Efecto Fotoeléctrico

4
Efecto Fotoeléctrico Durante varios años después de la publicación del trabajo de Planck no se hizo nada con respecto a la hipótesis de la cuantización que había introducido. En 1905, Albert Einstein publicó un trabajo llamado "Sobre un punto de vista heurístico concerniente a la producción y transformación de luz", más conocido como el trabajo sobre el efecto fotoeléctrico. Planck había considerado que la energía de las partículas que forman las paredes de la cavidad que produce la radiación de cuerpo negro solamente podía ser emitida o absorbida en múltiplos enteros de un cuanto o elemento de energía. Fue Einstein el primero que, con su trabajo de 1905, dio significado físico a la hipótesis de la cuantización de la energía. A Planck nunca se le ocurrió la idea de extender la hipótesis de la cuantización a la radiación, es decir, no se le ocurrió suponer que la radiación electromagnética tenía carácter discreto. Einstein en su trabajo sugirió que la suposición de que la luz está formada de cuantos discretos de energía podía ser aplicada a algunos fenómenos que la teoría ondulatoria de la luz no podía explicar, como por ejemplo, la fluorescencia y el efecto fotoeléctrico. Con respecto al efecto fotoeléctrico, Einstein escribió en su trabajo: Cuantos de luz penetran la capa superficial del cuerpo y su energía se transforma, por lo menos en parte, en energía cinética de los electrones. La manera más sencilla de imaginar esto es que un cuanto de luz entrega toda su energía a un solo electrón; supondremos que esto es lo que sucede[...] Un electrón al que se le ha impartido energía cinética dentro del cuerpo habrá perdido parte de esta energía al tiempo que llegue a la superficie. Además, supondremos que para poder escapar del metal electrón tiene que hacer una determinada cantidad de trabajo, característico de la sustancia en cuestión. Einstein explicó este fenómeno como la colisión de dos partículas: el fotón y el electrón del átomo. Einstein

description

fisica

Transcript of Efecto Fotoeléctrico

Page 1: Efecto Fotoeléctrico

Efecto Fotoeléctrico

Durante  varios años después de la publicación del trabajo de Planck no se hizo nada con respecto a la hipótesis de la cuantización que había introducido.

En 1905, Albert Einstein publicó un trabajo llamado "Sobre un punto de vista heurístico concerniente a la producción y transformación de luz", más conocido como el trabajo sobre el efecto fotoeléctrico. Planck había considerado que la energía de las partículas que forman las paredes de la cavidad que produce la radiación de cuerpo negro solamente podía ser emitida o absorbida en múltiplos enteros de un cuanto o elemento de energía. Fue Einstein el primero que, con su trabajo de 1905, dio significado físico a la hipótesis de la cuantización de la energía. A Planck nunca se le ocurrió la idea de extender la hipótesis de la cuantización a la radiación, es decir, no se le ocurrió suponer que la radiación electromagnética tenía carácter discreto.

Einstein en su trabajo sugirió que la suposición de que la luz está formada de cuantos discretos de energía podía ser aplicada a algunos fenómenos que la teoría ondulatoria de la luz no podía explicar, como por ejemplo, la fluorescencia y el efecto fotoeléctrico. Con respecto al efecto fotoeléctrico,

Einstein escribió en su trabajo: Cuantos de luz penetran la capa superficial del cuerpo y su energía se transforma, por lo menos en parte, en energía cinética de los electrones. La manera más sencilla de imaginar esto es que un cuanto de luz entrega toda su energía a un solo electrón; supondremos que esto es lo que sucede[...] Un electrón al que se le ha impartido energía cinética dentro del cuerpo habrá perdido parte de esta energía al tiempo que llegue a la superficie. Además, supondremos que para poder escapar del metal electrón tiene que hacer una determinada cantidad de trabajo, característico de la sustancia en cuestión.

Einstein explicó este fenómeno como la colisión de dos partículas: el fotón y el electrón del átomo. Einstein predijo de esta manera que la energía cinética máxima que debe tener un electrón emitido por un metal debe aumentar al aumentar la frecuencia de la radiación incidente.

Para frecuencias menores no se emite ningún electrón del metal. Al aumentar la frecuencia de la radiación incidente, el electrón va adquiriendo cada vez más energía cinética ya que habrá chocado con fotones más energéticos y éstos le transfieren su energía. Notamos que la mínima frecuencia f0 es característica de cada metal, y como lo sugirió Einstein está relacionada con el trabajo necesario para que el electrón abandone su superficie. Observamos que en esta descripción la intensidad de la radiación no interviene para nada. La predicción además nos indica que para cada metal la línea correspondiente tiene que ser precisamente una línea recta. Es más, las rectas que corresponden a distintos metales deben ser paralelas. Einstein encontró que la inclinación de estas rectas es universal, o

Page 2: Efecto Fotoeléctrico

sea la misma para todas las sustancias y está relacionada con la constante de Planck.

Einstein dice: De lo que me puedo cerciorar, no hay contradicción entre estas concepciones y las propiedades del efecto fotoeléctrico observadas (experimentalmente) por Lenard. Si cada cuanto de energía de la luz incidente, independientemente de todo lo demás, entrega toda su energía a un solo electrón, entonces la distribución de la energía cinética de los electrones expulsados será independiente de la intensidad de la luz incidente.

Explicación:

Los fotones del rayo de luz tienen una energía característica determinada por la frecuencia de la luz. En el proceso de fotoemisión, si un electrón absorbe la energía de un fotón y éste último tiene más energía que la función trabajo, el electrón es arrancado del material. Si la energía del fotón es demasiado baja, el electrón no puede escapar de la superficie del material. Aumentar la intensidad del haz no cambia la energía de los fotones constituyentes, solo cambia el número de fotones. En consecuencia, la energía de los electrones emitidos no depende de la intensidad de la luz, sino de la energía de los fotones.

Los electrones pueden absorber energía de los fotones cuando son irradiados, pero siguiendo un principio de "todo o nada". Toda la energía de un fotón debe ser absorbida y utilizada para liberar un electrón de un enlace atómico, o si no la energía es re-emitida. Si la energía del fotón es absorbida, una parte libera al electrón del átomo y el resto contribuye a la energía cinética del electrón como una partícula libre.

Einstein no se proponía estudiar las causas del efecto en el que los electrones de ciertos metales, debido a una radiación luminosa, podían abandonar el metal con energía cinética. Intentaba explicar el comportamiento de la radiación, que obedecía a la intensidad de la radiación incidente, al conocerse la cantidad de electrones que abandonaba el metal, y a la frecuencia de la misma, que era proporcional a la energía que impulsaba a dichas partículas.

Leyes de la emisión fotoeléctrica

1. Para un metal y una frecuencia de radiación incidente dados, la cantidad de fotoelectrones emitidos es directamente proporcional a la intensidad de luz incidente.

2. Para cada metal dado, existe una cierta frecuencia mínima de radiación incidente debajo de la cual ningún fotoelectrón puede ser emitido. Esta frecuencia se llama frecuencia de corte, también conocida como "Frecuencia Umbral".

Page 3: Efecto Fotoeléctrico

3. Por encima de la frecuencia de corte, la energía cinética máxima del fotoelectrón emitido es independiente de la intensidad de la luz incidente, pero depende de la frecuencia de la luz incidente.

4. La emisión del fotoelectrón se realiza instantáneamente, independientemente de la intensidad de la luz incidente. Este hecho se contrapone a la teoría Clásica: la Física Clásica esperaría que existiese un cierto retraso entre la absorción de energía y la emisión del electrón, inferior a un nanosegundo.

Para analizar el efecto fotoeléctrico cuantitativamente utilizando el método derivado por Einstein es necesario plantear las siguientes ecuaciones:

Energía de un fotón absorbido = Energía necesaria para liberar 1 electrón + energía cinética del electrón emitido.

Algebraicamente:

,

que puede también escribirse como

.

donde h es la constante de Planck, f0 es la frecuencia de corte o frecuencia mínima de los fotones para que tenga lugar el efecto fotoeléctrico, Φ es la función trabajo, o mínima energía necesaria para llevar un electrón del nivel de Fermi al exterior del material y Ek es la máxima energía cinética de los electrones que se observa experimentalmente.

Nota: Si la energía del fotón (hf) no es mayor que la función de trabajo (Φ), ningún electrón será emitido. Si los fotones de la radiación que inciden sobre el metal tienen una menor energía que la de función de trabajo, los electrones del material no obtienen suficiente energía como para emitirse de la superficie metálica.