estacion total

7
BRUJULA Generalmente un instrumento de mano que se utiliza fundamentalmente en la determinación del norte magnético, direcciones y ángulos horizontales. Su aplicación es frecuente en diversas ramas de la ingeniería. Se emplea en reconocimientos preliminares para el trazado de carreteras, levantamientos topográficos, elaboración de mapas geológicos, etc. La brújula consiste de una aguja magnética [A] que gira sobre un pivote agudo de acero duro [B] apoyado sobre un soporte cónico ubicado en el centro de la aguja. La aguja magnética esta ubicada dentro de una caja [C], la cual, para medir el rumbo, contiene un circulo graduado [D] generalmente dividido e n cuadrantes de 0o a 90o , marcando los cuatro puntos cardinales; teniendo en cuenta que debido al movimiento aparente de la aguja los puntos Este y Oeste estén intercambiados (figura 2.12). Algunas brújulas llamadas brújulas azimutales, tienen el circulo horizontal dividido en 360o . Coincidiendo con la alineación norte – sur poseen un dispositivo de colimación A objeto de contrarrestar los efectos de la inclinación magnética, la aguja posee un pequeño contrapeso de bronce [E] y su ubicación depende de la latitud del lugar. En zonas localizadas al norte del ecuador, el contrapeso estará ubicada en el lado sur de la aguja, y en zonas localizadas al sur del ecuador el contrapeso estará ubicado en el lado norte de la aguja. Para proteger el pivote sobre el cual gira la aguja, las brújulas poseen un dispositivo elevador [F]que separa la aguja del pivote cuando las brújulas no están siendo utilizadas. En el interior se ubica un pequeño nivel esférico de burbuja [G]. Un vidrio ubicado en la parte superior de la caja[H] sirve para proteger la aguja, el circulo y el nivel esférico. Para hacer coincidir el eje de rotación de la aguja con la vertical del vértice donde se esta efectuando la medida, algunas brújulas se utilizan con plomada [I] y otras se apoyan sobre un bastón de madera. A fin de corregir la declinación magnética del lugar, algunas brújulas poseen un arco de declinación [J] graduado en grados, cuyo cero coincide con la alineación norte, de manera que conociendo la declinación del lugar, mediante un dispositivo especial, se puede hacer girar el circulo horizontal hasta hacer coincidir la lectura con el valor de la declinación del lugar; de esta manera, el rumbo medido con la brújula es el rumbo real. Es importante mencionar, debido a su popularidad, el Teodolito – Brújula Wild T0 (figura 2-20) por ser un instrumento muy utilizado tanto en la determinación de acimutes magnéticos como en la medición de ángulos en levantamientos de puntos de relleno por taquimetría. En el capítulo correspondiente a mediciones angulares, se explicará la determinación de rumbos y acimutes mediante el uso de la brújula El teodolito es un instrumento de medición mecánico-óptico que se utiliza para obtener ángulos verticales y, en el mayor de los casos, horizontales, ámbito en el cual tiene una precisión elevada. Con otras herramientas auxiliares puede medir distancias y desniveles.

description

Disertacion estacion total

Transcript of estacion total

Page 1: estacion total

BRUJULAGeneralmente un instrumento de mano que se utiliza fundamentalmente en ladeterminación del norte magnético, direcciones y ángulos horizontales. Su aplicación es frecuente en diversas ramas de la ingeniería. Se emplea en reconocimientos preliminares para el trazado de carreteras, levantamientos topográficos, elaboración de mapas geológicos, etc.La brújula consiste de una aguja magnética [A] que gira sobre un pivote agudo de acero duro [B] apoyado sobre un soporte cónico ubicado en el centro de la aguja. La aguja magnética esta ubicada dentro de una caja [C], la cual, para medir el rumbo, contiene un circulo graduado [D] generalmente dividido e n cuadrantes de 0o a 90o , marcando los cuatro puntos cardinales; teniendo en cuenta que debido al movimiento aparente de la aguja los puntos Este y Oeste estén intercambiados (figura 2.12).

Algunas brújulas llamadas brújulas azimutales, tienen el circulo horizontal dividido en 360o .Coincidiendo con la alineación norte – sur poseen un dispositivo de colimación A objeto de contrarrestar los efectos de la inclinación magnética, la aguja posee un pequeñocontrapeso de bronce [E] y su ubicación depende de la latitud del lugar. En zonas localizadas alnorte del ecuador, el contrapeso estará ubicada en el lado sur de la aguja, y en zonas localizadas al sur del ecuador el contrapeso estará ubicado en el lado norte de la aguja.

Para proteger el pivote sobre el cual gira la aguja, las brújulas poseen un dispositivo elevador [F]que separa la aguja del pivote cuando las brújulas no están siendo utilizadas. En el interior se ubica un pequeño nivel esférico de burbuja [G]. Un vidrio ubicado en la parte superior de la caja[H] sirve para proteger la aguja, el circulo y el nivel esférico. Para hacer coincidir el eje de rotación de la aguja con la vertical del vértice donde se esta efectuando la medida, algunas brújulas se utilizan con plomada [I] y otras se apoyan sobre un bastón de madera.A fin de corregir la declinación magnética del lugar, algunas brújulas poseen un arco dedeclinación [J] graduado en grados, cuyo cero coincide con la alineación norte, de manera que conociendo la declinación del lugar, mediante un dispositivo especial, se puede hacer girar el circulo horizontal hasta hacer coincidir la lectura con el valor de la declinación del lugar; de esta manera, el rumbo medido con la brújula es el rumbo real.

Es importante mencionar, debido a su popularidad, el Teodolito – Brújula Wild T0 (figura 2-20) por ser un instrumento muy utilizado tanto en la determinación de acimutes magnéticos como enla medición de ángulos en levantamientos de puntos de relleno por taquimetría.

En el capítulo correspondiente a mediciones angulares, se explicará la determinación de rumbos y acimutes mediante el uso de la brújulaEl teodolito es un instrumento de medición mecánico-óptico que se utiliza para obtener ángulos verticales y, en el mayor de los casos, horizontales, ámbito en el cual tiene una precisión elevada. Con otras herramientas auxiliares puede medir distancias y desniveles.

Es portátil y manual; está hecho con fines topográficos e ingenieriles, sobre todo en las triangulaciones. Con ayuda de una mira y mediante la taquimetría, puede medir distancias. Un equipo más moderno y sofisticado es el teodolito electrónico,y otro instrumento más sofisticado es otro tipo de teodolito más conocido como estación total.

Básicamente, el teodolito actual es un telescopio montado sobre un trípode y con dos círculos graduados, uno vertical y otro horizontal, con los que se miden los ángulos con ayuda de lentes.

El teodolito también es una herramienta muy sencilla de transportar; es por eso que es una herramienta que tiene muchas garantías y ventajas en su utilización. Es su precisión en el campo lo que la hace importante y necesaria para la construcciónCLASIFICACION

Teodolito moderno.

Los teodolitos se clasifican en teodolitos repetidores, reiteradores, brújula y electrónicos.

Teodolitos repetidores

Estos han sido fabricados para la acumulación de medidas sucesivas de un mismo ángulo horizontal en el  limbo, pudiendo así dividir el ángulo acumulado y el número de mediciones vistas.

Teodolitos reiteradores

Llamados también direccionales, los teodolitos reiteradores tienen la particularidad de poseer un limbo fijo y sólo se puede mover laalidada.

Page 2: estacion total

Teodolito - brújula

Como dice su nombre, tiene incorporada una brújula de características especiales. Éste tiene una brújula imantada con la misma dirección al círculo horizontal. Sobre el diámetro 0 a 180 grados de gran precisión.

Teodolito electrónico

Es la versión del teodolito óptico, con la incorporación de electrónica para hacer las lecturas del círculo vertical y horizontal, desplegando los ángulos en una pantalla, eliminando errores de apreciación. Es más simple en su uso, y, por requerir menos piezas, es más simple su fabricación y en algunos casos su calibración.Las principales características que se deben observar para comparar estos equipos que hay que tener en cuenta son: la precisión, el número de aumentos en la lente delobjetivo y si tiene o no compensador electrónico

Partes principales

Niveles: - El nivel es un pequeño tubo cerrado que contiene una mezcla de alcohol y éter; una burbuja de aire, la tangente a la burbuja de aire, será un plano horizontal. Se puede trabajar con los niveles descorregidos.

Precisión: Depende del tipo de Teodolito que se utilice. Existen desde los antiguos que varían entre el minuto y medio minuto, los modernos que tienen una precisión de entre 10", 6", 1" y hasta 0.1".

Nivel esférico: Caja cilíndrica tapada por un casquete esférico. Cuanto menor sea el radio de curvatura menos sensibles serán; sirven para obtener de forma rápida el plano horizontal. Estos niveles tienen en el centro un círculo, hay que colocar la burbuja dentro del círculo para hallar un plano horizontal bastante aproximado. Tienen menorprecisión que los niveles tóricos, su precisión está en 1´ como máximo aunque lo normal es 10´ o 12´.

Nivel tórico: Si está descorregido nos impide medir. Hay que calarlo con los tornillos que lleva el aparato. Para corregir el nivel hay que bajarlo un ángulo determinado y después estando en el plano horizontal con los tornillos se nivela el ángulo que hemos determinado. Se puede trabajar descorregido, pero hay que cambiar la constante que nos da el fabricante. Para trabajar descorregido necesitamos un plano paralelo. Para medir hacia el norte geográfico (medimos acimutes, si no tenemos orientaciones) utilizamos el movimiento general y el movimiento particular. Sirven para orientar el aparato y si conocemos el acimutal sabremos las direcciones medidas respecto al norte.

Plomada : Se utiliza para que el teodolito esté en la misma vertical que el punto del suelo. Plomada de gravedad: Bastante incomodidad en su manejo, se hace poco precisa sobre todo los días

de viento. Era el método utilizado antes aparecer la plomada óptica. Plomada óptica: es la que llevan hoy en día los teodolitos, por el ocular vemos el suelo y así ponemos el

aparato en la misma vertical que el punto buscado. Limbos : Discos graduados que nos permiten determinar ángulos. Están divididos de 0 a 360 grados

sexagesimales, o de 0 a 400 grados centesimales. En los limbos verticales podemos ver diversas graduaciones (limbos cenitales). Los limbos son discos graduados, tanto verticales como horizontales. Los teodolitos miden en graduación normal (sentido dextrógiro) o graduación anormal (sentido levógiro o contrario a las agujas del reloj). Se miden ángulos cenitales (distancia cenital), ángulos de pendiente (altura de horizonte) y ángulos nadirales.

Nonius : Mecanismo que nos permite aumentar o disminuir la precisión de un limbo. Dividimos las n - 1 divisiones del limbo entre las n divisiones del nonio. La sensibilidad del nonio es la diferencia entre la magnitud del limbo y la magnitud del nonio.

Micrómetro : Mecanismo óptico que permite hacer la función de los nonios pero de forma que se ve una serie de graduaciones y un rayo óptico mediante mecanismos, esto aumenta la precisión.

Partes accesorias

Trípodes : Se utilizan para trabajar mejor, tienen la misma X e Y pero diferente Z ya que tiene una altura; el más utilizado es el de meseta. Hay unos elementos de unión para fijar el trípode al aparato. Los tornillos nivelantes mueven la plataforma del trípode; la plataforma nivelante tiene tres tornillos para conseguir que el eje vertical sea vertical.

Tornillo  de presión (movimiento general): Tornillo marcado en amarillo, se fija el movimiento particular, que es el de los índices, y se desplaza el disco negro solidario con el aparato. Se busca el punto y se fija el tornillo de presión. Este tornillo actúa en forma ratial, o sea hacia el eje principal.

Tornillo de coincidencia (movimiento particular o lento): Si hay que visar un punto lejano, con el pulso no se puede, para centrar el punto se utiliza el tornillo de coincidencia. Con este movimiento se hace coincidir la línea vertical de la cruz filar con la vertical deseada, y este actúa en forma tangencial. Los otros dos tornillos mueven el índice y así se pueden medir ángulos o lecturas acimutales con esa orientación.

Page 3: estacion total

Movimientos del teodolito

Este instrumento, previamente instalado sobre el trípode en un punto del terreno que se denomina estación, realiza los movimientos sobre los ejes principales.

Movimiento de la alidada

Este movimiento se realiza sobre el eje vertical (S-S), también presente en los instrumentos de todas las generaciones de teodolito. Permite al operador girar el anteojo horizontalmente, en un rango de 360.

Movimiento del anteojo

Este movimiento se lo realiza sobre el eje horizontal (K-K) y permite al operador girar desde el punto de apoyo hasta el Cenit, aunque estos casos son muy raros ya que mayormente se abarca un rango promedio de 90º. y otro...

ESTACION TOTAL

Se denomina estación total a un aparato electro-óptico utilizado en topografía, cuyo funcionamiento se apoya en la tecnología electrónica. Consiste en la incorporación de un distanciómetro y un microprocesador a un teodolito electrónico.

Algunas de las características que incorpora, y con las cuales no cuentan los teodolitos, son una pantalla alfanumérica de cristal líquido(LCD), leds de avisos, iluminación independiente de la luz solar, calculadora, distanciómetro, trackeador (seguidor de trayectoria) y en formato electrónico, lo cual permite utilizarla posteriormente en ordenadores personales. Vienen provistas de diversos programas sencillos que permiten, entre otras capacidades, el cálculo de coordenadas en campo, replanteo de puntos de manera sencilla y eficaz y cálculo de acimuts y distancias

Funcionamiento

Vista como un teodolito; una estación total se compone de las mismas partes y funciones. El estacionamiento y verticalización son idénticos, aunque para la estación total se cuenta con niveles electrónicos que facilitan la tarea. Los tres ejes y sus errores asociados también están presentes: el de verticalidad, que con la doble compensación ve reducida su influencia sobre las lecturas horizontales, y los de colimación e inclinación del eje secundario, con el mismo comportamiento que en un teodolito clásico, salvo que el primero puede ser corregido por software, mientras que en el segundo la corrección debe realizarse por métodos mecánicos.

El instrumento realiza la medición de ángulos a partir de marcas realizadas en discos transparentes. Las lecturas de distancia se realizan mediante una onda electromagnética portadora (generalmente microondas o infrarrojos) con distintas frecuencias que rebota en unprisma ubicado en el punto a medir y regresa, tomando el instrumento el desfase entre las ondas. Algunas estaciones totales presentan la capacidad de medir "a sólido", lo que significa que no es necesario un prisma reflectante.

Se los denomina estaciones totales porque tienen la capacidad de medir ángulos, distancias y niveles, lo cual requería de diversos instrumentos. Estos teodolitos electro-ópticos hace tiempo que son una realidad técnica accesible desde el punto de vista económico.

Su precisión, facilidad de uso y la posibilidad de almacenar la información para descargarla después en programas de CAD ha hecho que desplacen a los teodolitos, que actualmente están en desuso. Las ventajas del GPS topográfico con respecto a la estación total son que, una vez fijada la base en tierra no es necesario más que una sola persona para tomar los datos, mientras que la estación requería de dos, el técnico que manejaba la estación y el operario que situaba el prisma. Por otra parte, la estación total exige que exista una línea visual entre el aparato y el prisma, lo que es innecesario con el GPS.

Además dispone de los elementos ópticos y mecánicos, imprescindibles en todos los taquímetros.

Una estación total posee básicamente 3 componentes:

Mecánico: el limbo, los ejes y tornillos, el nivel, la base nivelante.

Óptico: el anteojo y la plomada óptica

Electrónico: el distanciómetro, los lectores de limbos, el software y la memoria

La gran ventaja de la Estación Total es la componente electrónica en cuanto a memoria interna para almacenar datos de campo, que la hace más versátil y rápida que los instrumentos clásicos.

Page 4: estacion total

EL COMPONENTE MECÁNICO. El esqueleto de la Estación Total

En primer lugar vamos a hacer una división de su estructura en tres bloques fundamentales:

1. Bloque A: Está constituido por la alidada que es la componente móvil de la estación y puede girar en torno a un eje vertical (principal).

2. Bloque B: Aquí está alojado el limbo horizontal. Puede moverse solidariamente a la alidada o quedar fijo con respecto a ella.

3. Bloque C: Es la base nivelante. Sirve para nivelar la estación y unirla a un trípode. Va a quedar siempre fija respecto de los movimientos de la alidada.

Los Ejes de la Estación total:

Mecánicamente tenemos 3 ejes de movimiento, que generan tres planos al producirse la rotación entorno a ellos:

1.Eje Principal: Es el eje de giro de la Alidada que es la parte móvil de la estación

2.Eje secundario o de Muñones: Su función es servir de eje de giro del anteojo. Le permite cabecear describiendo planos verticales. El eje secundario es perpendicular al principal.

3.Eje de colimación: Se encuentra en el anteojo. Pasa por su centro y lo atraviesa longitudinalmente. Es perpendicular a su vez al eje secundario.

Los tornillos

Tipos- Tornillos de presión y de coincidencia:

Utilidad- Los tornillos de presión se utilizan para unir rígidamente o liberar los elementos móviles de una estación. Los tornillos de coincidencia (también llamados de movimiento lento) nos permiten imprimirle movimientos suaves y lentos, provocando pequeños desplazamientos de un elemento con respecto al otro, hasta hacerle ocupar la posición deseada.

Otra opción la representan las “estaciones servo motorizadas”, que utilizan la última tecnología de servo motores para el giro vertical y horizontal, prescindiendo por lo tanto de los clásicos tornillos de presión y coincidencia.

EL COMPONENTE ÓPTICO

El Anteojo-.El anteojo de la Estación Total está basado en el principio del anteojo astronómico.

Su función es la de poder hacer punterías a objetos o referencias para definir direcciones con precisión.

Estos son sus principales componentes:

A. Objetivo-.Lo forman dos o más lentes, con la finalidad de formar una imagen real e invertida del objeto.

B. Ocular-.Son dos lentes que tienen como función principal la amplificación de las imágenes. También llevan acoplados unos prismas que invierten de nuevo la imagen para ser vista en posición normal. Otra función es la de enfocar el retículo.

C. Retículo-.Es una especie de diafragma situado en el tubo ocular donde está grabada la cruz filar. Esta cruz es la que permite hacer punterías con precisión.La imagen superior nos muestra la visión que se tiene a través del anteojo cuando hace una correcta puntería con la cruz filar hacia un prisma.

D. Montura-.Lo forman tres tubos, donde van montados el ocular y el objetivo, y que además llevan un engranaje que permite alargar o acortar el anteojo para enfocar correctamente.

La plomada-.Es un dispositivo que va incorporado en la base nivelante de la estación, nos permite situar o estacionar el aparato exactamente sobre el punto que queramos.

EL COMPONENTE ELECTRÓNICO

Page 5: estacion total

a. Lectura electrónica de limbos

b. Medida electrónica de distancias

c. La gran diferencia de las Estaciones Totales respecto al resto de teodolitos y taquímetros es la integración de un complemento electrónico sólido y potente que permite tareas tales como, almacenamiento interno de medidas de campo y cálculos en tiempo real.

ACCESORIOS DE LA ESTACION TOTAL

Bípodes

Trípodes de madera o aluminio

Base Nivelante

Prismas

Miras

Jalones

Clavos y señales

Cables y Baterías

Bolsas portaprisma

Mochila de transporte

Tarjetas y lector PCMCIA