ESTRUCTURA Y APLICACIONES - Archivo Digital UPMoa.upm.es/57073/1/Termodinamica_Estructura_...

246
TERMODINÁMICA ESTRUCTURA Y APLICACIONES (SEGUNDA PARTE) Pedro Pérez del Notario Martínez de Marañón Catedrático de Universidad Teresa J. Leo Mena Catedrática de Universidad UNIVERSIDAD POLITÉCNICA DE MADRID (UPM) 2019

Transcript of ESTRUCTURA Y APLICACIONES - Archivo Digital UPMoa.upm.es/57073/1/Termodinamica_Estructura_...

  • TERMODINÁMICA

    ESTRUCTURA Y

    APLICACIONES

    (SEGUNDA PARTE)

    Pedro Pérez del Notario Martínez de Marañón Catedrático de Universidad Teresa J. Leo Mena Catedrática de Universidad

    UNIVERSIDAD POLITÉCNICA DE MADRID (UPM) 2019

  • 2

  • 3

    RESUMEN de la ESTRUCTURA de la TERMODINÁMICA Como resumen de la Estructura de la Termodinámica, se destaca que se han

    desarrollado los conceptos siguientes:

    1. Se ha definido el concepto de sistema termodinámico macroscópico con

    atención especial a la superficie que lo delimita.

    2. Se han definido dos tipos básicos de magnitudes físicas:

    a) Propiedades termodinámicas del sistema.

    Las propiedades están intrínsecamente unidas a su sistema propietario. En

    especial se analiza el denominado estado térmico de un sistema como una

    propiedad del mismo, temperatura. Principio Cero. Escalas de Temperatura.

    b) Interacciones externas.

    Interacciones externas entre sistemas que actúan en la superficie del sistema

    analizado, y que solo se utilizan dos: Trabajo mecánico y Calor. Teniendo

    en cuenta la importancia termodinámica de estas dos interacciones en las

    Aplicaciones, ambas se analizan en detalle.

    3. Con base en las dos interacciones externas, se introduce la propiedad general

    y básica denominada energía del sistema. Primer Principio.

    4. Mediante los Principios de la Mecánica y Electromagnetismo,

    independientes de la Termodinámica, el concepto general de la energía se

    descompone en partes, dejando como concepto básico de la Termodinámica,

    la propiedad denominada energía interna del sistema.

    5. Aparte de lo anterior, se analizan los procesos de los sistemas y se clasifican

    en procesos reversibles y procesos irreversibles. Los procesos naturales o

    reales son irreversibles. Segundo Principio.

    6. Mediante el Primer Principio y el Postulado de Estado, que relaciona

    diversas propiedades básicas, se definen matemáticamente otras propiedades

    que facilitan el análisis de los procesos de los sistemas. Se toman como

    propiedades básicas las propiedades intensivas, presión y temperatura, ya

    que son medibles directamente.

    7. Con la base de estas nuevas propiedades, se define la denominada Escala

    Absoluta de Temperaturas.

    8. Aplicando, como caso particular, la Escala Absoluta a una de las

    propiedades definida en el apartado (6), se define una nueva propiedad que

  • 4

    se denomina entropía, estrechamente relacionada con el estado térmico, y

    que constituye uno de los pilares del desarrollo de la Termodinámica.

    9. La utilización de la propiedad entropía, facilita la generación de múltiples

    relaciones entre propiedades, el análisis de las condiciones de equilibrio

    termodinámico, y facilita cuantificar las irreversibilidades en los procesos

    reales, lo cual es necesario en la ingeniería termodinámica.

  • 5

    APLICACIONES

    Introducción General El número de aplicaciones termodinámicas es grande y los campos de aplicación son

    diversos. Cada lector puede seleccionar la aplicación acorde con su interés académico.

    Cada aplicación constituye un Capítulo y se ha desarrollado de forma generalizada para

    facilitar las aplicaciones concretas.

    En general la formulación obtenida en cada aplicación ha exigido hipótesis adicionales

    particulares, para simplificar el análisis de los procesos reales, que normalmente son

    complejos. En consecuencia, la utilización de la formulación obtenida está condicionada

    por las hipótesis adicionales señaladas, y su aplicabilidad debe ser analizada.

    Primero se incluyen algunas Aplicaciones básicas que constituyen el soporte de las

    Aplicaciones técnicas.

    Dentro del amplio campo de la propulsión aeroespacial destacan los procesos

    termoquímicos y los procesos termomecánicos, que en muchos casos están

    estrechamente relacionados.

    Por tanto, un grupo de Capítulos están relacionados con los procesos termoquímicos y

    otros con los procesos fluidodinámicos.

    En esta publicación se ha dado cierta preferencia al campo de la fluido-dinámica y en

    especial las aplicaciones sobre corrientes de gases.

    Por su interés en Ingeniería Mecánica se han incluido algunas Aplicaciones técnicas

    como los Capítulos dedicados a la Exergía y a la Eficiencia.

    En esta parte se han incluido algunos ejemplos para facilitar las aplicaciones.

  • 6

  • 7

    APLICACIONES BÁSICAS

    CAPÍTULO 11 RECINTOS ABIERTOS

    Volúmenes de Control l. Introducción. Recintos abiertos En la técnica, especialmente en las corrientes fluidas, se presenta el problema del

    análisis energético de los procesos parciales que se realizan en instalaciones

    complejas.

    Las propiedades del fluido varían en cada punto con el tiempo por lo que los

    sistemas no son básicamente uniformes. Ejemplos: Un motor térmico, una parte de

    un circuito hidráulico, etc.

    En consecuencia, es de gran interés técnico el disponer de expresiones, lo más

    generales posibles y de aplicación simple, de los Principios desarrollados

    anteriormente, adaptadas a recintos abiertos o volúmenes de control.

    Fig. 11.1 Esquema de sistemas abiertos.

  • 8

    Un recinto abierto está definido (delimitado) por superficies impermeables i fijas

    o móviles y, por superficies permeables p fijas o móviles en un sistema de

    referencia, Fig. 11.1. En lo que sigue se consideran únicamente sistemas de referencia

    inerciales. En general el sistema de referencia se fija a la tierra o al recinto.

    2. Variación de una propiedad extensiva

    La materia contenida en el recinto R evoluciona desde el instante t al t + dt, mediante su interacción energética con los sistemas exteriores Bi a través de las

    superficies impermeables i .

    En el tiempo dt parte de la materia contenida en R va a permanecer en el mismo

    (subsistemas jA ), la masa edm va a entrar en el recinto R (subsistema eA ) y la

    masa sdm va a salir de R (subsistema sA ) .

    El sistema compuesto constituido por ( , , )e j sj

    A A A es un sistema cerrado, que

    evoluciona en el tiempo dt interaccionando calor y trabajo con el exterior, que es

    preciso evaluar en detalle posteriormente.

    Cualquier propiedad extensiva de la materia contenida en R va a cambiar en el

    tiempo dt , por ejemplo la energía.

    En el instante t la energía de la materia contenida en R es:

    ꞏR j s sj

    E E dm e

    siendo se la energía específica de sA .

    En el instante t dt la energía en el recinto R es:

    ( ) ( )( )R R j j e e ej

    E dE E dE dm e de

    Por tanto:

    ꞏ ꞏ ꞏR j e e s s e ej

    dE dE dm e dm e dm de

    que puede escribirse en la forma:

    ( ) ( ) ꞏ ꞏ ( )j e e s s R s s e e s sj

    dE dm de dm de dE dm e dm e dm de (11.1)

    Ecuación válida independientemente de la situación mecánica (movimiento o

    reposo) del recinto.

  • 9

    Dividiendo la ecuación anterior por dt y pasando al límite cuando 0dt se tiene

    jR s s e e

    j

    dEE m e m e

    dt (11.2)

    El resto de los términos tienden a cero por ser de segundo orden

    Esta ecuación es denominada ecuación del transporte de Reynolds.

    3. Conservación de la masa Este análisis es trivial, pero la Ec. (11.1) se utiliza como ejemplo para análisis

    posteriores. Para el caso particular en que la propiedad extensiva sea la masa, se

    tiene que * * 1e sm m y * 0edm , siendo

    *m la "masa específica".

    De la ecuación de conservación de la masa al sistema compuesto ( , , )e j sj

    A A A :

    0 ( ) ( )j e sj

    dm d dm d dm

    y llevándola a la Ec. (11.1) se obtiene:

    0 ( )ꞏ0R s e sdm dm dm dm

    dividiendo por dt y pasando al límite cuando 0dt se tiene:

    R e sm m m (11.3)

    En un proceso estacionario 0Rm y e sm m m .

    es decir, el flujo másico m se conserva.

    4. Primer principio (P.P.) Aplicando la Ec. (3.1) al conjunto ( , , )e j s

    jA A A que evoluciona desde el estado en el

    instante t , al estado en t dt se tiene

    ( )

    ( ) ( )

    i ij i

    ie ie e ei i

    is is s s j e e s si i j

    dQ dW

    dQ dW dQ dW

    dQ dW dQ dW dE dm de dm de

    (11.4)

    siendo e edQ dW la interacción en la superficie permeable exterior al sistema eA y

    análogamente para el sistema sA .

  • 10

    La energía de los sistemas eA y sA se ha expresado como el producto de su masa

    dm por la energía específica respectiva.

    Fig. 11.2 Elemento de superficie permeable.

    El trabajo comunicado al sistema eA a través de un elemento de superficie

    permeable d , Fig. 11.2, es:

    ( ) ( ꞏ )e d eddW pnd wdt (11.5)

    habiendo despreciado el trabajo de las fuerzas friccionales. El vector n es el vector

    unitario normal a la superficie y dirigido hacia el exterior y w la velocidad absoluta del fluido en el sistema de referencia.

    Como p rpw w w , siendo pw , la velocidad de la frontera permeable y rpw , la

    velocidad relativa de las partículas (materia) respecto a la frontera permeable, se

    tiene que:

    ( ) ( ꞏ ) ( ꞏ )e d p ed rp eddW pnd w dt pnd w dt

    en la cual ( ) ( ) ( )rp ed e d e e dnd w dt dV v dm donde ev es el volumen específico.

    Si la corriente es uniforme en las superficies permeables se tiene

    ꞏs s s s s s sdW p A n w dt p v dm (11.6)

    donde se ha suprimido el subíndice p .

    El valor de edQ , a través de la superficie exterior permeable, es

    e ee

    dTdQ dtdX

    , y eligiendo las superficies de control en lugares donde

    0dTdX

    se puede suponer que 0edQ , debido a la dificultad de su cálculo.

  • 11

    Para sdQ se obtiene una expresión análoga a la anterior. Sustituyendo en la Ec. (11.4)

    el segundo miembro dado por la Ec. (11.1) así como los valores de edW y sdW

    dados por la Ec. (11.6), se obtiene:

    ( ) ꞏ ꞏ ( )

    ( ) ( ) ( )

    i i j e e e s s s e e e e ij i i

    R s s s s e e e e s s

    dQ dW p A n w dt p A n w dt dQ dW dQ dW

    dE dm e p v dm e p v dm de

    (11.7)

    Dividiendo por dt y pasando al límite cuando 0dt se obtiene:

    ꞏ ꞏi i e e e s s s R s ts e teQ W p A n w p A n w E m h m h (11.8)

    siendo iQ y iW las interacciones exteriores a través de las superficies impermeables

    i , por unidad de tiempo y:

    2 21 1( )2 2t

    h u pv w gz h w gz (11.8a)

    a la cual se denomina entalpía total, siendo ( )h u pv la entalpía

    termodinámica o simplemente entalpía. El resto de los términos de la Ec. (11.7) tienden a cero por ser de segundo orden.

    En condiciones estacionarias 0RE y s em m m teniéndose: ꞏ ꞏ ( )i i e e e s s ts teQ W p A n w p A n w m h h (11.9)

    Cuando las superficies permeables son fijas respecto al sistema de referencia, es

    0w y la ecuación anterior se simplifica.

    Las Ecs. (11.8) y (11.9) tienen un gran interés técnico por su gran aplicabilidad a

    los procesos reales en recintos abiertos.

    Ambas ecuaciones se han desarrollado para una sola entrada y una sola salida. La

    generalización para varias entradas (1... )k ,y/o varias salidas (1... )r es inmediata.

    Las hipótesis simplificadoras utilizadas son:

    a) El trabajo de las fuerzas friccionales (fuerzas viscosas), ha sido considerado

    despreciable únicamente en las superficies permeables de control.

    b) El calor a través de las superficies permeables de control ha sido considerado

    despreciable

    c) En las superficies permeables la corriente se ha considerado uniforme.

  • 12

    Estas hipótesis se han hecho para facilitar la formulación, ya que el cálculo completo

    exigiría el conocimiento del campo de presiones, temperaturas y velocidades en

    dichas secciones.

    A primera vista pueden parecer muy exigentes dichas hipótesis, pero en ingeniería

    suele existir cierta libertad para seleccionar la posición de las superficies de control y

    por tanto deben elegirse en los lugares en que las hipótesis originen pequeños errores,

    por ejemplo, no colocándolas en frentes de llama, geometría compleja, etc.

    d) Para la Ec. (11.9) se ha puesto la hipótesis adicional de condiciones

    estacionarias o condiciones periódicamente estacionarias.

    5. Aplicaciones generales en procesos estacionarios del Primer Principio

    Las aplicaciones de la Ec. (11.8) a los procesos reales son muy variadas, debiendo

    considerar en cada caso el sistema de referencia y las condiciones del recinto R

    (superficies impermeables y permeables) respecto al sistema de referencia.

    En este apartado se aplica la Ec. (11.9) a varios procesos de gran interés técnico,

    estando las superficies permeables fijas respecto al sistema de referencia.

    a) Calentamiento o enfriamiento de una corriente fluida.

    Si la superficie impermeable está fija, 0iW , y para el proceso 1-2 se tiene por

    unidad de gasto másico.

    2 212 2 1

    12 2 1 2Q w wq h hm

    (11.9a)

    habiendo despreciado el cambio de la energía potencial.

    Cuando las variaciones de velocidad son despreciables (pequeñas respecto a los demás

    términos) se tiene que 12 2 1q h h .

    Estas expresiones son de especial aplicación en los cambiadores de calor Fig. 11.3, y

    con algunas hipótesis complementarias, en cámaras de combustión de

    funcionamiento continuo.

  • 13

    Fig. 11.3 Cambiador de calor. Fig. 11.4 Corriente en un conducto.

    b) Expansión o compresión en un conducto, Fig. 11.4.

    Si el conducto está fijo y térmicamente aislado se tiene:

    2 1t th h ; 2 22 1

    2 1 2 10 ( )2w wh h g z z (11.9b)

    de la cual se deduce que los fluidos pueden adquirir energía mecánica a expensas de

    la disminución de entalpía (expansión) o al contrario (compresión). c) Transformaciones isoentálpicas.

    En el caso particular del anterior en que el cambio de energía mecánica sea nulo se

    tiene:

    2 10 h h (11.9c)

    Este incremento de energía mecánica puede evitarse colocando en un conducto,

    Fig. 11.5, un tapón poroso, malla, etc. en el que por fricción se disipa el posible

    incremento de energía mecánica.

    1

    1

    2

    2

    1 2W

    Fig. 11.5 Conducto con tapón poroso. Fig. 11.6 Compresor.

  • 14

    d) Expansión o compresión en una turbina o compresor. (bomba) Fig. 11.6.

    En estos elementos, el tiempo de permanencia de la corriente en el interior del

    recinto es muy pequeño 2( 10 )s por lo cual el calor recibido de la superficie

    impermeable es casi nulo. Por tanto, en general, se consideran como procesos

    adiabáticos, excepto cuando se realiza una calefacción o refrigeración especial.

    En algunos casos, respecto al sistema de referencia, las superficies permeables son

    fijas y las superficies impermeables fijas o móviles.

    Para la unidad de gasto másico se tiene:

    2 2*12 2 112 2 1 2 1( )2

    W w ww h h g z zm

    11.9d)

    6. Ecuación del segundo principio (S.P.) para un proceso Aplicando la Ec. (5.8) al conjunto de ( , , )e j s

    jA A A se tiene:

    0 0 0ij ie is p

    j i i ii i i

    T T TdQ dQ dQ dIT T T

    0 ( ) ( )j e e s sj

    T dS dm ds dm ds

    (11.10)

    habiendo despreciado, como en el análisis del P.P. el calor transmitido por las superficies permeables.

    El valor del segundo miembro obtenido de una ecuación análoga a la Ec. (11.1)

    aplicada a la entropía es:

    Introduciendo esta expresión en la Ec. (11.10), dividiendo por dt y pasando al límite

    cuando dt tiende a cero, manteniendo ( )iT constante, se obtiene:

    0 0 0 0i

    p R s s e ei i

    QT I T S m T s m T sT

    (11.11)

    Esta es la ecuación del (S.P.) del proceso de la corriente. La integración de esta ecuación con el tiempo permite obtener información del

    cambio del sistema entre dos instantes concretos.

    En condiciones estacionarias, 0RS y s em m , se tiene:

  • 15

    0 0 0( )i p s ei i

    QT I m T s T sT

    (11.12)

    De las Ecs. (11.9) y (11.11) se obtiene, suponiendo 0pw :

    0 0 01 ( ) ( )i i p t s t ei ii

    TQ W I m h T s h T sT

    (11.13)

    Mediante un desarrollo análogo al anterior, pero utilizando la Ec. (11.8) en condiciones

    estacionarias, se obtiene:

    00 ( )

    sij

    in s eje

    dQT I mT s sT dt

    (11.14)

    7. Ecuación del Segundo Principio para una corriente fluida. Estado de remanso

    Puede obtenerse otra ecuación de gran aplicación técnica, con otra modelización del

    proceso que ocurre en una corriente fluida, con dos hipótesis básicas, Fig. 11.7:

    a) El proceso es estacionario

    b) El fluido se supone uniforme, no solo en las secciones de control de entrada y

    salida sino en cada una de las secciones en todo el recorrido dentro del recinto R.

    Fig. 11.7 Elemento de corriente

    Se considera el elemento de fluido de masa dm que entra en el estado 1 en el

    recinto R y se sigue su evolución termodinámica hasta que sale en el estado 2.

    Aplicando al pequeño sistema cerrado de masa dm la Ec. (5.1a) para el proceso

    completo desde 1 a 2 se tiene: 2 2

    1 1i p

    idQ dQ d dm Tds

    (11.15)

  • 16

    Además, se tiene que:

    i p i i pdQ dQ q d dt Q dt (11.16)

    siendo idQ el calor recibido por la superficie impermeable id , y pQ el recibido por

    las superficies permeables, en la unidad de tiempo.

    En condiciones estacionarias, la evaluación de 2

    1i

    idQ a lo largo del recorrido 1-2

    es el mismo que el calor recibido por todo el fluido del recinto R en el tiempo dt: 2

    121

    ii

    dQ Q dt

    2

    1

    0pdQ ya que la interacción interna se anula y la correspondiente a las

    secciones de control 1 y 2 se desprecia.

    De forma análoga 2

    121

    d dt , siendo 12 la degradación interna en la unidad de

    tiempo en el recinto R.

    Por consiguiente la Ec. (11.15) se escribe, dividiendo por dt : 2

    12 121

    Q m Tds (11.16)

    La utilización de esta ecuación exige el conocimiento de la función ( )s f T en el

    camino (sucesión de estados) que sigue el fluido.

    8. Condiciones (estado) de remanso Un caso particular de interés técnico corresponde al proceso que relaciona una

    sección de control (0) en que 0w con otra en que 0w , con la condición básica

    de que 0W Q y 0z .

    El (P.P.), Ec. (11.9), da:

    0 t th h : 2

    0 2wh h

    El (S.P.), Ec. (11.16), da: 0

    0( )T

    T

    dm s sT

  • 17

    La primera de las ecuaciones se verifica independiente del valor de d . Por el

    contrario, en la segunda, la presencia de d es determinante.

    Cuando, además de las condiciones anteriores, se supone 0d se tiene: 2

    0 2wh h ; 0s s ; 0 0w (11.16a)

    El estado (O) definido por las condiciones anteriores se denomina estado de remanso de la corriente ( , , )p T w . Se señala que puede hablarse del estado de

    remanso de una corriente independientemente de que la corriente alcance realmente

    la velocidad nula.

    A continuación, se desarrolla su aplicación al modelo de gases perfectos por su gran

    interés en la dinámica de gases.

    Con este concepto, la Ec. (11.9) en unos ejes fijos al recinto se escribe en la forma:

    12 12 2 1( )t tQ W m h h (11.17)

    Para un proceso adiabático y sin trabajo exterior la ecuación anterior es:

    (11.17a)

    Por tanto, la entalpía total se conserva en todo proceso adiabático en que no exista

    trabajo exterior y siempre que no existan gradientes grandes de temperatura y

    velocidad en las superficies permeables de control.

    Si la Ec. (11.17a) se aplica a una corriente desde el estado 1 1 1( , , 0)p T w hasta el

    estado 2 2 2( , , 0)p T w se obtiene:

    21

    1 1 1 2 2 2( ) ( )2t twh h T h h T (11.17)

    es decir, que la entalpía total en un determinado estado de velocidad w coincide

    con la entalpía estática o termodinámica que tendría dicho gas en el momento en

    que se anule su velocidad, es decir, que alcance un estado de reposo, ( 0)w en las

    condiciones dichas anteriormente.

    De la Ec. (11.17) se obtiene para gases perfectos: 21

    1 1 2 1 2 1 1 1( ) ( ) 2t p p twh h h h c T T c T T

    Llamando:

    21

    1 1 2t pwT Tc

    (11.18)

  • 18

    La temperatura tT , se denomina temperatura de remanso (temperatura total).

    Aunque el fluido posea una cierta velocidad, puede hablarse de su temperatura de

    remanso como una propiedad más sin que realmente se alcancen unas condiciones

    de reposo, ( 0)w .

    Aunque la entalpía total y la temperatura de remanso no varían en todo proceso

    adiabático sin trabajo exterior, no ocurre lo mismo con la presión.

    En un proceso real, el gas puede alcanzar un estado de reposo adiabáticamente y

    sin trabajo exterior de diversos modos, con más o menos disipación de energía

    mecánica por fricción.

    En un proceso de las características anteriores se tiene, según la Ec. (11.16): 1

    1 11 1

    1 11

    ln lnt

    t tt p

    T pd s s c RT T p

    El incremento de entropía dependerá de la disipación por fricción existente en el

    proceso. Al no existir trabajo exterior y ser el proceso adiabático, la temperatura

    1tT permanece constante; por tanto, de la ecuación anterior se obtiene que la presión

    1tp alcanzada será tanto más pequeña cuanto mayor sea la disipación por fricción.

    A la presión 1tp que se alcanzaría, pasando del estado 1 1 1( , , )p T w , a un estado de

    reposo 2( 0)w , por un camino isoentrópico y sin interacciones externas, se le llama

    presión de remanso de la corriente.

    Con las Ecs. (9.5) y (11.18), para procesos isoentrópicos, se obtiene:

    2 111

    2t t

    p

    p T wp T c T

    (11.19)

    11

    t t

    t

    Tvv T

    (11.20)

    siendo tv el volumen específico de remanso y t la densidad de remanso.

    Análogamente a lo indicado para la temperatura de remanso y entalpía total, puede

    tratarse la presión de remanso como una propiedad de la corriente fluida sin

    necesidad de alcanzar realmente el estado de remanso

    Las ecuaciones anteriores son de amplia aplicación en dinámica de gases.

    -Representación gráfica de las condiciones de remanso. En el diagrama temperatura –

    entropía (diagrama entrópico), solo pueden representarse los estados

  • 19

    termodinámicos. Si un gas se halla en el estado 1 1 1( , , )p T w su representación en el

    diagrama entrópico será el correspondiente al estado termodinámico 1 1( , )p T ; Fig.

    11.8.

    El estado de remanso del estado termodinámico (1) será el (1t) definido por la

    temperatura de remanso 1tT y presión de remanso 1tp .

    En el diagrama entrópico puede representarse indistintamente la transformación

    que siguen el estado termodinámico verdadero del gas (1,2) y el estado de remanso

    (lt,2t).

    Un mismo punto (1 )t en el diagrama puede ser la representación del estado de

    remanso de varios estados termodinámicos distintos con distintas velocidades:

    21

    1 1 2t pwT Tc

    12

    2t

    1tT

    S

    1tP1P

    Fig. 11.8. Representación de estados estáticos y de remanso.

    9. Ecuación de Bernoulli generalizada. Rendimientos energéticos Siguiendo un procedimiento análogo al del Apartado anterior, pero utilizando la

    ecuación de la energía interna Ec. (3.8) se obtiene: 2 2

    12 12 2 11 1

    ( ) ( )Q m du pdv m h h vdp (11.17)

    De esta ecuación y de la Ec. (11.9) con 0pw , adaptando la notación, y

    eliminando 12Q se tiene:

  • 20

    22 212 12

    2 1 1

    1 12 2

    W w gz w gz vdpm m

    (11.18)

    que es la ecuación de Bernoulli generalizada.

    Para el caso particular en que 1 .v const

    (fluidos incompresibles) se tiene:

    2 212 12

    2 1

    1 12 2

    W p w gz p w gzm m

    (11.19)

    Rendimientos adiabáticos.

    Unos procesos de gran interés técnico son las compresiones y expansiones

    adiabáticas.

    La Ec. (11.18) es general, (procesos adiabáticos y no adiabáticos), y puede escribirse

    en la forma: 2

    12 122 1

    1m m

    W e e vdpm m

    (11.20)

    La valoración del último sumando requiere conocer el camino ( )v v p seguido. Si el

    proceso para alcanzar el estado mecánico 2 2( , )mp e fuera adiabático y sin disipación

    ( 0)id , sería isoentrópico. Por tanto, la potencia ideal sería:

    212

    2 1 2 11

    ( )id m m s t s tW e e vdp h h

    m (11.20a)

    Por otra parte:

    122 1t t

    W h hm

    (11.20b)

    Por tanto:

    2

    21212

    2 2 2 22

    ( )id t t s s ps

    WW h h h h Tdsm m

    El subíndice (s) representa el proceso isoentrópico.

    Posteriormente se verá que fijadas las presiones 1p y 2p , puede evaluarse la

    integral de la Ec. (11.20a) por el camino isoentrópico y con ello el trabajo ideal

    12idW .

    En general, pueden medirse los dos miembros de la Ec. (11.20b), tanto la potencia

    real 12W como th . Ello permite comparar las potencias ideal y real mediante el

    cociente de los mismos, con la condición o convenio de 1 . Dicho cociente, de

  • 21

    carácter energético, se denomina de varias formas, rendimiento (eficiencia) adiabático,

    rendimiento isoentrópico.

    Compresión: 12 2 112 2 1

    id ts tc

    t t

    W h hW h h

    Expansión: 1 21212 1 2

    t te

    id t t s

    h hWW h h

    (11.20c)

    Las Ecs. (11.20a) y (11.20b) son válidas para el caso en que 12 12 0idW W ,

    (conductos fijos) y pueden definirse rendimientos adiabáticos basados en la

    comparación del proceso real con el proceso isoentrópico.

    En ingeniería es normal utilizar el modelo de gas perfecto para establecer los

    rendimientos o eficiencias señalados y se tienen las expresiones siguientes para los

    diversos componentes.

    Compresor:

    12

    12 1

    22 1

    1

    1

    1

    t

    tt s tc

    tt t

    t

    ppT TTT TT

    (11.21)

    Expansor (turbina):

    2

    1 2 1

    1 2 12

    1

    1

    1

    t

    t t tT

    t t st

    t

    TT T TT T p

    p

    Compresor dinámico (difusor): 2 12 1

    t scd

    t

    T TT T

    Expansor dinámico (tobera): 2 21 2

    ted

    t s

    T TT T

    El subíndice (s) representa el proceso isoentrópico.

    10. Velocidad del sonido La velocidad del sonido en un medio continuo es una propiedad de gran interés

    especialmente en fluidodinámica. Su determinación es un buen ejemplo de una

    aplicación termodinámica.

  • 22

    a) Determinar la velocidad del sonido en un sistema monocomponente sabiendo

    que:

    -La velocidad del sonido es la velocidad de desplazamiento de una onda débil (pequeña

    perturbación) de presión.

    -La onda en su desplazamiento puede considerarse como un recinto abierto que se

    desplaza a la velocidad c en la zona sin perturbar.

    -La masa, entropía y energía por unidad de superficie de la onda se conservan.

    b) Expresar la velocidad del sonido c en función de las capacidades térmicas

    específicas y coeficiente de compresibilidad.

    Fig. 11.9 Esquema de onda en movimiento.

    Fijando las superficies de control en la onda, y los ejes de referencia unidos a la

    misma, Fig. 11.9, las ecuaciones de conservación Ecs. (11.4), (11.9) y (11.16) dan

    respectivamente:

    ( )( )c d c dc 2 2( )( )

    2 2c c dch h dh

    0ds  

    Eliminando los diferenciales de orden superior dan:

    d dcc

    ; 0dh cdc ; 0ds

  • 23

    Teniendo en cuenta que dpTds dh

    se obtiene:

    0 0dpcdc

    ; 2dp c dc c d

    Por consiguiente: 11

    22

    ss

    p pc vv

    c) De la Ec. (7.34), cuando 0ds se obtiene:

    1vvp s

    c v pc v p T

     

    y mediante la Ec. (7.13a) se obtiene:

    v

    ps

    cv vp c

    y, por tanto: 1

    2p

    v

    c vcc

    Para un gas perfecto:

    1p

    ; 2 pv

    cc vp RT

    c (No depende de la presión) 

    Para el aire a 15 ºC 1

    -1 -1 -121, 4ꞏ287(Jkg K )ꞏ293(K) 343,11(ms )c  

    11. Aplicación a sistemas no estacionarios: llenado y vaciado de

    recintos rígidos adiabáticos Se considera un depósito de volumen fijo *V .

    Para el llenado, las ecuaciones de conservación, Ecs. (11.3), (11.8), (11.11), son:

    0 R em m

    0 R e teE m h

    R e ea

    I S m sT

  • 24

    2

    Es decir:

    0 R R teE m h (11.22)

    0R R e

    I S m sT

    (11.22a)

    Para el vaciado, las ecuaciones de conservación son análogas.

    Si se denominan con el subíndice ( )a las propiedades en la abertura (a), las

    ecuaciones para ambos casos se escriben:

    0 R am m ; 1

    10

    am m m dt ; 1 1

    mm

    0 R a taE m h ; 1

    1 1

    m

    tamme m e h dm

    0R a a

    I S m sT

    ; 1

    1 10

    m

    am

    Ims m s s dmT

    (11.23)

    con la condición a em m , o a sm m y habiendo utilizado el superíndice (-) para

    indicar valores medios en el recinto. Las ecuaciones anteriores pueden también escribirse:

    * *0 taV V

    d de dV h dVdt dt

    * *

    0aV V

    I d ds dV s dVT dt dt

    siendo, 1 mv V

    , la densidad.

    Como el recipiente es rígido las ecuaciones anteriores se escriben en la forma:

    *( ) 0taV

    ee h dVt t (11.24)

    *

    0

    ( )aVI ss s dV

    T t t

    Teniendo en cuenta que 2

    2we u (se desprecia la energía potencial)

    y du pdv Tds

  • 25

    2u p sTt t t

    las Ec. (11.24) se pueden escribir en la forma:

    *

    21( ) 02t taV

    s wT h h dVt t t

    (11.25)

    *

    2

    0 2ta t

    aV

    h hI ws s dVT T t T t

    La solución del problema general determinado por las ecuaciones anteriores no

    puede encontrarse sin hipótesis simplificadoras adicionales.

    Los procesos reales de descarga y carga son distintos cuando las aberturas son

    pequeñas respecto a la sección del recipiente, según se indica en la Fig. 11.10.

    B

    a

    A

    a a) Descarga b) Carga

    Fig. 11.10. Esquema de entrada y salida de la corriente.

    a) Descarga. En el proceso de descarga la velocidad del fluido solo es apreciable en la

    pequeña zona B próxima a la salida.

    El modelo determinado por las condiciones ,t ta A Bh h V V y 0Aw es

    razonable. En este caso la Ec. (11.25) da:

    .as s const ; 0I

    La irreversibilidad está en el exterior, por tanto, las Ecs. (11.23) integradas dan:

  • 26

    1 1

    mm

    ; adm m dt ;11

    ( )dm dm

    De la condición .as s const se obtienen las relaciones:

    1 21 1 1

    p Tf fp T

    Si, 1

    ( , )a em p pm

    , siendo ep la presión en el exterior, se tiene:

    11 1 1

    ( , )edm pd df p p dtm p

    por tanto:

    1

    1 1

    ( , )p

    pe

    df p pt

    p p

    que permite relacionar el tiempo con la presión y, en consecuencia, , ,m T y el

    resto de las propiedades.

    b) Carga. El proceso de carga puede hacerse de diversas formas según sea el valor

    de ( )tah f t . El proceso no es isentrópico ya que 0, 0inw d . En las paredes 0w , por tanto las condiciones medias ( , , )e s serían en cada

    instante, las que se obtendrían imaginando que la energía cinética se disipa

    (transforma) por fricción hasta anularse.

    -Si .tah const la Ec. (11.23) de la energía da:

    1 1 1( )tamu m u h m m (11.25)

    que unida a las ecuaciones de la variación de la masa señaladas anteriormente y las

    relaciones:

    1( , )p T ; 2 ( , )u p T (11.26)

    permiten obtener las variaciones de ( , , , )m T u con el tiempo.

    -Si la entropía a la entrada es constante, lo cual ocurriría si el fluido de carga procede

    de la descarga de otro en las condiciones dadas en el análisis del proceso de descarga,

    la Ec. (11.23), de la entropía, da:

    1 1 10

    ( )aIms m s s m m

    T (11.27)

  • 27

    que permite determinar la irreversibilidad I si se conocen las funciones de la Ec.

    (11.26).

    -Si en el instante inicial el recinto está vacío las Ecs. (11.25) y (11.26) dan: 2

    0 0 0; ( ) ( ) 2a

    ta ta a a awu h u u h u u u p v

    0a

    Is sT

    00

    Is smT

    ; 0 00

    aIs s s s

    mT (11.28)

    00 0

    aI Is s s s

    T mT ; 0 0

    0a

    Is s s smT

    Se recuerda la necesidad de seleccionar un único estado de referencia en la ecuación

    de la energía, ya sea 0u o 0h .

  • 28

  • 29

    CAPÍTULO 12 SISTEMAS DE VARIOS COMPONENTES Análisis del potencial de Gibbs 1. Introducción En este Capítulo, de contenido básicamente teórico, se desarrollan las relaciones

    termodinámicas del Potencial de Gibbs que facilitan el conocimiento de las mezclas de

    gases y disoluciones, de gran interés técnico para múltiples aplicaciones.

    En el Capítulo 6 se introdujo el Postulado General de Estado para los sistemas de

    varios componentes, se indicó la notación utilizada para definir la composición,

    destacando la notación molar por sus ventajas en la formulación, especialmente en los

    sistemas con reacciones químicas.

    También se establecieron unas relaciones generales básicas y se definió una nueva

    propiedad termodinámica denominada Potencial de Gibbs que facilita la formulación

    termodinámica de los numerosos procesos de gran interés técnico. De forma especial se

    indicó que, conociendo el Potencial, se conoce el resto de las propiedades.

    En este Capítulo se realiza un análisis detallado del Potencial de Gibbs de sistemas

    multicomponentes, partiendo del conocimiento del Potencial de Gibbs de los

    componentes aislados. Se definen algunos conceptos que están relacionados entre sí, y

    no serían necesarios, pero que se utilizan en la literatura especializada.

    2. Relaciones Básicas La definición del Potencial de Gibbs es:

    G H TS (12.1)

    y la Ec. (6.16) indica:

    , jp n

    GST

    ; , jT n

    GVp

    ; , , i j

    jj p T n

    Gn

    (12.1a)

    Por tanto:

    2

    ,,

    ( )

    p np n

    GG TH G T TT T

    (12.2a)

  • 30

    que se denomina ecuación de Gibbs-Helmholtz.

    De la ecuación de la energía interna para sistemas simples se obtiene:

    dQ d dU pdV dH Vdp

    Q H V pT T T

    ;

    , ,p n p n

    Q HT T

    Por tanto, puede medirse la magnitud de:

    ,,

    ( , , )p np n

    H C p T nT

    (12.2b)

    que se denomina capacidad térmica a presión constante.

    Otras relaciones importantes son:

    22

    ,,,

    ( )

    p nT n nnp n

    VH G G V TV T V T V T Tp p T T p T T

    2

    2, ,, ,p n p nT n p n

    H V V VTT p T T T

    2

    2, ,p n p n

    H VTp T T

    (12.3)

    0

    2

    , , 0 ,2( , , ) ( , , ) ( )p

    p n p n p np

    VC p T n C p T n T dpT

    (12.4)

    De esta relación se deduce que, conocida la ecuación de estado Ec. (6.7), solo basta

    medir la magnitud , 0( , )p nC p T a una presión determinada 0p .

    2.1. Relaciones de propiedades parciales

    En el Cap.6 se introdujo el concepto de propiedad parcial que se utiliza ampliamente en

    el estudio del equilibrio termodinámico, Ec. (6.18).

    Para el caso del potencial de Gibbs, como propiedad, las ecuaciones Ec. (6.13) y Ec.

    (6.15), referidas a la unidad de cantidad de sustancia (1 mol, por ejemplo), Ec. (6.1), se

    escriben:

    j j j jj j

    dg x d dx

    j jj

    dg sdT vdp dx

    de las cuales se obtiene:

    0j jj

    sdT vdp x d (12.4b)

  • 31

    Esta expresión se denomina ecuación de Gibbs-Duhem y tiene aplicación en el estudio

    del equilibrio de sistemas compuestos de varios componentes. Esta ecuación es

    aplicable al resto de las propiedades molares parciales.

    3. Propiedades de mezcla Es razonable expresar las propiedades extensivas de los sistemas multicomponentes

    considerando las propiedades de los componentes aislados (puros) en el estado ( , )p T

    de la mezcla, añadiendo el término de corrección debido a que están mezclados. *

    1 2 1 2( , , , ,.... ) ( , ) ( , , , ,... )j j j m jj

    Z p T n n n n z p T Z p T n n n (12.5)

    en la cual * ( , )jz p T es el valor de la propiedad molar del componente puro ( )j . A la

    magnitud mZ se la denomina propiedad de mezcla (volumen de mezcla, etc.)

    La relación anterior indica que para determinar las propiedades de un sistema de varios

    componentes no basta con conocer el comportamiento termodinámico de los

    componentes aislados en el estado ( , )p T , sino que es necesario conocer las magnitudes

    mZ correspondientes al mezclado o disolución en dicho estado.

    En el caso particular de la entropía se tiene:

    * *

    ,

    ( )j

    m j j j j jj j n p

    S S n s n gT

    Para un proceso adiabático 0mS , ya que el mezclado de sustancias distintas es

    irreversible.

    En consecuencia, tiene interés la obtención de las relaciones entre las propiedades de

    mezcla. Especialmente tiene interés expresar las relaciones entre la propiedades de

    mezcla en función de mV .

    De la Ec. (6.13) se obtiene:

    *( )m j j jj

    G n g ; mm GS T

    **

    , ,j j

    jmj j j m

    jT n T n T

    gG G n V n v Vp p p

    (12.6)

    en la cual se ha tenido en cuenta la Ec. (12.1a).

    De las Ecs. (12.1) y (12.1a) se obtiene:

  • 32

    , jp n

    GH G TT

    ** *

    , ,

    ( )j j

    jm j j j j

    p n p np

    gG GH G n h T G n g T TT T T

    es decir:

    2

    ,

    ,

    j

    m

    mm m

    p n

    p n

    GTGH G T T

    T T

    (12.7)

    De la primera relación, mediante la igualdad de las derivadas cruzadas, se obtiene:

    2

    ,,,

    ( )

    jjj

    mm m

    mp nT n

    p n

    VH V TV T T

    p T T

    (12.8)

    De la segunda relación se obtiene:

    2

    ,

    ( )

    j

    mm

    p n

    GHT

    T T

    (12.9)

    , j

    mm

    p n

    GST

    (12.9a)

    4. Determinación del Potencial de Gibbs de mezcla, mG

    Ya se ha visto anteriormente que conociendo el potencial de Gibbs G pueden obtenerse

    el resto de las propiedades termodinámicas, pero el problema básico es su

    determinación.

    Las relaciones fundamentales anteriores, válidas para todo jn , permiten deducir

    información sobre el potencial de Gibbs de mezcla mG , partiendo, del conocimiento

    del volumen de mezcla mV .

    Suponiendo conocida la función:

    1 2( , , , ,.... )m NV F p T n n n

    RT

    (12.10)

    de la Ec. (12.8) se obtiene:

    2 0

    pmH F dpRT T

    (12.11)

    ya que 0mH cuando 0p .

  • 33

    Las Ecs. (12.6) y (12.9) se escriben:

    1 2,

    ( ) ( , , , ,.... )j

    mN

    T n

    G RT F p T n n np

    ; , 0

    ( )

    j

    pm

    p n

    G RT FdpT T

    Integrando (diferencial exacta), se obtiene:

    1 2 0 0 1 2( , , , ,.... ) (0, , , ,... )pm

    N No

    G F p T n n n dp F T n n nRT

    (12.12)

    00

    pmS TFdp FR T

    (12.12a)

    La determinación de las funciones F y 0F es semiexperimental y se analizará posteriormente.

    4.1. Estructura de las funciones F y 0F

    Con el fin de facilitar la formulación, cada componente se identifica con los subíndices

    (i) y (j).

    Teniendo en cuenta el Postulado de Estado, dichas funciones cumplen determinadas condiciones que facilitan su determinación. Dichas funciones son homogéneas de grado uno respecto a las variables jn , y mediante el teorema de Euler, cumplen las relaciones siguientes:

    1 , , j i

    N

    ii i P T n

    FF nn

    (12.13)

    Para n finito, F y 0F son finitos, 0lim 0n F .

    Para un componente 0 0F F ; lim 0jn n j

    Fn

    ; 0

    lim 0j

    jnj

    Fnn

    .

    4-1.1. Relaciones utilizando las fracciones molares

    Anteriormente se han obtenido relaciones utilizando las variables ( jn ), pero también es conveniente utilizar las variables ( jx ) denominadas fracciones molares. Como F y

    0F son funciones homogéneas de grado uno, multiplicando las variables jn por 1 n , se obtiene 1 2( , , , ,.... )NF nf p T x x x siendo:

    j jx n n (12.14)

  • 34

    En el campo de las variables ( jn ), la derivada parcial respecto a la composición jn de

    una función F no coincide con la derivada parcial respecto a la composición jx de una

    función molar f .

    Como:

    2 21 1;j j j j j j

    i j

    x n x x n xn n n n n n n n

    se obtiene:

    1, , , , , ,j i j i i j

    N

    jji i jP T n P T x P T x

    F f ff xn x x

    (12.15)

    De las Ecs. (12.13) y (12.14) se obtiene:

    1 21 , ,

    ( , , , ,..., )j i

    N

    N ii i p T n

    Ff p T x x x xn

    (12.16)

    Las funciones F y 0F , contienen toda la información necesaria para la determinación

    del potencial de Gibbs de mezcla y dependen de cada sistema. En general las funciones

    F y 0F pueden ser de estructuras (formas) muy diversas, no obstante pueden

    encontrarse algunos casos particulares de gran interés.

    4.2 Funciones particulares

    En primer lugar, considerando la forma de la Ec. (12.16), se analiza la estructura o

    forma:

    1

    , ,N

    i ii

    f p T x

    (12.17)

    Sustituyendo la Ec. (12.17) en la Ec. (12.15) se obtiene:

    1 1, ,

    ( , , )j i

    N Ni i i

    i i i i ii ii i i iP T n

    d d dF x x A p T xn dx dx dx

    (12.18)

    en la cual ( , , ) i ii i ii

    d xA p T x x

    dx

    (12.19)

  • 35

    La Ec. (12.16) se escribe:

    1 1 1 1

    N N N Ni

    i i i i ii i

    dFx x x An dx

    (12.20)

    Por tanto, para cada componente se tiene:

    Ni

    i i i iii

    dx x Adx

    1 1

    Ni ii i

    i i i ii i

    d xdx A x Ax dx dx

    (12.21)

    Esta relación es una consecuencia directa de la estructura señalada en la Ec. (12.17).

    La función ( , , )i ip T x está definida por la expresión que se asigne a la función

    ( , , )i iA p T x en la Ec. (12.19).

    4-2.1 Funciones particulares simples

    Especialmente para la función 0F que corresponde a la presión 0p , Ec. (12.12), se

    presenta el objetivo particular de encontrar posibles funciones, en que 00 0, , j ii p T n

    F n

    solo dependa de la fracción molar ix , para cada uno de los componentes ( )i , es decir,

    que no exista influencia de la composición del resto de los componentes. Este caso

    correspondería al modelo físico en que no existen interacciones entre los componentes.

    La Ec. (12.18) indica que en este caso 0. (0, )iA const a T , ya que 1

    1N

    ii

    x

    .

    Integrando la Ec. (12.19) se obtiene:

    0(0, ) lni i i i ia T x x C x

    Para un componente solo, se tiene que:

    1 0 0i i ix f C

    Por tanto, de la Ec. (12.17), se obtiene:

  • 36

    0 01

    (0, ) lnN

    o i ii

    F nf na T x x

    (12.22)

    4.2.2 Aplicación a un sistema particular

    Si en todo el campo ( , )p T , 0mV , la Ec. (12.10) indica que 0F y la Ec. (12.11)

    indica que 0mH .

    Recordando la Ec. (12.12), 0F es el valor de mG RT cuando la presión tiende al valor

    0.

    La Ec. (12.12a) da:

    01

    (0, ) ln

    N

    m i ii

    S R na T x x

    Antes de continuar con el desarrollo general de mG RT , se analiza directamente el

    caso muy particular de la mezcla de gases semipefectos. 5. Mezcla de gases semiperfectos Al analizar la ecuación de estado del modelo de gases semiperfectos, pV nRT , se

    señaló que era la misma ecuación para todos los gases, y por tanto la naturaleza del

    gas no influía; solo influía el número de partículas (moléculas). Para un componente j se tiene:

    j jRTV np

    Respecto a la ecuación de estado, es lógico suponer que en la mezcla solo intervenga

    el número total de partículas (aunque sean unas distintas de otras). Se tendrá:

    RTV np

    Como jn n se deduce para este modelo:

    ( , ) ( , ) ( . ); 0j j j mj j

    V p T V p T n v p T V (12.23)

    es decir, que el cambio del volumen de mezcla es nulo.

  • 37

    Por otra parte, si el componente j ocupase, él solo, el volumen V , tendría la presión

    jp :

    j j j jRT pp n n x pV n

    (12.24)

    De esta ecuación se obtiene:

    j jj j

    p x p p

    Es decir, que en este modelo de ecuación de estado, la presión de la

    mezcla ( , )p p T V es la suma de las presiones jp que tendría cada componente si

    estuviera, él solo, en el estado ( , )T V

    Por tanto, respecto a la ecuación de estado, cada uno se comporta como si

    estuviera solo en el estado ( , )T V .

    Por otra parte, si no existe cambio de composición, la ecuación de estado de la mezcla

    y los Principios dan, Ec. (7.35):

    ( )pdH nc T dT

    Para cada componente aislado, gas semiperfecto, se tiene: * * ( )j j pjdH n c T dT

    Sumando se obtiene: * * *( ) ( )j j pj j pj

    j j jdH n c T dT n x c T dT

    Por tanto:

    * *( ) ( ) ( )j m p j pjj j

    dH dH d H n c T x c T dT

    (12.25)

    es decir, la entalpía de la mezcla solo depende de la temperatura. Cada

    componente influye a través de *pjc .

    Por consiguiente, la mezcla del modelo de gases semiperfectos no está completamente

    definida. No obstante, la Ec. (12.23) con la Ec. (12.11) daría 0mH .

    Experimentalmente, al mezclar gases cuando 0p , se encuentra que 0mH

    para cualquier temperatura, así que la solución de la Ec. (12.25) da: *( ) ( )p j pj

    jc T x c T (12.25a)

  • 38

    lo cual indica que la participación *j pjx c de cada componente en la mezcla no está

    afectada por la naturaleza de los otros componentes; solo influye el número relativo

    de partículas jx del mismo en la mezcla, Fig. 12.1.

    P,T,nj

    P,T

    n

    Fig. 12.1 Esquema de mezclado de gases.

    Siguiendo esta línea de actuación o comportamiento independiente de cada

    componente, se tendría a una temperatura T : *

    ln lnjm m m j j jj j

    pG H T S T n R TRn x x

    p (12.26)

    habiendo tenido en cuenta que en el proceso de mezclado, cada componente j

    pasa de p a jp , y por tanto

    1ln

    Nm

    i iiid

    G n x xRT

    (12.27)

    1ln 0

    Nm

    i ii

    S n x xR

    (12.28)

    que se identifica con la obtenida anteriormente para la función 0F , Ec. (12.22), cuando

    0(0, ) 1a T .

    6. Conceptos relacionados directamente con el potencial de Gibbs En la literatura termodinámica se utilizan diversos conceptos relacionados con el

    potencial de Gibbs, en algunos casos por razones históricas y en otros casos por

    conveniencia en la formulación. Se destacan los siguientes:

    6.1. Potencial de Gibbs de un componente puro

    Anteriormente se ha hecho referencia al potencial de un componente puro sin establecer

    su relación con las variables de estado.

  • 39

    Las relaciones para un gas real son:

    0 0

    0

    0 0,

    00

    ( , ) ( , ) ( )

    ( , ) ln ( 1)

    p p

    p p

    p

    p

    dpg p T g p T vdp g p T RT Zp

    p dpg p T RT RT Zp p

    (12.29)

    Se acostumbra a tomar como referencia del Potencial de Gibbs de un gas real, el

    correspondiente a su modelo de gas semiperfecto. La ecuación anterior se escribe:

    000 0

    ( , ) lim ( , ) ln ( 1)p

    p

    p dpg p T g p T RT RT Zp p

    Como a presiones bajas ( 0)p el gas real se comporta como semiperfecto, se tiene:

    00

    0

    ( , ) ( ) ln ( 1)pp dpg p T g T RT RT Z

    p p

    (12.30)

    00( , ) ( ) ln

    fg p T g T RTp

    habiendo introducido la función f , propiedad denominada fugacidad, dada por:

    0

    ln ( 1)pf dpZ

    p p (12.31)

    que tiene dimensiones físicas de presión, y que para el gas semiperfecto f p . La

    función f p se denomina coeficiente de fugacidad.

    El concepto de fugacidad fue introducido por G.N. Lewis y M. Randall y se utiliza

    ampliamente en el análisis de sistemas multicomponentes.

    Se señala que el estado de referencia de un gas real ( ,100kPa)g T , puede ser ficticio al

    fijarT . Por ejemplo, para el vapor de agua en el estado 0(25 C,100kPa) .

    6.2. Mezcla o disolución ideal

    Teniendo en cuenta el resultado obtenido para el caso particular de la mezcla de gases

    semiperfectos, dado por la, Ec. (12.23), se define el concepto de mezcla o disolución

    ideal aquella en que el potencial de Gibbs de mezcla está dado por la relación anterior,

    independientemente de que los componentes correspondan al modelo de gas

    semiperfecto:

    0mV ; 0mH ; 1

    lnN

    mi i

    iid

    G n x xRT

    (12.32)

  • 40

    Posteriormente se verá que el modelo de disolución o mezcla ideal es aplicable a

    mezclas de gases reales a presiones bajas y en estados de cada componente alejados de

    su saturación. Se recuerda que en la literatura termodinámica el potencial de Gibbs

    también se denomina energía libre de Gibbs.

    6.3. Potencial de Gibbs de exceso adimensional EG RT

    En el análisis termodinámico de las disoluciones, la utilización de la discrepancia entre

    el comportamiento de una disolución real y la disolución ideal, correspondiente al

    mismo estado termodinámico, está bastante generalizada.

    Por tanto se define el potencial de Gibbs de exceso, que será denominado con el

    símbolo griego 1 2, , , ,..., NP T n n n y definido por la relación:

    1 2 1 2, , , ,..., , , , ,...,E

    m mN N

    id

    G GGP T n n n n P T x x xRT RT RT

    (12.33)

    La función 1 2, , , ,..., NP T n n n es homogénea de grado uno respecto a la composición

    y cumple las mismas relaciones generales utilizadas en las funciones F y 0F . De las

    Ecs. (12.6), (12.32) y (12.33) se obtiene: *

    1( ) ln ( , , ,.... )m j j j j j Nj j

    G n x nRT x x nRT p T x x (12.34)

    1 1 , , j i

    E N N

    i i ii i i P T n

    G n n nRT n

    (12.34 a)

    1

    E N

    i ii

    g xRT

    (12.35)

    De las Ecs. (12.1a), (12.6) y (12.34) se obtiene:

    *

    0

    1 ( )p

    i i iv v dpRT (12.36)

    En la literatura termodinámica se utilizan diversos conceptos relacionados con el

    potencial de Gibbs de exceso , en algunos casos por razones históricas y en otros

    casos por conveniencia en la formulación. Se destacan los siguientes:

    a) Coeficiente de actividad molar de un componente i

    El coeficiente de actividad de un componente está definido por una de las relaciones

    siguientes:

  • 41

    1

    1

    ln

    ln

    ln

    N

    i iiN

    i ii

    i i

    n

    x

    (12.37)

    Teniendo en cuenta algunas relaciones anteriores puede escribirse: * lni i i ig RT x (12.38)

    En esta formulación, la mezcla o disolución ideal es aquella en que 1i para todos los

    componentes:

    b) Fugacidad de un componente en la mezcla if :

    **lni

    i ii

    fg RTf

    (12.39)

    siendo *if la fugacidad del componente puro.

    c) Actividad de un componente ia

    La actividad de un componente está definida por la relación: * lni i ig RT a (12.40)

    Nota: Cabe hacer notar que los diversos conceptos están relacionados y convenía reducirlos, pero su utilización en la amplia literatura técnica sobre mezclas y

    disoluciones aconseja su inclusión en esta comunicación de carácter docente.

    7. Casos Particulares del Potencial de Gibbs de Exceso Desde el punto de vista matemático, pueden encontrarse funciones particulares de

    1 2, , , ,..., NP T x x x , ya que tiene la misma estructura que la función F , Ec. (12.17),

    que pueden aplicarse a mezclas particulares con gran aproximación.

    Una primera simplificación es la definida por la relación:

    1

    , ,N

    i ii

    p T x

    (12.41)

    Introduciendo esta relación en la Ec. (12.18) se obtiene:

    1, ,

    ( )

    j i

    Ni

    j iji iP T n

    d x An dx

    ; ( , , ) i ii i ii

    d xA p T x x

    dx

    (12.42)

  • 42

    en la cual el primer término del segundo miembro es la contribución particular del

    componente ( )i y el segundo término representa la interacción entre los componentes-

    7.1. Modelo PLR

    Una estructura particular de función con varias aplicaciones es:

    ( , , ) ibi i i iA x p T a x ; ( , )i ia a p T

    Se ha elegido el signo negativo y la forma del exponente por conveniencia formal. Por

    tanto, integrando la Ec. (12.38) se tiene:

    1ibii i i i

    i

    a x c xb

    Para 1ix , 0 luego 0;i i i ic a b :

    (1 )ibii ii

    a xb

    Es decir:

    1 1

    (1 )iN

    bii i

    i

    a x xb

    ; 0ib (12.43)

    Esta solución “particular” permite adaptarse experimentalmente a muchos casos,

    mediante los parámetros ( , )i ia b .

    Las Ec. (12.35) y (12.36) se escriben:

    1 21

    ,, , , ,..., 1 i

    E Ni b

    N i ii i

    a P Tg P T x x x x xRT b

    (12.44)

    11

    1 1 jiN

    bbii i i j j

    ji

    a x b a xb

    (12.45)

    Los valores extremos de la función limitan los posibles valores de los parámetros

    ib :

    1. Para el caso de un solo componente:

    1 1

    lim lim 1 0ii i

    bii i ix x

    i

    a x x bb

    2. Para el caso en que un componente desaparece:

    0

    lim 1 0 1 0ii

    bii i ix

    i

    a x x bb

    10 0 1

    lim lim 1 1 0 0jii i

    Nbbi

    i i i i j j ix x ji

    a x b a x bb

  • 43

    3. En el caso de dilución infinita:

    1

    0lim j

    i

    bii i j jx j ii

    a a xb

    (12.46)

    7.2. Modelo PLRG

    Otro modelo con mayor interacción es: 1( , , ) ( ) ibi i i i i iA p T x a x c x (12.47)

    Por tanto:

    , , ibii i i i iiii

    ap T x x c Cb

    Cuando 1ix , ( , , ) 0i ip T x ; 1 ibi

    i ii

    aC cb

    , , 1 11

    i

    i

    bbi i i

    i i ii i

    a c xp T x cb c

    (12.48)

    La función de exceso es:

    1 21

    , , , ,..., 1 11

    i

    i

    bE Nbi i i

    N i ii i i

    a c xg p T x x x c xRT b c

    (12.49)

    la cual ha sido designada "Modelo PLR generalizado" (PLRG), debido a que el

    modelo PLR es el caso particular en que el parámetro ic es cero.

    Para este modelo:

    121

    1 1 11

    iji

    b N bbi i i i ii i j j j j

    ji i i i

    a b x c xc a x c xb c x c

    (12.50)

    El límite para la dilución infinita es:

    120

    lim 1 ji ii

    N bb bii i i i j j j jx j ii

    a c c a x c xb

    (12.51)

    Debe cumplirse la condición siguiente: Los parámetros bi y ci no pueden ser cero al

    mismo tiempo, porque si ci = 0 se obtiene el modelo PLR, para el cual 0ib .

    Desde el punto de vista matemático, la última etapa en el proceso de desarrollo del

    modelo es considerar que la función es la solución de una ecuación diferencial y

    también lo será la suma de funciones, esto es:

    1 21 1

    , , , ,..., 1 11

    im

    im

    bE M Nbim im im

    N im imm i im im

    a c xg p T x x x c xRT b c

    (12.52)

  • 44

    El subíndice (m) representa un índice para las funciones, e (i) indica un componente

    específico de la mezcla.

    Este modelo es bastante flexible para adaptarse experimentalmente a un gran número de

    mezclas reales.

    8. Modelos utilizados en la literatura técnica En la literatura técnica se utilizan bastantes modelos, en general obtenidos a través del

    análisis molecular, y han representado históricamente un avance en el estudio de

    mezclas y disoluciones. El modelo desarrollado anteriormente contiene, como casos particulares, los diversos

    modelos utilizados. Las Tablas 1 y 2 contienen los diversos modelos.

    Tabla 1 Modelos de Potencial de Gibbs de exceso. Mezclas binarias

    1 1

    , , 1 11

    i

    i

    bE N Nbi i i

    i i i ii i i i

    a c xg p T x c xRT b c

    número real ( 0 si 0),,

    i i

    i i

    i i

    b ca a p T

    c c p T

    Modelos Eg RT Equivalencias

    0ic

    0ib

    PLR 1 21 21 1 2 21 2

    1 1b ba ax x x xb b

    Porter 1ib 1 2Ax x 1 2A a a

    Margules

    (2 parametros) 2ib 21212121 xAxAxx 22

    2121

    1212

    aaA

    aaA

    0ic

    Wilson 0ib 1 1 12 2 2 21 1 2ln lnx x x x x x 1 2

    12 211 2

    1 2

    1 11 1

    c cc c

    a a

    Wilson (modificado)

    0ib

    1 12 1 12 2

    2 21 21 1 2

    lnln

    x C x x

    x C x x

    1 212 21

    1 2

    12 1 21 2

    1 1c c

    c cC a C a

    NRTL 1ib 21 21 12 121 21 2 21 12 1 2

    G Gx xx x G G x x

    2 112 21

    2 1

    2 112 21

    2 2 1 1

    1 1

    1 1

    c cG Gc ca a

    c c c c

  • 45

    van Laar

    2 11 1ib c c 1 2

    1 2

    ABx xAx Bx

    1 22

    1 1 1

    2 12

    1 1 1

    1

    1 1

    a aAc c c

    a aBc c c

    Margules

    (3parametros).

    1 21 3b b

    1 2 21 1 12 2 1 2x x A x A x Bx x

    221 1 2 2 2

    2 212 1 2 2

    13

    13

    A a a c c

    aA a a c B

    Redlich-Kister

    (4 parameters)

    1 22 4b b

    1 21 2 2 3

    1 2 1 2

    B C x xx x

    D x x E x x

    1 1

    3 222 2 2

    21 22 2

    2 22

    4 34

    154 9 74 8

    113 44 4 8

    54 8 32

    aB c

    a c c c

    a aC c c

    a aD c E

    Tabla 2. Modelos de Potencial de Gibbs de exceso. Mezclas binarias

    11 1 1 1

    , , ,..., 1 11

    im

    im

    bE M N M Nbim im i

    im N im im i m i im im

    g a c xP T x x c xRT b c

    número real ( 0 si 0),,

    im im

    im im

    im im

    b ca a p T

    c c p T

    Modelos Eg RT Equivalencias

    30im

    Mb

    UNIQUAC

    1 1 11 1 1 2 21

    1 1

    2 2 22 2 1 12 2

    2 2

    ln ln ln2

    ln ln ln2

    q zx qx

    q zx qx

    i i j j i i j jr x r q x q

    11 21

    13 23

    2 11 21

    1 11 21

    1 13 2 23

    23 1322 1212 21

    22 23 12 13

    1 12 2

    11

    1 11 1

    a aza a

    r c cr c cq a q a

    c cc cc c c c

    Con las condiciones:

    23 1221 11 22 12

    13 12

    21 11 22 12

    1 11

    1 1

    a ca a a aa c

    c c c c

  • 46

  • 47

    CAPÍTULO 13 MEZCLAS DE GASES

    l. Introducción En el caso de varios componentes (de gran interés técnico), se tienen sistemas

    simples distintos al variar los componentes y en el caso particular de

    componentes dados se tienen sistemas distintos al variar la participación de cada

    uno (composición molar).

    Ante esta situación, es fácil entender el gran objetivo de intentar obtener las

    propiedades de un sistema de varios componentes en función de las propiedades

    de cada uno de los componentes si estuvieran solos, y de la composición. Puede

    adelantarse que este objetivo no se ha alcanzado con carácter general, pero en

    determinados casos particulares (modelos simplificados) se consigue el citado

    objetivo y en otros casos se obtienen relaciones generales (consecuencia de los

    Principios) que facilitan o reducen la experimentación de cada sistema

    particular.

    En el capítulo anterior se han desarrollado, de forma general, varias relaciones basadas

    en los Principios de la Termodinámica y que pueden condensarse en el Potencial de

    Gibbs. El problema es que dado un sistema concreto no se conoce su Potencial de

    Gibbs y hay que establecer modelos semi-experimentales para su determinación, de

    forma análoga a lo que se hizo con la ecuación de estado de los componentes aislados

    En este Capítulo se analizan, con más detalle, los sistemas no reactantes. A pesar de

    ello, su extensión es muy grande y dado el carácter técnico de esta publicación, el

    análisis se limita a una introducción termodinámica en este campo.

    Primero se analizan los sistemas sencillos y posteriormente los sistemas compuestos.

    En líneas generales las propiedades termodinámicas se obtienen aplicando primero los

    modelos correspondientes a las mezclas o disoluciones y a continuación aplicando los

    modelos correspondientes a los componentes aislados.

    2. Propiedades de la mezcla de gases En el capítulo anterior se analizó directamente la mezcla de gases semiperfectos como

    un ejemplo de comparación con un caso particular del Potencial de Gibbs. Es lógico

  • 48

    utilizar modelos particulares del Potencial de Gibbs para determinar las propiedades

    termodinámicas de la mezcla de gases.

    2.1. Modelos de mezcla de gases reales

    A presiones muy bajas 0p la experimentación indica que las mezclas de gases

    reales se comportan como mezclas ideales, por tanto estas son una modelización para

    las mezclas reales.

    a) Modelo de Mezcla ideal (Ley de Amagat)

    La Ec. (12.32) da:

    0mV ; 0mH ; 1

    lnN

    mi i

    iid

    G n x xRT

    Ello permite determinar las propiedades de la mezcla en función de las

    propiedades de los componentes puros.

    Teniendo en cuenta que la determinación de propiedades de un gas real está basada

    en las correcciones respecto a su modelo de gas semiperfecto, se tendrá que: *( 0, , ) ( , 0)p j j pj

    jc p T x x c T p (13.1)

    *( , ) ( , )j jj

    v p T x v p T ; *( , ) ( , )j jj

    Z p T x Z p T (13.2)

    siendo Z el factor de compresibilidad de la mezcla. *( , ) ( , )j j

    jh p T x h p T (13.3)

    *( , ) ( , ) lnj j j jj j

    s p T x s p T R x x (13.4)

    b) Ley de Dalton-Gibbs

    Otro modelo utilizado es la Ley de Dalton-Gibbs, basada en considerar cada

    componente independientemente de los demás, en el estado de la mezcla ( , )T V :

    jj

    p p

    *( , )j j j jRTp n Z T pV

    (13.5)

    Las ecuaciones anteriores son las mismas, pero aplicadas a este nuevo estado ( , )jp T .

    Además: *( , ) ( , )j j j

    js p T x s T p

  • 49

    Análogamente al modelo anterior, la primitiva Ley de Dalton era más restringida.

    c) Método pseudocrítico

    Otro modelo, con cierto interés, es el propuesto por Kay, el cual considera la mezcla

    como un gas real con pc dado por la Ec. (13,1), y punto crítico:

    * *;c j cj c j cjj j

    T x T p x p (13.6)

    En la literatura, se utiliza el concepto de presión parcial con varias definiciones entre las

    que destacan:

    j jp x p ; j jRTp nV

    ; ( , )j j jRTp n Z T VV

    (13.7)

    Para un gas semiperfecto coinciden. En lo que sigue se utilizará la primera.

    2.2. Mezclas reales de gases reales

    El análisis exacto requiere la experimentación particular de cada mezcla.

    De forma análoga, en la determinación de las propiedades de una mezcla real de

    gases, es conveniente referirla a una mezcla ideal y esta a su vez a la mezcla de los

    gases semiperfectos correspondientes.

    La solución general de mS , teniendo en cuenta la mezcla ideal Ec. (12.28), y Ec.

    (12.36a) es:

    ,

    ( )lnj

    mj j

    j p n

    S Tn x x nR T

    (13.8)

    Con la notación indicada en la Ec. (12.31a) y (12.39) se tiene:

    00( ) ln ln

    jj j j

    x pg T RT RT

    p

    (13.9)

    Teniendo en cuenta las Ec. (12.37), (12.38), (12.39), y (12.40) pueden obtenerse otras

    relaciones con los conceptos y coeficientes señalados en las mismas.

  • 50

  • 51

    CAPÍTULO 14 DISOLUCIONES O MEZCLAS EN FASE LÍQUIDA 1. Introducción Para las mezclas de gases, la aplicación de los Principios y la consideración

    experimental adicional de que mV y mH tienden a cero cuando la presión tiende

    a cero, ha permitido obtener el modelo de mezcla ideal y una estructura formal

    apropiada para las mezclas reales.

    El análisis de las disoluciones o mezclas en fase líquida es más complejo, debido a que

    las interacciones moleculares son más significativas. No obstante continuando con el

    método lógico seguido anteriormente de referir los sistemas complejos a los sistemas

    más simples apropiados, se trata de obtener información sobre el potencial de Gibbs de

    mezcla (o disolución), 2m G , de la fase líquida, en función del 1m G , correspondiente

    a la mezcla gaseosa (fase gaseosa) en equilibrio termodinámico con dicha fase líquida.

    Se utiliza el subíndice 1 para la fase gaseosa y el subíndice 2 para la fase líquida.

    2. Relaciones Generales Del Apartado (12.3) se obtiene:

    *2 2 2 2( )m j j j

    jG n ; *2 2 2

    2

    mj j

    j

    Gn

    (14.1)

    *1 1 1 1( )m j j j

    jG n ; *1 1 1

    1

    mj j

    j

    Gn

    Para un estado ( , )p T de ambas fases en equilibrio se tiene 2 1j j , por tanto:

    * *2 11 2

    2 1

    m mj j

    j j

    G Gn n

    Con las Ecs. (12.32) y (12.33) se obtiene:

    10 11

    1 1

    lnm jj j

    G nRT x RTn n

    (14.1a)

    Con la Ec. (7.7) se obtiene:

  • 52

    , , ,

    * * * , * * , * * *1 2 1 1 2 2 1 2( , ) ( , ) ( )

    j j j

    p p p

    j j j j j j j j j jp p pT p v dp T p v dp v v dp

    ya que para cada componente puro, el potencial de Gibbs es el mismo para ambas fases

    en el estado ,( , ( ))jT p T , siendo , ( )jp T la presión del vapor saturado del componente j .

    Por tanto, teniendo en cuenta la Ec. (14.1a) para la fase gaseosa:

    ,

    * *2 10 11 2

    2 1

    ( ) lnj

    pmj jp

    j j

    G nv v dp RTn n

    (14.2)

    en la cual 10n es el número total de moles de la fase gaseosa.

    Es decir, si se conocieran la función 1 y la composición 1 jx de la fase gaseosa

    correspondiente al equilibrio con la fase líquida en estudio, podría determinarse el valor

    de 22

    m

    j

    Gn

    .

    Utilizando la misma estructura formal de la ecuación anterior y de la Ec. (12.33)

    se tendría:

    2 20 22 2 2

    2 2

    ln lnm j j jj j

    G nRT x RT RT xn n

    Por tanto:

    ,

    * *2 2 1 2 1 1

    1ln ( ) lnj

    p

    j j j j j jpx v v dp x

    RT (14.3)

    Análogamente a lo definido en mezclas de gases, se define la disolución ideal

    cuando:

    2 0 , 2 1j para todo j

    Conocida la composición global 0 jn se tienen las relaciones:

    0 jj

    n n ; 20 10n n n ; 20 101x x ;

    1 10 0 20 2j j jx x x x x (14.4)

    Las relaciones anteriores no son suficientes para determinar las funciones 1ln j y

    2ln j .

    Existen diversos métodos experimentales que pueden encontrarse en la literatura

    especializada.

    Pueden obtenerse otras relaciones análogas a la Ec. (14.3) utilizando las fugacidades.

  • 53

    3. Mezclas y disoluciones de dos componentes En el caso de mezclas y disoluciones de sólidos y líquidos, la interacción entre los

    componentes puede ser importante y el modelo de mezcla ideal puede dar resultados

    alejados de los reales o verdaderos.

    Para el caso de dos componentes, toda propiedad de estado es una función del tipo

    ( , , )z z p T x , siendo x la fracción molar de uno de los componentes:

    1x x ; 2 1x x

    El conocimiento del potencial de Gibbs de la disolución, Ec.(12.6), o de los potenciales

    químicos de los componentes 1 2( ; ) , requiere una información experimental mínima

    que se analiza a continuación.

    La Ec. (12.5), para dos componentes se escribe: * * * * *

    1 1 2 2 1 1 2 2 2 2( ) (1 )( ) ( ) ( ) ( )m z x z z x z z x z z z z z z (14.5)

    en la cual *( ) ( , , )z z f T p x .

    La representación de m z de una mezcla cualquiera está indicada en la Fig. 14.1.

    mz

    Fig. 14.1 Representación de m z .

    mT s

    0mv 0mh

    mg

    Fig. 14.2 Mezcla ideal.

  • 54

    al variar x en un estado ( , )p T fijo.

    En la Fig. 14.2 está representada la mezcla ideal:

    0mv ; 0mh

    ln (1 ) ln(1 )ms x x x xR

    ; m mg T s

    La Ec. (14.5), teniendo en cuenta Ec. (12.4a) da

    * *1 1 2 2( ) ( )m

    z z z z zx

    En la Fig.14.1 se observa que tranzando la tangente a la curva en el punto A,

    correspondiente a ax , el valor de la pendiente es 1 0d a . Identificando con la

    ecuación anterior para cualquier x se obtiene que: *

    1 1( ) 1xaz z d ; *

    2 2( ) 0xaz z a

    Ello permite obtener gráficamente, cuando se conoce ( )m z f x , el valor de las

    propiedades parciales z si se conoce el valor de z* del componente puro

    correspondiente.

    Las Ec. (12.5a) y (12.6) dan:

    1 21 2

    ln xx x

    2 11 2

    ln xx x

    2

    1 2 1

    lnx x

    (14.6)

    Modelos simples

    Las Ecs. (12.10) y (12.11) para dos componentes son:

    1 21 1 2 21 2

    1 2

    (1 ) (1 )b ba x a xx xb b

    (14.7)

    1 2 11 1 11 1 2 2 1 1

    1 1

    1 (1 )b b ban a x a x b xn b

    (14.8)

    1 2 21 1 21 1 2 2 2 2

    2 2

    1 (1 )b b ban a x a x b xn b

    (14.9)

  • 55

    que presentan los casos particulares:

    a) 1 2 0b b .

    Teniendo en cuenta Ec. (12.33)

    21 1 1 2 2

    1

    ( ln ln )E aG a x x x x

    RT a

    1 1 1 1 2 21

    ln ln ( )n a x a a xn

    ; 2 2 2 2 1 1

    2

    ln ln ( )n a x a a xn

    (14.10)

    b) 1b y 2b enteros.

    La Ec. (14.7) puede escribirse:

    1 21 22 21 2 11 1 1 2 2 2

    1 1 2 2 1

    (1 ... ) (1 ... )b bb a bx x x x x xa x x b a

    Para:

    1 2 1b b ; 1 21 2

    a ax x

    (Ecuación de Porter)

    1 2 2b b ; 21 21 1 2 1

    2 1 (1 )ax xa x x a

    (Ecuación de Margules) (14.11)

    La Ec. (14.7) puede escribirse en función de una variable 2 1; 1x x x x :

    2 1

    *1 2 2 2 1 1

    1 2 2 1

    (1 ) (1 ) (1 )b ba a a b a bd x xdx b b b b

    *1

    211x

    ad adx b

    *2

    120x

    ad adx b

    que permiten identificar las pendientes de *( )x en los extremos (0, 1).

    -Disoluciones diluidas.

    Una disolución se denomina disolución diluida en un componente (soluto)

    cuando su concentración es muy pequeña.

    2 0x ; (soluto) 1 21 1x x ; (disolvente)

    De la Ec. (14.6) se obtiene:

    Para 2 0x 12 1

    ln 0; lnx x

    En consecuencia la solución diluida puede considerarse ideal para el disolvente

    1 1x .

    Las Ecs. (14.8) y (14.9), cuando 2 0x dan (para el modelo considerado):

  • 56

    11

    ln 0nn

    ; 22 1

    2 2

    ln an an b

    Para el soluto, Ec. (12.38)

    * 22 2 1 2 2

    2

    ( , ) ln ( , ) lnag p T RT a RT x p T RT xb

    ; (14.12)

    Suele elegirse como estado de referencia a 02 ( , )p T , que depende del soluto y del

    disolvente.

    Aparentemente, cuando 0 *2 2 2 21;x g , pero dicha conclusión no es válida, ya

    que la Ec. (14.12) no es válida para 2 1x .

    Análogamente, las Ecs. (14.8) y (14.9), cuando 2 1x dan:

    11 2 2

    1

    ln ; ln 0aab

    • Datos experimentales. La información experimental es muy variada, teniendo en cuenta la diversidad

    de componentes y concentraciones. Para ciertos componentes de interés técnico

    puede encontrarse información gráfica.

    4. Sistemas compuestos. Análisis cualitativo En el estudio de los sistemas compuestos se presentan dos problemas

    fundamentales:

    a) Determinación de la composición del sistema en equilibrio, y b) Determinación

    de las propiedades termodinámicas del sistema. Este último está basado en el

    anterior, y se reduce al caso de los sistemas simples de varios componentes, una vez

    que se conoce la composición. La Termodinámica no resuelve completamente el

    problema de la determinación de la composición de cada fase para cada presión y

    temperatura. No obstante, proporciona las ecuaciones fundamentales del equilibrio

    termodinámico, que permiten relacionar las principales magnitudes e interpretar

    correctamente los resultados experimentales.

    Teniendo en cuenta la influencia de las interacciones moleculares (Teoría Molecular)

    en el comportamiento macroscópico (Termodinámica), es fácil comprender el gran

    apoyo mutuo entre ambas ciencias en esta área científico-técnica

  • 57

    ETAN

    O

    HEPT

    ANO

    hC

    eC 0,75Et

    0, 25Et

    AB C

    P

    M

    T

    P

    mCD

    G

    Fig. 14.3. Diagrama p-T de la mezcla heptano-etano.

    Antes de realizar el estudio cuantitativo de estos sistemas se indica a continuación

    el comportamiento cualitativo de un sistema compuesto sencillo constituido por dos

    fases (líquido y vapor) y dos componentes. Para ello se dan Fig.14.3 los resultados

    aproximados del comportamiento de un sistema compuesto de heptano y etano al

    variar la presión y la temperatura.

    En dicha figura se hallan representadas:

    a) las curvas de presión de vapor, en función de la temperatura, de las dos

    sustancias puras, cuya forma y propiedades ya se han analizado en el

    Capítulo 10.

    b) Dos curvas correspondientes a dos composiciones distintas

    Si en un recipiente se introduce 1 mol de mezcla de etano y heptano (0,25 moles de

    etano y 0,75 moles de heptano) y si se varían la presión y temperatura, se

    obtienen los resultados siguientes:

    En un punto como el A, a baja presión y temperatura elevada, el sistema es una

    mezcla gaseosa. Si se disminuye la temperatura manteniendo constante la presión se

    observa que la fase líquida empieza a aparecer en el punto B a una temperatura

  • 58

    BT inferior a la temperatura correspondiente a la presión de vapor Ap del

    heptano puro.

    Si se sigue disminuyendo la temperatura manteniendo constante la presión, la masa

    de la fase líquida aumenta y la composición de cada fase varía hasta que se alcanza

    una temperatura CT , en la que desaparece totalmente la fase gaseosa. A dicha

    temperatura CT el etano puro continuaría en estado de vapor.

    Repitiendo la experimentación a otra presión se obtiene un resultado análogo

    al anterior. Los puntos B constituyen una curva, por debajo de la cual y a su

    derecha el sistema es gaseoso. Dicha curva recibe el nombre de curva de

    evaporación. Los puntos C forman otra curva, por encima de la cual y a su

    izquierda el sistema se encuentra en fase líquida. Dicha curva recibe el nombre

    de curva de condensación. Por tanto, la zona en que coexisten las dos fases ya no

    es una línea (curva de presión de vapor), como en el caso de una sustancia pura,

    sino la zona limitada por la curva BDC.

    Cuando se experimentan mezclas en otras proporciones se obtienen

    resultados análogos al anterior, como se indica en la figura. La familia de curvas

    (BDC) posee una envolvente, la cual es tangente a cada una de las curvas de la

    citada familia.

    De la figura se deduce que la zona ( )h eC MC G es la única en que las fases líquida

    y gaseosa pueden coexistir en alguna proporción.

    La forma de las curvas y de su envolvente varía mucho con la naturaleza y

    proporción de las sustancias puras que componen el sistema.

    Observando un punto como el P se deduce que para una presión y temperatura

    determinadas pueden coexistir la fase líquida en una proporción y la fase

    gaseosa en otra distinta.

    El punto mC de tangencia de las curvas (BDC) y ( )h eC MC se denomina punto

    crítico para la composición correspondiente. Por tanto, la curva ( )h eC MC

    representa la posición de los puntos críticos de las diversas mezclas. En el punto

    crítico mC coexisten las dos fases, y las concentraciones en ambas son idénticas, de

    forma análoga a lo que ocurre en los sistemas compuestos de un solo

    componente.

  • 59

    N

    M

    T

    PmC

    1T

    NM

    mC1P

    P

    T

    a) b) Fig. 14.4. Puntos críticos.

    La posición del punto crítico sobre la curva (BDC) varía concomposición y

    naturaleza de la mezcla. En la Fig. 14.4, se hallan representados dos casos

    extremos, con las curvas de calidad constante, las cuales pasan por el punto

    crítico. Cuando la posición del punto crítico es la indicada en la configuración

    (a) se observa que para la temperatura T1 en la zona M N es posible condensar el

    sistema disminuyendo la presión. Análogamente en la configuración (b) sobre la

    isobara 1p y en la zona M N es posible evaporar el sistema disminuyendo la

    temperatura. Ambos fenómenos no se presentan en los sistemas de un solo componente, y

    reciben los nombres de condensación y evaporación retrógradas,

    respectivamente.

    Existen otras formas de presentar los resultados experimentales que pueden

    verse en la literatura técnica especializada.

    5. Sistemas compuestos de dos componentes Este tipo de sistemas se presenta frecuentemente en los procesos técnicos,

    fundamentalmente cuando se hallan en presencia las fases líquida y gaseosa.

    Aplicando las ecuaciones generalizadas Apartados (6.5) y (6.6) se obtiene

    5.1. Casos de dos fases.

  • 60

    La regla de Gibbs da:

    2 2 2 2N

    y, por tanto, ya no existe una relación entre la presión y temperatura, como

    ocurría en el caso de un solo componente.

    Las ecuaciones que determinan las concentraciones en el equilibrio son:

    11 21 ; 12 22 (14.13)

    las cuales pueden escribirse en la forma indicada en la Ec. (14.3)

    Las ecuaciones anteriores no pueden resolverse analíticamente, ya que los potenciales

    químicos en el caso de disoluciones reales sólo pueden determinarse

    experimentalmente. No obstante, pueden obtenerse algunos resultados de interés.

    En un sistema de masa y composición global conocidas, la Ec. (6.34) indica que

    fijadas la temperatura y presión quedan determinadas las composiciones y la masa

    de cada fase. Las Ecs. (14.13) determinan la composición de cada fase, y las Ecs.

    (6.33), la masa de cada fase.

    Si el sistema pasa del estado de equilibrio ( , )T p al estado de

    equilibrio ( , )T dT p dp aplicando a cada fase la Ec.(12.4b) se obtiene:

    10 10 11 11 12 12 0s dt v dp x d x d

    20 20 21 21 22 22 0s dT v dp x d x d (14.14)

    y teniendo en cuenta las Ecs. (14.13) se tiene que:

    11 21 01d d d ; 12 22 02d d d

    Por otra parte, se tienen las relaciones:

    11 121x x ; 21 221x x

    Llevando estas expresiones a las Ec.(14.14) y eliminando el valor de 02d se obtiene:

    22 10 12 20 22 10 12 20 22 12 01( ) ( ) ( ) 0x s x s dT x v x v dp x x d (14.15)

    Cuando la composición en ambas fases es la misma, 12 22x x , se tiene:

    10 20

    10 20

    s sdpdT v v

    (14.16)

    que es análoga a la Ec. (10.8).

    La Ec. (14.15) indica que en estas condiciones (mezcla azeotrópica), las curvas

    isobaras ( 0)dp presentan un máximo o mínimo ( 0)dT al variar la composición

    01( )d . Análogo resultado se obtiene para las isotermas.

  • 61

    6. Modelos de los sistemas compuestos Ya se ha indicado en los apartados anteriores la necesidad de información

    experimental para el conocimiento de las propiedades de las mezclas (disoluciones)

    reales y por tanto en el análisis de sistemas compuestos se requerirá también amplia

    información experimental. No obstante, cuando una de las fases sea gaseosa a baja

    presión, su modelo de mezcla ideal unido a las condiciones de equilibrio (igualdad de

    potenciales químicos de cada componente en todas las fases) proporciona una

    información valiosa para las fases condensadas.

    En general, en el equilibrio de sistemas compuestos se tienen las relaciones Ec.

    (6.32) 0 .ij j const

    Para el caso de una fase gaseosa (subíndice 1i ) y una fase líquida (subíndice

    2i ) se tiene 1 2i j .

    Para la fase gaseosa (vapor) se tiene. Ec. (13.9):

    001 1 1 1( ) ln( ) lnj j j j

    pg T RT x RTp

    Para la fase líquida se tiene. Ec. (12.38): *

    2 2 2 2( , ) ln( )j j j jg p T RT x

    Por otra parte, del equilibrio de cada componente puro con su vapor Ec. (10.5) se

    obtiene:

    ,

    ,* 0 * , *

    02 1 2( , ) ( ) ln( ) ln ( )j

    pjj j j j jp

    pg p T g T RT RT p v dpp

    en la que , ( )jp T es la presión de vapor saturado del componente puro (j) a la

    temperatura del sistema T .

    Resumiendo, la igualdad de potenciales químicos da:

    ,

    1 1 *2, * ,

    2 2 1

    1ln ꞏ ꞏ( ) ( ) j

    pj jjp

    j j j j j

    x p v dpx p T p RT

    (14.17)

    Esta ecuación, para cada componente, relaciona las fracciones molares de cada

    componente en las dos fases y es otra forma de escribir la Ec. (14.3).

    El conocimiento de la composición de cada fase de un sistema compuesto es

    fundamental en la técnica (p. e. destilación), por lo cual para el análisis de los