Ley de difusión de graham y Fick

4
Ley de difusión de Graham La difusión es el proceso por el cual una substancia se distribuye uniformemente en el espacio que la encierra o en el medio en que se encuentra. Por ejemplo: si se conectan dos tanques conteniendo el mismo gas a diferentes presiones, en corto tiempo la presión es igual en ambos tanques. También si se introduce una pequeña cantidad de gas A en un extremo de un tanque cerrado que contiene otro gas B, rápidamente el gas A se distribuirá uniformemente por todo el tanque. La difusión es una consecuencia del movimiento continuo y elástico de las moléculas gaseosas. Gases diferentes tienen distintas velocidades de difusión. Para obtener información cuantitativa sobre las velocidades de difusión se han hecho muchas determinaciones. En una técnica el gas se deja pasar por orificios pequeños a un espacio totalmente vacío; la distribución en estas condiciones se llama efusión y la velocidad de las moléculas es igual que en la difusión. Los resultados son expresados por la ley de Graham. "La velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su densidad." en donde v1 y v2 son las velocidades de difusión de los gases que se comparan y d1 y d2 son las densidades. Las densidades se pueden relacionar con la masa y el volumen porque ( ); cuando M sea igual a la masa molecular y al volumen molecular, podemos establecer la siguiente relación entre las velocidades de difusión de dos gases y su peso molecular: y como los volúmenes moleculares de los gases en condiciones iguales de temperatura y presión son idénticos, es decir V1 = V2, en la ecuación anterior sus raíces cuadradas se cancelan, quedando: Esodecir: la velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su peso molecular. Ejemplo ¿Qué gas tiene mayor velocidad de difusión, el neón o el nitrógeno? Primero se necesita conocer las densidades de los gases que intervienen. Como una mol de gas ocupa 22.4 litros a T.P.E., sus densidades serán (peso molecular/volumen). neón = 20/22.4 = 0.88 g/lt nitrógeno = 28/22.4 = 1.25 g/lt

Transcript of Ley de difusión de graham y Fick

Page 1: Ley de difusión de graham y Fick

Ley de difusión de Graham

La difusión es el proceso por el cual una substancia se distribuye uniformemente en el espacio que la encierra o en el medio en que se encuentra. Por ejemplo: si se conectan dos tanques conteniendo el mismo gas a diferentes presiones, en corto tiempo la presión es igual en ambos tanques. También si se introduce una pequeña cantidad de gas A en un extremo de un tanque cerrado que contiene otro gas B, rápidamente el gas A se distribuirá uniformemente por todo el tanque. La difusión es una consecuencia del movimiento continuo y elástico de las moléculas gaseosas. Gases diferentes tienen distintas velocidades de difusión. Para obtener información cuantitativa sobre las velocidades de difusión se han hecho muchas determinaciones. En una técnica el gas se deja pasar por orificios pequeños a un espacio totalmente vacío; la distribución en estas condiciones se llama efusión y la velocidad de las moléculas es igual que en la difusión. Los resultados son expresados por la ley de Graham. "La velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su densidad."

en donde v1 y v2 son las velocidades de difusión de los gases que se comparan y d1 y d2 son las

densidades. Las densidades se pueden relacionar con la masa y el volumen porque ( ); cuando M sea igual a la masa molecular y al volumen molecular, podemos establecer la siguiente relación entre las velocidades de difusión de dos gases y su peso molecular:

y como los volúmenes moleculares de los gases en condiciones iguales de temperatura y presión son idénticos, es decir V1 = V2, en la ecuación anterior sus raíces cuadradas se cancelan, quedando:

Esodecir: la velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su peso molecular.

Ejemplo

¿Qué gas tiene mayor velocidad de difusión, el neón o el nitrógeno?

Primero se necesita conocer las densidades de los gases que intervienen. Como una mol de gas ocupa 22.4 litros a T.P.E., sus densidades serán (peso molecular/volumen). neón = 20/22.4 = 0.88 g/lt nitrógeno = 28/22.4 = 1.25 g/lt

Page 2: Ley de difusión de graham y Fick

sea v1 = velocidad de difusión del nitrógeno y v2 = velocidad de difusión del neón.

Es decir, el nitrógeno tiene una velocidad de difusión 0.84 veces menor que la del neón.

Ley de difusión de Fick

La rapidez de difusión por unidad de área de sección transversal en una dirección determinada es proporcional al cambio de la concentración del soluto en esa dirección

La ecuación para esta ley es

x

CDA

t

m

donde m

t es la masa del soluto que difunde a lo largo de esa dirección por unidad de tiempo, A es el

área de la sección transversal, C es la concentración del soluto (que se supone constante sobre cualquier

sección transversal del tubo), D es el coeficiente de difusión, y C

x se llama gradiente de

concentración. Valores típicos de D para la difusión en agua de moléculas importantes en biología van desde 1.10-11 a 100 x 10 -11 m2/s, para un rango de pesos moleculares de cerca de 104.

La ley de Fick establece que el ritmo de difusión por unidad de superficie, en dirección perpendicular a ésta, es proporcional al gradiente de la concentración de soluto en esa dirección. La concentración es la masa de soluto por unidad de volumen, y el gradiente de concentración es la variación de concentración por unidad de distancia.

Si colocamos con cuidado una gota de anilina en un vaso de agua, veremos que el color se difunde por el agua. El proceso puede durar varias horas (suponiendo que no sacudimos el vaso), pero al final el color será uniforme. Esta mezcla se produce a causa del movimiento aleatorio de las moléculas y se denomina: difusión. También en los gases se produce la difusión y de manera mucho más rápida. Cuando se destapa un frasco de perfume, su aroma puede percibirse en todos los puntos de la habitación poco después, aunque el aire este en reposo. Y si quemamos algo en la estufa, el olor, así como el humo visible, se difunde por la casa. En cada caso, la sustancia que se difunde se mueve de una región en la cual tenga una gran concentración a otra en la cual ésta sea baja.

Si se vierte una disolución concentrada de azúcar en un recipiente que contiene agua, la mezcla se hace gradualmente homogénea mediante la difusión de las moléculas del soluto en la región del agua pura y la difusión de las moléculas de agua en sentido opuesto. Si en lugar de colocar la disolución de azúcar directamente en el agua, la separamos físicamente de ésta por una capa de papel pergamino, se impide la difusión hacia afuera del soluto. Se dice que el papel es impermeable al soluto, en este caso el azúcar. Las moléculas de agua, sin embargo, pueden difundirse libremente en sentido opuesto, y debido a esto el nivel de la disolución se eleva en el tubo estrecho, indicando un incremento de presión. Se dice que el

Page 3: Ley de difusión de graham y Fick

papel pergamino es una membrana semipermeable, y el proceso de difusión selectiva a través de tal membrana se denomina ósmosis. La presión osmótica es la presión que tendría que ejercerse sobre la disolución para evitar la ósmosis.

Parece extraño a primera vista que el agua pase de una región de baja presión a otra de presión mayor. Pero ha de tenerse en cuenta que, antes de que el proceso se inicie, la presión del agua en la disolución es menor que la presión del agua fuera, ya que la presión total de la disolución es la misma que la del agua, y el soluto hace una contribución a la presión total. La presión osmótica iguala las presiones del agua dentro y fuera y, en consecuencia, la presión osmótica final es la presión debida solamente a la presión de las moléculas de soluto.

El estudio sistemático de la ósmosis comenzó hacia mediados del siglo XIX con observaciones detenidas en las células vegetales. Cuando una célula vegetal se coloca, por ejemplo, en una disolución concentrada de azúcar, la parte viva de la célula (protoplasto) se contrae separándose de la membrana, si bien cuando las células así tratadas se separan y se colocan en agua pura, los protoplastos se agrandan de nuevo. Este fenómeno se conoce como plasmólisis, y se observa fácilmente al microscopio.

Se encuentra experimentalmente que, en disoluciones diluidas, la presión osmótica es proporcional a la concentración de soluto, o sea inversamente proporcional al volumen de la disolución. También es proporcional a la temperatura absoluta.

Solución

de azúcar

Agua

Membrana

Las moléculas de agua difunden a través del pergamino hacia el interior del tubo de acuerdo con la ley de Fick, ya que hay una mayor concentración de agua fuera del tubo que dentro de é1, pero las moléculas de azúcar, más grandes, no se pueden difundir hacia afuera. Este proceso se llama ósmosis. El líquido asciende por el tubo, hasta el momento en el que la presión causada por la altura de la columna es suficiente para detener una difusión aún mayor, o hasta el instante en que la membrana se rompa. Esta presión que se establece por causa de la difusión en un solo sentido se llama presión osmótica. La presión osmótica es un factor importante en el balance del agua entre los tejidos del cuerpo. Las membranas de todas las células vivas permiten el libre paso del agua; algunas, sin embargo, son selectivas a otras moléculas pequeñas, y la presión osmótica puede ser importante. Los g1óbulos rojos (eritrocitos) estallan inmediatamente después de sumergirlos en agua destilada.

Page 4: Ley de difusión de graham y Fick

NOTA: PROCESOS DE DIFUSIÓN EN ORGANISMOS VIVOS

La difusión es muy importante para los organismos vivos. Por ejemplo, dentro de las células, las moléculas producidas en ciertas reacciones químicas se deben difundir por agua a otras zonas en donde tomen parte en otras reacciones

La difusión por gas también es importante. Las plantas necesitan dióxido de carbono para realizar la fotosíntesis. El C02 se difunde al interior de las hojas desde el exterior a través de pequeñas aberturas denominadas estomas. A medida que las células utilizan el C02, su concentración cae por debajo de la existente en el aire exterior y circulará hacia el interior en la forma descrita por la Ley de Fick. El vapor de agua y el oxígeno producidos por las células se difunden hacia el aire. Los animales también intercambian O2 y CO2 con el ambiente. Se necesita oxígeno para las reacciones productoras de energía, el cual debe difundirse hacia el interior de las células; como producto final de muchas reacciones metabólicas se produce C02 que deberá difundirse hacia el exterior de las células.

A causa de la lentitud de difusión a distancias mayores, los animales han desarrollado, excepto los más pequeños, sistemas respiratorios y circulatorios complejos. Por ejemplo, los seres humanos en reposo sólo reciben un 2% de su oxígeno por difusión a través de la piel. El reto entra por los pulmones y se distribuye mediante la sangre a todas las células del cuerpo. La sangre también transporta a los pulmones el dióxido de carbono producido por las células y desde aquellos se difunde al exterior. El área total disponible para intercambio gaseoso en los pulmones está comprendida entre 60 y 100 m2 , que es casi 50 veces el área de la superficie de la piel. Esta gran superficie (ramificación de la tráquea que finaliza en los alvéolos) y la pequeñez de d (distancia muy pequeña a través de la cual tiene lugar la difusión), hacen que la velocidad de difusión sea muy grande.