecan be: mat ured. Movements f or vari ous f ront s such as gas

    and water have al so been matched. I t i s equal l y1. Earl ydevel opment - - under producti onf or l ess i mport antt o determ newhere remai ni ngoi l i s present

    than a year. i n the reservoi rand what ts ul ti matel yrecoverabl e.A poi nt of caut i onhere i s t o examne the rel at i ve

    2. i ntermedi ate-- produci ngunder depl eti onor permeabi l i tyto oi l at l owoi l saturati ons.pr essuremai nt enancef or l ess t han f i veyears.

    ~NHANCEDOI L ~OVERY SPECIALCONSI DERTION~3. Ful l ydevel opedreservoi runder producti onf or

    10+years. Si mul ati onpredi ct i onsbecome more compl ex f or EORmethods, I n most cases hi stori cal perf ormancedata

    4. Fi el dunder EOR. i s not avai l abl e. Addi ti onal work has to be done tocl osel y.determ ne remai ni ngoi l saturati onand i ts

    The perf ormancedata can be categori zedas: di stri buti oni n the reservoi r.

    (1) wel l compl eti ondata M $ctbte (C ~2Hv~.

    carb n) Fl oodi nq(2) producti on/ i nj ecti onata

    Composi ti onal si mul ati onof enhanced oi l recoveryWel l dat a r el at es t o t ubi ng and casi ng si z e, processes such as C02 requi res characteri za$. . g~fperf orati on i nterval s, t i mng of any workover or f l ui d behavi or usi ng an equat i on of st at e. Arecompl eti on, producti vi tyor i nj ecti vi tyi ndex of step- w seprocedureto si mul ati oni s as f ol l ows:each wel l .

    1. Match l aboratory work usi ng an equati on ofThe oi l rate, GOR, WOR and pressurevs. ti me dat a on st ate program

    a wel l - by-wel l basi s are neededt o conduct a hi story 2, Use one- di mensi onal , sma19 gr i d cel l s t omat ch. ct ; gt ] ; ; t el ab t est dat a such as sl i m ube

    For a f i el d i n the earl y devel opmentstage, usual l y 3. t l ; l ~i z; sl ug si ze usi ng a one- di mensi onali t i s possi bl eto deri vet he fol l ow ngbenef i tsf romsi mul ati on: 4. Condu; t s imul at i onon a pat tern or smal l est

    ; Tm ; i cal el ement t o opt i m z e oper at i ng(1) cl osematchof f l ui ds i n pl acef romgeol ogi cal

    anal ysi s and model descr i pt i on. 5. Scal e ; esul t s on f i el d-w debasi s based onpatt ernresul ts. Veri f y thoseresul tsbycti n-

    ( 2) establ i shmentof recovery under depl et i onand ducti ngl i m tedfi el d scal emodel si mul ati on.r ange of r ecover i es f or i mm sci bl e f l ui di nj ecti on. The abi l i t yto predi ct t he perf ormanceof . ar eservoi r

    under enhancedoi l recovery ( EOR) i s more di f f i cul t( 3) opt i mumt i m ngatwhi ch i nj ecti onshoul dbegi n. than for bl ack-o i l . EOR model s are hi ghl y process

    dependent. I n addi ti onto havi ng reservoi r and EOS(4} rate- ti mef orecast to hel p determne present know edge,one has t o conf ront tr ansl at i onof mul t i -

    econom csof the f i el d. contact m sci bi l i tydata i nto the si mul ator. S1i mtube data i s one- di mensi onalwhi l e t he reservoi rcan

    At an i nt ermedi at e st age of devel opment t he have 3- di mensi onalf l ow Part of the reservoi rcangeol ogi cal , rock, and f l ui d descri pti onas wel l as be i mmsci bl e,par t par t i al l y msci bl e and par ti ni t i al f l ui ds i n pl ace can be ver i f i ed more compl et el ym sci bl e. The possi bl echanges i n rockaccuratel y. Geol ogi cal descri pti oni s a conti nuous nett abi l i t yor i nt erf ati alt ens~onand corr espondi ngprocess. I n thi sstagei f the geol ogi cal and f l ui d changes i n resi dual oi l saturati onare di f fi cul t todescri pt i onsdo not provi dea mat chw t h perf ormance preci sel ydef i ne and f i ne- tune.dat a, i t i s necessar y t o r evi ew and change t he

    280

  • 7/30/2019 DATOS_SIMULACIN

    7/16

    ..

    SPE 22357 At K. IMNOONA.R. B. ALSTON.R. S. JOHNSON,R. We BRAUN 7

    Si nce a si gni f i cantport i onof EOR si mul ati onstudyi s f or pl anni ngpurposes, the resul ts are usef ul i nterms of rel ati ve compari son of cases. I f t heobj ecti ve I s to establ i shul t i mater ecovery, f i el dper f ormancedata f romsi m l arreservoi rsf l oodedw t hsi ml ar fl ui ds shoul dbe revi ewedas an anal og. I ffi el dpi l ot test data i s avai l abl e, suchdata shoul dbe caref ul l ymat chedbef ore scal i ngthe resul ts on af i el dw debasi s.

    cal (Polvmerl Sur f actatl Fl oodi nq

    Pol ymers and surf actant chemcal s are added toi nj ecti on water. Pol ymers are used to provi demobi l i ty contr ol duri ng di spl acement by i ncreasi ngwater vi scosit y and reduci ng rock permeabi l i ty.Sel ecti ve i nj ecti onprofi l e control i n whi ch hi ghpermeabi l i tyzones are bl ocked to al ter i nj ecti onprof i l e i s another appl i cati on, A bl ack- oi l modelcan be modi f i edt o si mul ateperf ormance. Stabi l i tyof pol ymer at reservoi r.temperatureand i ts i nter-acti on w th f ormati onwater shoul d be eval uatedi nthe l aboratory.

    Surf actants decrease re; ; ~; ; onoi l saturati on byreduci ng i nt . er faci al Consi derabl el aboratorywork i s requi red tof i nd an eff ect i vesurf actant systemand to perf ormcore fl oods. Abl ack- oi l model capabl e of tracki ng i nj ectedf l ui d

    concent rati onand i ts ef f ecton rel ati vepermeabi l i tycan provi de i ncremental f orecastsof oi l recovery.

    As i s t he case w t h m sci bl e f l ooci si mul at i ons,chemcal f l oodi ngshoul df i rst be si mul atedon smal lone- di mensi onal model s to dupl i cate l aboratoryresul ts. Patt ern si mul ati onscan then be f ol l owedw th reservoi r scal e studi es.

    Be rmal (Ste am Fl oodi q

    The advant agesof st eamas a medi umf or movi ng heatto a di spl acementfr ont are i ts rel ati vel yhi ghheat-carryi ngcapaci t ypl us the l argeamount of heat whi chmay be t ransf er red t o a f or mat i an as heat ofcondensat i on.

    The si mul ati onmodel shou9daccount f or heat l oss i n

    surf acefaci l i ti es, i nj ecti onwel l bore a~~vert i call oss to the surroundi ngstrata. Fi gur e , 9 i sani l l us t rat i onof heat l osses whi ch occur. Modelmathemat i cs i n addi t i on to f l ui d f l ow and heatt ransf er shoul dal so account f or:

    1. Thermal expansi on of oi l - - t hi s r esul t s i nreduced SQP when reservoi r temperatureapproachesI ni t i al t emperature.

    2. Vi scosi ty reducti onperm tt i ngmore ef f i ci ent i mm sci bl edi spl acement .

    3. St eamdi st i l l at i on i f r eservoi r oi l cont ai nsdi sti l l abl el i ght components.

    I f f i el d pr oduct i on dat a i s avai l abl e, a mat chbetweenmeasuredand comput edoi l , water and st eamrates i s.obtai ned. I t i s i mportantt o match steambr eakt hr ough t i mes as wel l as API gr avi t y andvi scosi tyof producedoi l . Steam l oodsi mul ati oni scompl ex and does r equi r e si gni f i cantl y moreengi neer i ngand comput er t i me. I t i s more conveni entto si mul atea port i on (or patt ern) of the reserwoi rand then scal e the kesul ts.

    1

    WLISI ofi~

    We have descr i bed the dat a r equi r ement s forconduct i ng a si mul at i on st udy f or bl ack- oi l ,composi t i onal and enhanced oi l r ecovery processes.The f ol l ow r, goncl usi onsare made:

    1. Data requi r ement sshgul dreconsi deredearl yi nthe l i f e of r eservoi r.

    2. I nterdi sci pl i naryteams shou~d be used for

    reservoi rdescri pt i onand data anal ysi s.3* Sensit i vi tyruns shoul d be made to determ ne

    whi ch data parameters i ~avekey i nf l uenceonresul ts. Everyeff ort shoul dbemade to obtai nt hat dat a.

    4. I f model - computedperf ormancedoes not matchfi el ddata, do not forcef i t the hi storymatchbut revi eweach data parameter and i ts i mpacton resul ts.

    5. Composi ti onal and EOR si mul ati on shoul d bef i rs t conducted w th one-di mensi onal andpat t ernmodel s. Patt ern si mul ati onscan t henbe f ol l owedw th f i el dscal e studi es.

    ACl (Nf l WLEl l GEM Vi T$

    The aut hor s w shto t hank the management of TexacoEPTDf or provi di ngencouragementand f undi ngf or t hesupport of thi s eff ort . .

    BFFERENQS

    1.

    2.

    3.

    4.

    5.

    6.

    Coats, K. H. : Reservoi r smul ati on: St ateofthe Art, J . Pet . Tech. {Aug. 1982) 1633-1642.

    Odeh, A. S . : Reservoi rSi mul ati on- - What i si t?, J . Pet, Tech. (Nov. 1969) 1383- 1388.

    Coat s, K. i i . : Use and M suse of Reservoi rSi mul ati onModel s, J . Pet. Tech. (Nov. 1969)1391- 1398.

    Staggs, H. hi . and Herbeck, E. F, : Reservoi r

    Si mul at i onModel s- - AnEngi neeri ngOvervi ew,J .Pet . Tech. (Dec. 1971) 1428- 1436.

    Keel an, C). : Cori ng,worl d Oi 1 (March 1985)83- 90.

    Har ri s, 0. G. : The Rol e of Geol oav i nReservoi r Si mul ati onStudi es, J . Pet. ~ech.(May 197S) 625- 632.

    7.

    a.

    9.

    Harri s, i l .G. andHew tt, C. H. : Synergi smnReservoi r Management Geol ogi cPerspecti ve,J . Pet. Tec~~ ( J ~! ~1977) 761-770.

    J ar di ne, 0. , Andr ews, D, P. , Wshar t , J . W,and Young, J . i i . :Di stri buti onand Conti nui t. vof CarbonateReservoi rs,J . Pet. Tech. (J ul ~1977) 873- 885.

    Rui j tenberg, P. A. , Buchanan, R. , and Marke,. Three-Di mensi onal l ataI mproveReservo\ r

    !; ~ptngw J . Pet. Tech. (J an. 1990) 22- 25, 59-61.

    2$1

  • 7/30/2019 DATOS_SIMULACIN

    8/16

    . *

    R lll?kTNTNC IMTA REOIITllFMF.NTE FOR A SIUULATION STUDY SPE 22357

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    2 2,

    23.

    24.

    25.

    26.

    --- ~..-.,- -.....=---.---- -- .... .-

    Robert son, J . D. : Reservoi rMnagement Usi ng30 Sei smc Data, J . Pet . Tech. ( J ul y 1989)663- 667,

    Honarpour, M , Koeder t i z, i - .anc! f Harvey,i .H. :Rel at i ve Permeabi l i t y Petr ol eumReservoi r s, CRC Press I nc. , Boca Raton,Fl ori da ( 1986) 1- 13.

    Corey, A, T. : The I nt err el ati onBetweenGasand Oi l Rel ati vePermeabi l i ti es,Prod. Mun.19, 38, 1954.

    St one, H. L. : Esti mati on of Three- PhaseRel ati vePermeabi l i ty,J. Pet. Tech, 2, 214,1970.

    St one, H. L. : Esti mat i on of Three- PhaseRel ati vePermeabi l i tyand Resi dual Oi l Data,J . of Can. Pet . Tech. 12, 53, 1973.

    Dandona, A. K. andMorse, R. A. : HowFoodi ngRate and Gas Saturat i on Aff ect waterf l oodPer f ormance, Oi l and Gas J ournal , J ul y 2 and9, 1973,

    Hal l , A. C. : Eff ecti ve Formati onCompressi bi l i t y,Trans. AI ME ( 1953) 198, 309.

    Levorsen,A. 1. : Geol ogyoPetr ol eum SecondEdi ti on, W H. Freeman Publ i shi ngCo. , SanFranci sco, ( 1967) 128-129.

    Rose, W and Bruce, W A. : Eval uat i onofCapi l l ary Character i n Petr ol eumReservoi rRock, Trans. AI ME ( 1949) 186, 127- 142.

    Moses, P. L. : Engi neer i ngAppl i cati onsofPhase Behavi or of Crude Oi l and CondensateSystems, J , Pet. Tech. (July 1986) 715-723,

    Reservoi r Fl ui ds Laboratory, I nc. : ProduceDescr i pti onandPri ceSchedul e,Nort hAmeri ca,Houston, TX, J an, 1991.

    Whi t son, C. H. and Torp, S. 6, : Eval uat i ng

    Constant- Vol umeDepl eti on Data, J . of Pet,Tech. (March 1983) 610-620.

    J acoby, R. H. andBerry, W J . , J r, : AMethodf or Predi cti ng Oepl eti on Perf ormance of aReservoi rProduci ngVol ati l eCrudeOi l , Trans.AI ME, 210, 27- 33, 1957,

    Cook, A. B., Spencer, G. B. and Bobrowski , F.P. Speci al Consi derati ons i n Predi cti ngR~; ervoi r Pe orr nancef Hi ghl y Vol ati l eTypeOi l Reservoi rs ,Trans. AI h?E,192, 37- 46, 1951.

    Reudel huber , F. O. and Hi nds, R. F. : AComposi ti onal Materi al Bal ance Method f orPredi ct i on of Recovery f rom Vol at i l e Oi lDepl et i onOri veReservoi rs,Trans. AI ME, 210,19- 26, 1957 (?) .

    Coat s, K, H. : Si mul ati onof Gas-CondensateReservoi r Perf ormance,SPEJ (Oct . 1985) 1870-1886.

    Peng, D. Y. and Robi nson, D. 0. : A New?wo-Constant Equati onof State, I nd. Eng. ChemFund ( 1976) 15, 59- 64.

    Redl i ch, O. and Kwong, J . N. S. : On theThermodynamcsof Sol ut l onsV, An Equati onofSt ate Fugaci t i esof Gaseous Sol ut i ons,ChemRevi ews ( Feb. 1949) 44, 233- 244.

    Ramey, H. J . , J r . : Fundamental sof ThermalOi l Recoveryl ,p. 165, Dal l as, The Petrol eumPubl i si ~i ngo. , 1965,

    262

  • 7/30/2019 DATOS_SIMULACIN

    9/16

    .I nf ormati onf romSei sm cRata

    ~G#dw

    1. Str ucture- si ze, shape, ori entati onand conti nui ty

    2, Gross thi cknessof reservoi r

    3, Presenceof f aul ts or di sconti nui ti essuch as unconf orm t yt runcati on

    4, Fracturei ntensi tyand ori ent ati on

    5, Type of f l ui d - - gas or l i qui d

    6. Cross-wel l t omography, t echni quesanprovi dedi st r i but i onof bypassedoi l- - useful for EOR

    I nf ormati onFromCore Anal ysi s5

    GEOLOGICAL

    L3,

    4.t

    ;:9.10.

    11,

    Formati onl i t hol ogy( sandstone,l i mestone,dol omt e, etc. )Sedi mentary str uctures ( l amnati ons, cross- beddi ng, root casts, wormburrows)Porosi t yt ype ( storagecapaci t y)

    i nt ergranul ar vugul ar- mol di ci nt ragranul ar f racturei ntercrystal l i ne m craporosi t y

    Permeabi l i t y( f l owcaoaci t v)Presenceor absenceof oi l ( f l uorescence)Formati onpresenceand thi ckness( t ops and bott oms)Format i onsequenceFormati onage, f aci es and corr el ati on( bi ostr at i graphy)Opposi t i onal envi ronmentFracturedef i ni ti on

    depth and Occurr encel engthdept h angl ew dth

    Oi agenesi s ( chemcal ,physi cal and bi ol ogi cchanges aft er deposi t i on)

    ENGI NEERING

    Porosi ty; : Permeabi l i t y3. Permeabi l i t yhet erogenei t y(Lorenzecoeff i ci ent ,vari ancef actor)

    4. Porosi tyvs. permeabi l i tyrel ati onshi psReservoi rwater saturat i ons(oi l - basecores); : Reservoi r resi dual oi l sat urat i onsand di str i but i on( pressureand sponge

    core)7. Data f or cal i brati onand ref i nementof downhol el og cal cul ati ons

    Grai ndensi tyCal ci met ry ( l i mestone/ dol om t eati o)Acousti c vel oci t yGamma- raycharacteri st i cs( core gamma and core spect ral )El ectr i cal propert i es( m and n)M neral ogyand cl ay type, di str i buti onand quanti ty

    8. Speci al cor e anal ysi sRel ati vepermeabi l i t yFormati onnet t abi l i t yCapi l l arypressure (water- r et ent i onproper t i es)Pore vol umecompressi bi l i t yRock- i nj ectedf l ui dcompati bi l i t yResi dual gas ( t rappedby water)

  • 7/30/2019 DATOS_SIMULACIN

    10/16

    ... .... ..... . IwnEQ

    I nf ormati onFromWel l Leas

    1.

    2.

    3.

    4+

    5.

    6.

    7,

    8.

    9.

    1.

    2.3.

    4.

    5.

    6.

    7.

    8.

    3.

    4.

    5.

    6.

    7.

    St ructural t ops

    Gross/ net pay thi ckness

    Porosi ty vs. depth

    I ni ti al water saturati onvs. depth

    Presenceor absenceof shal es

    Depth of gas/ oi l or oi l / watercontacts

    Wel l to wel l correl ati onsa cont i nui tyof sande ver t i cal st rat i f i cat i ondef i ni t i on

    Gas- oi l and oi l - wat er capi l l arypressuredrai nagecurves

    Li thol ogydef i ni ti on

    IAQIJu

    Mel ! Test Data

    Reservoi r pressure

    Eff ecti vepermeabi l i t yt hi cknessproduct ( kOh, k~h)Producti vi t y,i nj ect i vi t yi ndex, compl et i onef f i ci ency( wel l boredamage)

    Di stanceof wel l f romthe f aul t or di sconti nui ty

    The si ze of reservoi r (conti nui tyof sand)

    Si ngl eor doubl e porosi t ysystems

    Conti nui tyof permeabi l i tybetweenthewel l s - - i nterf erencetesti ng

    Presencecf f racturesor hi gh permeabi l i tystr eaks

    IMLL5

    Reservoi r I nf ormati onRequi redf or a Si mul ati onSt udy

    St ructuremap of each reservoi r

    I sopachmaps (net and gross thi ckness) w th l ocati on of gas/oil andoi l water contacts f or each l ayer

    1/ 0 porosi tydi stri buti onf or each l ayer

    Rock regi onmaps f or each l ayer

    Maps of f l owbarri ers suchas f aul ts f or each l ayer

    Water sat urat i onmaps f or each l ayer

    Permeabi l i t ydi str i but i o~maps f or each l ayer

    Note: Layer i s a conti nuous l owuni t . I t may or may not communi catew thl ayers above and bel ow Thei r pri mary f uncti oni s to def i ne strati f i cati on nthe reservoi r.

  • 7/30/2019 DATOS_SIMULACIN

    11/16

    .

    TA!3LE6

    Fl ui dData f or Bl ack- Oi l FromLaboratoryMeasurement s

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    Oi l FVF vs. reservoi rpressure

    Gas FVF vs. reservoi rpressure

    Water FVF vs. reservoi r pressure

    Oi l vi scosi tyvs. pressure

    Gas vi scosi tyvs. pressure

    Gas i n sol uti onvs. reservoi rpressure

    Water vi scosi ty

    Oi l compressi bi l i ty

    Water compressi bi l i t y

    Oi l FVF at separatorcondi ti ons

    Gas i n sol uti onat separatorcondi ti ons

    IM4L..zAddi t i onal Reservoi rRock Data f or EnhancedOi l Recovery*

    M sci bl e [ CQ2avdrocarbon\

    o Changes i n rock nett abi l i ty

    q Ef f ect on rel ati vepermeabi1i ty (S. , )

    Chem cal (D ol vmer. surf act ant~

    @ Pol ymer/ sur f actantabsorpti onon the reservoi r rock

    @ Pol ymer resi dual resi stancef actor ( ~f f ect of adsorpti onon rockpermeabi l i t y)

    @ Pol ymer i naccessi bl epore vol ume

    a Rock i on exchangecapaci tyw th i nj ectedf l ui d

    @ Ef f ect on rel ati vepermeabi l i ty SO, )f or surf actant

    Thermal (st eam~

    @ Temperaturedependent rel ati vepermeabi l i t ycurves

    @ Resi dual oi l saturati onto steamvapor {S. , 9)

    e Pore vol umecompressi bi l i t y

    q Rock thermal conduct i vi t y

    c Rock heat capaci ty

    q

    I n some cases these data cannot be measured di rect l y and must bedeterm nedby hi st orymatchi ngl aboratorycore f l oodr ecover i es.

    265

  • 7/30/2019 DATOS_SIMULACIN

    12/16

    Addi t i onal Fl ui dProper t yDataf or Chem cal Fl oodi ng(Pol ymer/ Surf actant s)

    . ?QI MU$

    1. Stabi l i tyof pol ymer at reservoi rt emperature

    2. Pol ymer vi scosi tyvs. concentrati onand shear rate

    3. Core f l ood recoveri es

    Sur f act ant1. Sol uti onstabi l i ty

    2. Phaseequi l i bri um oi l - waterdi stri buti onof surf actant)

    3. Change i n i nterraci alt ensi on

    Addi t i onal Fl ui d Propert yDataf or Thermal Fl oodi ng

    1, Temperatureand pressuredependent equi l i br i umonst ant ( k-val ues)

    2. Vi scosi ty as a f uncti onof temperature

    3. Thermal expansi onand heat capaci tyof oi l

    TYPE w EXAIVIPL.ES(X=6i E0i &3i NC ACWITY INTERPLAYC)FEWORT

    ROCK!5TUDIESq LITHOLOGY

    q DEPOSITIONALORIGIN

    q RESERVOIR ROCKTYPES

    r 1 .1

    COREANALYSIS

    es. m.t-,,,fimw-c.w, ,m,Pn

    I rnMrnGwunn aluwlca I /

    I q STRUCTURE. CONTINUITY L/

    I . CNJALITYPROFILES ~

    I . RESERVOIRZONATION k

    .-l . ------ . . . . . . . . I

    . PORE VOLUME

    . TRANSMHJfj!LIW1

    Fig 1 I nl ogral l onfgeol oy(~ reservoi rf l g[o~et! f l gata

    266

  • 7/30/2019 DATOS_SIMULACIN

    13/16

    (j) STREAMMOUTHBAR @ BARRI ERI SLAND@ DI STRI BUTARYCHANNEL @ OFFSHORE BAR@ POI NTBAR @ BAY@ ALLUVI ALFAN @ DUNE FIELD@ BRAKI EDSTREAM @ TIDALFLAT@ BEACH @ TUFN31DITEANANDCHANNEL~ LAGOON

    Fig 2 Depostmnnlstos of siredandnamirsof seinl.bodytypes~

    BELT

    MAPS

    CONTitWUSStlEE

    k

    b+

    +

    VERTI CALSTACKl f f i1 1

    L I

    CROSSECTK)NSIJWERAI.STACKNKI

    r 4

    M,.,..;

    . . , f,

    DISCONTIMJOUSHEET

    Fig. Principolypes at sandstoneresetvoirQeomelries~

  • 7/30/2019 DATOS_SIMULACIN

    14/16

    PRIMARY POROSITY SECONDARY POROSITYDEPOSITIONAL

    CONFIGURATION I QRAIN I Pcwosl w I PROCESS IFAVORABLE

    TYPESUNFAVORABLE

    SI ZE TYPE EFFECTS EFFECTSI

    OHERMREEF._o.- -SW aC*AmJRINci INCREASE INCREASEJOINTSflRECCIA CW4NNELINQ 1 1 t , r

    o~TRo~~E ~ l@h+-++-i IlN6RlL4SEk&@-I , t I 1 DOLOMITIZATIONaANKsHEL~ ~ ~

    IEECRYSTALJJZ4TION

    SHOAL ~ CEhtENTAT:ONBY CALCITE

    I OOLOMiTE IANMvORITE

    NEAW5HORE ~1

    PYR081NMENQUARTZ

    lNcF@SE k

    ICANMao

    OECIWA3E 06 k

    h4AYINCREASE DECRSASE @& kPORE SIZEANO k

    I1 I f I I 1 I I I 1Fig.4 Poroslfy01carbonts:asI

    ~ f9?4 -1975(2D SEISMICj b

    o12bn

    oPiam#PraW

    A%mcdw

    F;g.5 Comparisonof 2D an d 30 atrucfurstmapsat blockW,CormorantField,U.K NodhSoae

    2$8

  • 7/30/2019 DATOS_SIMULACIN

    15/16

    100. 0

    50 SJ 1- 1 I. . . .

    ,** q .- q *. q+$

    q it q !

    t+i1 I I I I

    i0.01 &++_L1-l__JJ__J

    12 14 16 la 20 22CORE POROSITY (%)

    Fq 6 ?ermeab?: iy lpoios !~ cormkat ,on for cures f rom Iho Bradford s~s tono !7

    ,.~i$ / /,- , t

    .LLi

    / // /

    K /.. ,/

    2 / ,v) . /Lu

    /

    cc 4$4 ,0 . //

    //

    .-.

    ,.

    #/~ I$9

    SEPAFJATOR

    ITEMPERATURE

    Ftg 7 Agt!nerahzaaphase gmg,arn

    269

  • 7/30/2019 DATOS_SIMULACIN

    16/16

    LAB MEASURED DATA

    ~ A\ A EOS CHARACTERIZATION -BASED ON 3 PSEUDO

    A

    \

    COMPONENTS (Cd . (23C4 - (27

    A C7 +).

    4

    A

    A

    PRESSURE (PSIA)Fig. 8 Retrograde ccndenset!on during depletion

    HEAT LOSS FROM SURFACE EQUIPMENT TO SURROUNDING

    I.-w\}lllllltll{f/

    /(j/ l)/s LTH:::AL ~SUPPLY

    -- + FUEL

    - . .. .. -

    HEAT LOSS FROMWELLBORE TO EARTH- I +-.

    ----.--1 -

    WATER

    1 I I : WERTICA~ HEAT 0SS FROM HEATEDFORMATION-.-111- $

    \WERTICAV HEAT LOSS FROM HEATEDFORMATION

    FIg 9 Illustrationof heatIoaseswhichoccurina heatInjectionGyslem(afterRamaym)

    270