Formas de Activación o Disparo de Un Tiristor

5
Formas de activación o disparo de un tiristor Existen cuatro maneras de poner a un tiristor en estado de conducción CORRIENTE DE COMPUERTA. Si un tiristor está polarizado en directa, la inyección de una corriente de compuerta al aplicar un voltaje positivo de compuerta entre la compuerta y las terminales del cátodo activará al tiristor. Conforme aumenta la corriente de compuerta, se reduce el voltaje de bloqueo directo, pudiendo llegar a activarse. En corriente continua: Normalmente el SCR se comporta como un circuito abierto hasta que activa su compuerta (GATE) con una pequeña corriente (se cierra el interruptor S) y así este conduce y se comporta como un diodo en polarización directa. Si no existe corriente en la compuerta el tristor no conduce. Lo que sucede después de ser activado el SCR, se queda conduciendo y se mantiene así. Si se desea que el tristor deje de conducir, el voltaje +V debe ser reducido a 0 Voltios. Si se disminuye lentamente el voltaje (tensión), el tristor seguirá conduciendo hasta que por el pase una cantidad de corriente menor a la llamada "corriente de mantenimiento o de retención", lo que causará que el SCR deje de conducir aunque la tensión VG (voltaje de la compuerta con respecto a tierra no sea cero. Como se puede ver el SCR , tiene dos estados: 1- Estado de conducción, en donde la resistencia entre ánodo y cátodo es muy baja 2- Estado de corte, donde la resistencia es muy elevada LUZ. Si se permite que la luz llegue a las uniones de un tiristor, aumentaran los pares electrón-hueco pudiéndose activar

description

Tiristores, forma de activación

Transcript of Formas de Activación o Disparo de Un Tiristor

Page 1: Formas de Activación o Disparo de Un Tiristor

Formas de activación o disparo de un tiristor

Existen cuatro maneras de poner a un tiristor en estado de conducción

CORRIENTE DE COMPUERTA. Si un tiristor está polarizado en directa, la inyección de una corriente de compuerta al aplicar un voltaje positivo de compuerta entre la compuerta y las terminales del cátodo activará al tiristor. Conforme aumenta la corriente de compuerta, se reduce el voltaje de bloqueo directo, pudiendo llegar a activarse.

En corriente continua:

Normalmente el SCR se comporta como un circuito abierto hasta que activa su compuerta (GATE) con una pequeña corriente (se cierra el interruptor S) y así este conduce y se comporta como un diodo en polarización directa. Si no existe corriente en la compuerta el tristor no conduce. Lo que sucede después de ser activado el SCR, se queda conduciendo y se mantiene así. Si se desea que el tristor deje de conducir, el voltaje +V debe ser reducido a 0 Voltios.

Si se disminuye lentamente el voltaje (tensión), el tristor seguirá conduciendo hasta que por el pase una cantidad de corriente menor a la llamada "corriente de mantenimiento o de retención", lo que causará que el SCR deje de conducir aunque

la tensión VG (voltaje de la compuerta con respecto a tierra no sea cero.

Como se puede ver el SCR , tiene dos estados:

1- Estado de conducción, en donde la resistencia entre ánodo y cátodo es muy baja

2- Estado de corte, donde la resistencia es muy elevada

LUZ. Si se permite que la luz llegue a las uniones de un tiristor, aumentaran los pares electrón-hueco pudiéndose activar el tiristor. La activación de tiristores por luz se logra permitiendo que esta llegue a los discos de silicio.

Alto Voltaje: Si el voltaje directo desde el ánodo hacia el cátodo es mayor que el voltaje de ruptura directo, se creará una corriente de fuga lo suficientemente grande para que se inicie la activación con retroalimentación. Normalmente este tipo de activación puede dañar el dispositivo, hasta el punto de destruirlo.

ALTO VOLTAJE. Si el voltaje directo ánodo a cátodo es mayor que el voltaje de ruptura directo VBO, fluirá una corriente de fuga suficiente para iniciar una activación regenerativa. Este tipo de activación puede resultar destructiva por lo que se debe evitar.

Page 2: Formas de Activación o Disparo de Un Tiristor

ALTO VOLTAJE. Si el voltaje directo ánodo a cátodo es mayor que el voltaje de ruptura directo VBO, fluirá una corriente de fuga suficiente para iniciar una activación regenerativa. Este tipo de activación puede resultar destructiva por lo que se debe evitar.

Térmica: Una temperatura muy alta en el tiristor produce el aumento del número de pares electrón-hueco, por lo que aumentarán las corrientes de fuga, con lo cual al aumentar la diferencia entre ánodo y cátodo, y gracias a la acción regenerativa, esta corriente puede llegar a ser 1, y el tiristor puede activarse. Este tipo de activación podría comprender una fuga térmica, normalmente cuando en un diseño se establece este método como método de activación, esta fuga tiende a evitarse.

Elevación del voltaje ánodo-cátodo: Si la velocidad en la elevación de este voltaje es lo suficientemente alta, entonces la corriente de las uniones puede ser suficiente para activar el tiristor. Este método también puede dañar el dispositivo.

Activación del tiristor:

Un tiristor se activa incrementando la corriente del ánodo. Esto se puede llevar a cabo mediante una de las siguientes formas:

TERMICA. Si la temperatura de un tiristor es alta habrá un aumento en el número de pares electrón-hueco, lo que aumentará las corrientes de fuga. Este aumento en las corrientes hará que a1 y a2 aumenten. Debido a la acción regenerativa (a1 + a2) puede tender a la unidad y el tiristor pudiera activarse. Este tipo de activación puede causar una fuga térmica que por lo general se evita.

Page 3: Formas de Activación o Disparo de Un Tiristor

dv/dt. Si la velocidad de elevación del voltaje ánodo-cátodo es alta, la corriente de carga de las uniones capacitivas puede ser suficiente para activar el tiristor. Un valor alto de corriente de carga puede dañar el tiristor por lo que el dispositivo debe protegerse contra dv/dt alto. Los fabricantes especifican el dv/dt máximo permisible de los tiristores.

ACTIVACION DEL TIRISTOR

Un tiristor se activa incrementándola corriente del ánodo. Esto se puede llevar a cabo mediante una de las siguientes formas.

TERMICA. Si la temperatura de un tiristor es alta habrá un aumento en el número de pares electrón-hueco, lo que aumentará las corrientes de fuga. Este aumento en las corrientes hará que 1 y 2 aumenten. Debido a la acción regenerativa ( 1+ 2) puede tender a la unidad y el tiristor pudiera activarse. Este tipo de activación puede causar una fuga térmica que por lo general se evita.

dv/dt. Si la velocidad de elevación del voltaje ánodo-cátodo es alta, la corriente de carga de las uniones capacitivas puede ser suficiente para activar el tiristor. Un valor alto de corriente de carga puede dañar el tiristor por lo que el dispositivo debe protegerse contra dv/dt alto. Los fabricantes especifican el dv/dt máximo permisible de los tiristores.

La conmutación en corte o bloqueo es el proceso de poner en estado de corte al tiristor que puede realizarse de tres formas: conmutación natural, polarización inversa o conmutación por puerta.

a) Conmutación natural.

Cuando la corriente del ánodo se reduce por debajo de un valor mínimo, llamado corrientede mantenimiento, el tiristor se corta.

Sin embargo, hay que señalar que la corriente nominal de un tiristor es del orden de 100 veces la corriente demantenimiento.

Para reducir esa corriente es preciso abrir la línea, aumentando la impedancia decarga o derivando parte de la corriente de carga a un circuito paralelo, es decir, cortocircuitando el dispositivo.

b) Corte por polarización inversa.

Una tensión inversa ánodo-cátodo tenderá a interrumpir la corriente del ánodo. La tensión se invierte en un semiperiodo de un circuito de alterna, por lo que untiristor conectado a la línea

Page 4: Formas de Activación o Disparo de Un Tiristor

tendrá una tensión inversa en un semiperiodo y se cortará. Esto se llama conmutación por fase o conmutación de línea alterna.

c) Corte por puerta.

Algunos tiristoresespecialmente diseñados, como los GTO, se bloquean con unacorriente de puerta negativa.

El tiempo de conmutación encorte es el tiempo que tarda en bloquearse un tiristor.

Con conmutación natural su valor está comprendido entre 1 a 10µseg, mientras que conmutación forzada puede ser de 0.7 a 2µseg. Sin embargo, existen gran variedad detiristores diseñados para tener tiempos de conmutación muy bajos.