HISTORIA DE LA PROGRAMACION

21
HISTORIA DE LA PROGRAMACION REALIZADO POR: NICOLAS QUINTERO JAIME ALBERTO CAIRASCO DANIEL ROJAS MAJE

Transcript of HISTORIA DE LA PROGRAMACION

Page 1: HISTORIA DE LA PROGRAMACION

HISTORIA DE LA PROGRAMACION

REALIZADO POR:

NICOLAS QUINTEROJAIME ALBERTO CAIRASCO

DANIEL ROJAS MAJE

Page 2: HISTORIA DE LA PROGRAMACION

PROGRAMACION

La programación informática, a menudo acortada como programación, es el proceso de diseñar, codificar, depurar y mantener el código fuente de programas computacionales. El código fuente es escrito en un lenguaje de programación. El propósito de la programación es crear programas que exhiban un comportamiento deseado. El proceso de escribir código requiere frecuentemente conocimientos en varias áreas distintas, además del dominio del lenguaje a utilizar, algoritmos especializados y lógica formal. Programar no involucra necesariamente otras tareas tales como el análisis y diseño de la aplicación (pero sí el diseño del código), aunque sí suelen estar fusionadas en el desarrollo de pequeñas aplicaciones.

Page 3: HISTORIA DE LA PROGRAMACION

LENGUAJE DE PROGRAMACION

lenguaje de programación es un lenguaje formal diseñado para expresar procesos que pueden ser llevados a cabo por máquinas como las computadoras.

Pueden usarse para crear programas que controlen el comportamiento físico y lógico de una máquina, para expresar algoritmos con precisión, o como modo de comunicación humana.1

Está formado por un conjunto de símbolos y reglas sintácticas y semánticas que definen su estructura y el significado de sus elementos y expresiones. Al proceso por el cual se escribe, se prueba, se depura, se compila(de ser necesario) y se mantiene el código fuente de un programa informático se le llama programación.

También la palabra programación se define como el proceso de creación de un programa de computadora, mediante la aplicación de procedimientos lógicos, a través de los siguientes pasos:

El desarrollo lógico del programa para resolver un problema en particular. Escritura de la lógica del programa empleando un lenguaje de programación

específico (codificación del programa). Ensamblaje o compilación del programa hasta convertirlo en lenguaje de

máquina. Prueba y depuración del programa. Desarrollo de la documentación.

Page 4: HISTORIA DE LA PROGRAMACION

HISTORIA DE LA PROGRAMACIÓN

A pesar de que muchos usuarios pueden creer que la programación y el desarrollo son ciencias nuevas, lo cierto es que no es así. De hecho, el algoritmo considerado primer programa fue creado entre 1842 y 1843 por Ada Lovelace. Años después, el departamento de defensa estadounidense nombró un lenguaje de programación, Ada, en su honor.

Pero quien realmente influyó en el diseño de los primeros computadores fue Charles Babbage (1793-1871). Con la colaboración de la hija de Lord Byron, Lady Ada Countess of Lovelace (1815-1852), a la que debe su nombre el lenguaje ADA creado por el DoD (Departamento de defensa de Estados Unidos) en los años 70. Babbage diseñó y construyó la "máquina diferencial" para el cálculo de polinomios. Más tarde diseñó la "máquina analítica" de propósito general, capaz de resolver cualquier operación matemática. Murió sin poder terminarla, debido al escepticismo de sus patrocinadores y a que la tecnología de la época no era lo suficientemente avanzada. Un equipo del Museo de las Ciencias de Londres, en 1991, consiguió construir la máquina analítica de Babbage, totalmente funcional, siguiendo sus dibujos y especificaciones

Page 5: HISTORIA DE LA PROGRAMACION

Un hito importante en la historia de la informática fueron las tarjetas perforadas como medio para "alimentar" los computadores. Lady Ada Lovelace propuso la utilización de las tarjetas perforadas en la máquina de Babbage. Para que se enteren todos esos machistas desaprensivos, el primer programador/a fue una mujer. En 1880 el censo en Estados Unidos tardó más de 7 años en realizarse. Es obvio que los datos no eran muy actualizados. Un asistente de la oficina del censo llamado Herman Hollerit (1860-1929) desarrolló un sistema para automatizar la pesada tarea del censo. Mediante tarjetas perforadas y un sistema de circuitos eléctricos, capaz de leer unas 60 tarjetas por minuto realizó el censo de 1890 en 3 años ahorrando tiempo y dinero. Más tarde fundó la Tabulating Machine Company y en 1924 tras alguna que otra fusión nació la Internacional Bussines Machines, IBM.

Maquina analítica de Babbage

Page 6: HISTORIA DE LA PROGRAMACION

Las computadoras de hoy en día se sustentan en la lógica matemática basada en un sistema binario. Dicho sistema se implementa sobre dispositivos electrónicos que permiten, o no, pasar la corriente, con lo que se consiguen los 2 estados binarios: 0 y 1. A mediados del siglo XX, cuando se empezaron a construir las primeras computadoras digitales, se utilizaban tubos de vacío para implementar los 2 estados binarios, pero ¿ cómo aparecieron estos conceptos ? Alan Mathison Turing (1912-1954) diseñó una calculadora universal para resolver cualquier problema, la "máquina de Turing". Tuvo mucha influencia en el desarrollo de la lógica matemática. En 1937 hizo una de sus primeras contribuciones a la lógica matemática y en 1943 plasmó sus ideas en una computadora que utilizaba tubos de vacío. George Boole (1815-1864) también contribuyó al algebra binaria y a los sistemas de circuitos de computadora, de hecho, en su honor fue bautizada el álgebra booleana.

Page 7: HISTORIA DE LA PROGRAMACION

Por otro lado, una de las empresas más grandes de la informática, IBM, nació en 1896, aunque entonces se llamaba Tabulating Machine Company. Fundada por Herman Hollerith, se dedicaba a la fabricación de máquinas capaces de leer tarjetas

perforadas.

Page 8: HISTORIA DE LA PROGRAMACION

La primera computadora digital electrónica patentada fue obra de John Vincent Atanasoff (1903-1995). Conocedor de las inventos de Pascal y Babbage, y ayudado por Clifford Berry (1918-1963), construyó el Atanasoff Berry Computer (ABC). El ABC se desarrolló entre 1937 y 1942. Consistía en una calculadora electrónica que utilizaba tubos de vacío y estaba basada en el sistema binario (sistema numérico en el que se combinan los valores verdadero y falso, o 0 y 1).

Entre 1939 y 1944, Howard Aiken (1900-1973) de la universidad de Harvard en colaboración con IBM desarrolló el Mark 1. Era una computadora electromecánica de 16 metros de largo y más de dos de alto. Tenía 700.000 elementos móviles y varios centenares de kilómetros de cables. Podía realizar las cuatro operaciones básicas y trabajar con información almacenada en forma de tablas.

Por desgracia, los avances tecnológicos suelen producirse gracias a los militares que se aprovechan de la ciencia para perfeccionar sus armas. En la Moore School de la Universidad de Pensilvania se estaba trabajando en un proyecto militar para realizar unas tablas de tiro para armas balísticas. Los cálculos eran enormes y se tardaban semanas en realizarlos. Parece ser que John W. Mauchly (1907-1980), quien dirigía el departamento de física del Ursine College de Filadelfia vivió en casa de Atanasoff durante cuatro días a partir del 13 de Junio de 1941, lo que seguramente aprovechó para conocer las ideas de Atanasoff.

Page 9: HISTORIA DE LA PROGRAMACION

Junto a John Presper Eckert (1919-1995), Mauchly desarrolló una computadora electrónica completamente operacional a gran escala, para acelerar los complicados cálculos del proyecto militar de la universidad Moore. Se terminó en 1946 y se llamó Electronic Numerical Integrator And Computer (ENIAC). El ENIAC tenía 18.000 tubos electrónicos integrados en un volumen de 84 metros cúbicos. Pesaba unas 30 toneladas y consumía alrededor de 100.000 vatios. Su capacidad de cálculo era de 5.000 operaciones por segundo, aunque tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Cargar un programa podía ser una tarea de varios días. El calor dispado por semejante monstruo debía ser importante, y se necesitaba una instalación de aire acondicionado. En definitiva, un ordenador portátil... más o menos. Puede que no os suene, pero quien conozca de "los entresijos de la informática" seguro que considera importante nombrar a Johann Ludwig Von Neumann (1903-1957), genio de las matemáticas, quien tuvo el honor de asistir a las clases de Albert Einstein en la universidad de Berlín. Autor de trabajos de lógica simbólica, matemática pura y aplicada, física y tecnología, publicó un artículo acerca del almacenamiento de los programas, en 1945. Proponía que los programas se guardaran en memoria al igual que los datos, en forma binaria. Esto tuvo como consecuencia el aumento de velocidad de los cálculos y la ausencia de errores producidos por fallos mecánicos al programar la máquina mediante cables.

Page 10: HISTORIA DE LA PROGRAMACION

En cuanto a la aparición de los lenguajes de programación, el archiconocido COBOL, que tantos problemas causó con el "efecto 2000", fue el primer lenguaje en el que no había que programar directamente en código binario, y fue Grace Murray Hoper en 1952, una oficial de la Marina de Estados Unidos desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Languaje).

A partir de ahí, los avances han sido vertiginosos. La utilización del transistor en las computadoras en 1958,

sustituyendo los tubos de vacío La aparición del circuito integrado de mano de Jack Kilby, también

en 1958 La miniaturización de un circuito electrónico en un chip de silicio

en 1961 El primer microprocesador, el 4004 de Intel, en 1971 Gary Kildall crea el sistema operativo CP/M en 1973 IBM comercializa el primer PC en 1980

Page 11: HISTORIA DE LA PROGRAMACION

GENERACIONES DE LOS LENGUAJES DE PROGRAMACION Primera Generación

Al desarrollarse las primeras computadoras electrónicas, se vio la necesidad de programarlas, es decir, de almacenar en memoria la información sobre la tarea que iban a ejecutar. Las primeras se usaban como calculadoras simples; se les indicaban los pasos de cálculo, uno por uno. 

John Von Neumann desarrolló el modelo que lleva su nombre, para describir este concepto de "programa almacenado". En este modelo, se tiene una abstracción de la memoria como un conjunto de celdas, que almacenan simplemente números. Estos números pueden representar dos cosas: los datos, sobre los que va a trabajar el programa; o bien, el programa en sí. 

¿Cómo es que describimos un programa como números? Se tenía el problema de representar las acciones que iba a realizar la computadora, y que la memoria, al estar compuesta por switches correspondientes al concepto de bit, solamente nos permitía almacenar números binarios. 

La solución que se tomó fue la siguiente: a cada acción que sea capaz de realizar nuestra computadora, asociarle un número, que será su código de operación (opcode) . Por ejemplo, una calculadora programable simple podría asignar los opcodes : 

1 = SUMA, 2 = RESTA, 3 = MULTIPLICA, 4 = DIVIDE. 

Page 12: HISTORIA DE LA PROGRAMACION

La descripción y uso de los opcodes es lo que llamamos lenguaje de máquina. Es decir, la lista de códigos que la máquina va a interpretar como instrucciones, describe las capacidades de programación que tenemos de ella; es el lenguaje más primitivo, depende directamente del hardware, y requiere del programador que conozca el funcionamiento de la máquina al más bajo nivel. 

Los lenguajes más primitivos fueron los lenguajes de máquina. Esto, ya que el hardware se desarrolló antes del software, y además cualquier software finalmente tiene que expresarse en el lenguaje que maneja el hardware. 

La programación en esos momentos era sumamente tediosa, pues el programador tenía que "bajarse" al nivel de la máquina y decirle, paso a pasito, cada punto de la tarea que tenía que realizar. Además, debía expresarlo en forma numérica; y por supuesto, este proceso era propenso a errores, con lo que la productividad del programador era muy limitada. Sin embargo, hay que recordar que en estos momentos, simplemente aún no existía alternativa.

Page 13: HISTORIA DE LA PROGRAMACION

Segunda Generación El primer gran avance que se dio, como ya se comentó, fue la

abstracción dada por el Lenguaje Ensamblador, y con él, el nacimiento de las primeras herramientas automáticas para generar el código máquina. Esto redujo los errores triviales, como podía ser el número que correspondía a una operación, que son sumamente engorrosos y difíciles de detectar, pero fáciles de cometer. Sin embargo, aún aquí es fácil para el programador perderse y cometer errores de lógica, pues debe bajar al nivel de la forma en que trabaja el CPU, y entender bien todo lo que sucede dentro de él.

Segunada Generación

El primer gran avance que se dio, como ya se comentó, fue la abstracción dada por el Lenguaje Ensamblador, y con él, el nacimiento de las primeras herramientas automáticas para generar el código máquina. Esto redujo los errores triviales, como podía ser el número que correspondía a una operación, que son sumamente engorrosos y difíciles de detectar, pero fáciles de cometer. Sin embargo, aún aquí es fácil para el programador perderse y cometer errores de lógica, pues debe bajar al nivel de la forma en que trabaja el CPU, y entender bien todo lo que sucede dentro de él.

ejemplo ensamblador: Hola Mundo!

Page 14: HISTORIA DE LA PROGRAMACION

Tercera Generación

Con el desarrollo en los 50s y 60s de algoritmos de más elevado nivel, y el aumento de poder del hardware, empezaron a entrar al uso de computadoras científicos de otras ramas; ellos conocían mucho de Física, Química y otras ramas similares, pero no de Computación, y por supuesto, les era sumamente complicado trabajar con lenguaje Ensamblador en vez de fórmulas. Así, nació el concepto de Lenguaje de Alto Nivel, con el primer compilador de FORTRAN (Formula TRANslation), que, como su nombre indica, inició como un "simple" esfuerzo de traducir un lenguaje de fórmulas, al lenguaje ensamblador y por consiguiente al lenguaje de máquina. A partir de FORTRAN, se han desarrollado innumerables lenguajes, que siguen el mismo concepto: buscar la mayor abstracción posible, y facilitar la vida al programador, aumentando la productividad, encargándose los compiladores o intérpretes de traducir el lenguaje de alto nivel, al lenguaje de computadora. 

Hay que notar la existencia de lenguajes que combinan características de los de alto nivel y los de bajo nivel (es decir, Ensamblador). Mi ejemplo favorito es C: contiene estructuras de programación de alto nivel, y la facilidad de usar librerías que también son características de alto nivel; sin embargo, fue diseñado con muy pocas instrucciones, las cuales son sumamente sencillas, fáciles de traducir al lenguaje de la máquina; y requiere de un entendimiento apropiado de cómo funciona la máquina, el uso de la memoria, etcétera. Por ello, muchas personas consideramos a lenguajes como C (que fue diseñado para hacer sistemas operativos), lenguajes de nivel medio.

Page 15: HISTORIA DE LA PROGRAMACION

Ejemplo de tercera generación

Page 16: HISTORIA DE LA PROGRAMACION

Cuarta Generación Los idiomas de la cuarta generación parecen según las

instrucciones a las de la tercera generación. Lo nuevo de estas lenguajes son conceptos como clases, objetos y eventos que permiten soluciones más fáciles y lógicos. Lenguajes como C++, java y C# se llaman lenguajes orientadas al objeto.

Los idiomas modernos, tal como C++ y Java, no sólo permite las abstracciones, pero permite la implementación impuesta de restricciones en abstracciones. La mayoría de los idiomas modernos son objetivas orientado, que permite que mí modele el mundo verdadero que usa mi idioma. Además, puedo limitar el acceso para modelar las restricciones de mundo verdadero en datos. La llave es que usé el término "mundo verdadero." Por la primera vez, yo modelo mi solución en términos del problema. Quiero que mi solución sea orientado de problema, para que la solución refleje el mundo verdadero en términos de estructuras de datos y acceso a los datos. Yo también puedo aplicar directamente y para poder modelar objetos de mundo verdadero usando las clases (en C + + o Java).

Page 17: HISTORIA DE LA PROGRAMACION

Ejemplo de cuarta generación

Page 18: HISTORIA DE LA PROGRAMACION

Quinta Generación

Como la quinta generación están conocidos los Lenguajes de inteligencia artificial. Han sido muy valorados al principio de las noventa - mientras ahora el desarrollo de software toma otras caminos.

Lo que veremos en el futuro es menos dependencia en el idioma, y más en el modelando herramientas, tal como el Unificado Modelando el Idioma (UML). La salida del modelando herramienta producirá mucho de nuestro código para nosotros; en el muy menos, producirá arquitectónico y los modelos del diseño y la estructura de nuestro código. Esto producirá un diseño (y posiblemente código) eso puede ser validado por el cliente antes de completar la implementación y probar. Cuando los problemas diarios que resolvemos llegan a ser más grande, nosotros tenemos cada vez menos tiempo "volver a hacer" el código. Los días de decir, "acabamos de escribir una versión de Beta y el cliente entonces pueden decir nosotros lo que ellos quieren realmente," son pasados. Las organizaciones que fallan de obtener completa y corrige los requisitos de cliente antes de escribir el código saldrá del negocio. ¿Por qué? Porque toma demasiado largo, y cuesta también mucho, para escribir código dos o más vez. Las organizaciones que tienen un compromiso a la comprobación y la validación antes de producir código prosperarán - los otros fallarán.

Page 19: HISTORIA DE LA PROGRAMACION

Ejemplos de quinta generación

ejemplo UML

ejemplo Flowchart ejemplo UML

Page 20: HISTORIA DE LA PROGRAMACION
Page 21: HISTORIA DE LA PROGRAMACION

Gracias por su atención