Exposicion Ejercicio 3-3 y 3-5.

download Exposicion Ejercicio 3-3 y 3-5.

of 15

Transcript of Exposicion Ejercicio 3-3 y 3-5.

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    1/15

    EXERCISE 3-3 AND 3-5 Jos David Arzuaga Garrido

    Edgar De Jess Campo Castrilln

    Eliana Paola Castillo Vergara

    Maury Esther Romero Cabarcas

    Marcela Patricia Torres Len

    UNIVERSITY OF CARTAGENA

    CHEMICAL ENGINEERING

    2014

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    2/15

    EXERCISE 3-3

    A storage tank has a diameter of 20ft and a height of 10ft. The output volumetric flow

    tank is given by = 2

    Where is the height of the liquid in the tank. At a particular time the tank is at ste

    with an input flow of 10

    .

    a) What is the steady -state liquid height in the tank?

    b) If the input flow is ramped up at the rate of 0.1

    , how many minutes will it take fo

    to overflow?

    D

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    3/15

    From exercise statements

    = 20

    = 10

    The output volumetric flow from the tank is given by:

    = 2

    = 10

    a)

    Mass balance in the tank in steady state

    =

    () () =

    Considering =

    =

    = 0

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    4/15

    = 0

    = (1)

    2

    = 10

    () =10

    2

    = 5

    b)Considering that input flow is ramped up at the rate of 0,1

    = 0,1 ()

    Mass Balance

    () () =

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    5/15

    () () =

    But

    =

    () () =

    =

    2

    Its known that = 2

    Substituting in equation (2)

    2 =

    (3)

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    6/15

    Now, Mass balance in steady- state (ss)

    2 =

    (4)

    Applying deviation variable

    = ()

    =

    Subtracting equation (3) and (4)

    = 2

    Dividing by 2

    2

    =

    1

    2

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    7/15

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    8/15

    =0,1

    2

    2+ 1

    =0.05

    157 + 1(5)

    Multiplying equation (5) by 1/157

    =3.18 10

    + 6.36 10

    Applying Partial fractions

    3.18 10

    + 6.36 10=

    +

    +

    ( + 6.36 10 )

    Then

    3.18 10

    + 6.36 10=

    ( + 6.36 10) + + 6.36 10 +

    + 6.36 10

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    9/15

    Solving for A, B and C

    = 7.861

    = 0.05

    = 7,861

    Then

    = 7.861

    +

    0.05

    +

    7.861

    + 6.36 10

    Applying Inverse Laplace Transforms

    =

    7.861

    +

    0.05

    +

    7.861

    + 6.36 10

    = 7.861 1

    + 0.05

    1

    + 7.861

    1

    + 6.36 10

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    10/15

    Then

    = 7.861 + 0.05 + (7.861 (.))

    By definition

    =

    Solving for

    = +

    Then

    = 7.861 + 0.05 + (7.861 (.)

    ) + 5

    Solving for t, when = 10

    7.861 + 0.05 + (7.861 (.)) + 5 = 10

    = 217.896

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    11/15

    EXERCISE 3-5

    Hot water at a rate of 2 liters per minute (constant) and temperature is mixed w

    cold water at a constant rate of 3 liters per minute and a constant temperature of 20

    Both streams flow into a bathtub, but because of carelessness, the water is overflow

    and keeping the bathtub full of water. The volume of the bathtub is 100 liters. Assum

    the water in the bathtub is perfectly mixed, derive the differential equation relating

    temperature in the bathtub, ,to the temperature of the hot water, , Obtain

    transfer function , and calculate its gain and time constant.

    = 3

    ;

    =100 L

    = 2

    ;

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    12/15

    Energy balance

    + =

    Where

    = + + And K and P is negligible; = =

    + =

    =

    + =[ ]

    = 2

    ; = 3

    ; = 20 ; = 100

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    13/15

    Assuming constant and equal the heat capacity and Density, in all line, we hav

    + =

    (1)

    Steady-state balance: + =

    (2)

    Subtracting the equation (2) to the equation (1)

    =

    (3)

    Keep in mind that = + divides the equation (3) between

    + =

    +

    =

    + ;

    =

    +

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    14/15

    =

    Apply Laplace

    () = [ (0)]

    And solving for , we have:

    () =

    (1 + )()

    Where

    =

    + =

    100

    2 / + 3 /= 20 ;

    = + = 2 /

    2 / + 3 /= 0,4

    ()

    ()=

    0,4

    (1 + 20)

  • 8/12/2019 Exposicion Ejercicio 3-3 y 3-5.

    15/15

    THANKS