Maquinas Electricas - UNI

125
Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación 1 UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA ELÉCTRICA Y ELECTRÓNICA INSTITUTO DE INVESTIGACIÓN PROYECTO DE INVESTIGACIÓN “ESTUDIO DE LAS MÁQUINAS ELÉCTRICAS, SIMULACIÓN DIGITAL” JEFE DEL PROYECTO: MSc. Ing. FÈLIX VÌCTOR CÁCERES CÁRDENAS INTEGRANTES: Ing. MODESTO TOMÁS PALMA GARCÌA Sr. DAVID FLORES RODRIGUEZ Sr. ERIC WASHINGTON TORRES PADILLA LIMA – PERU “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002 2002

Transcript of Maquinas Electricas - UNI

Page 1: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

1

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA ELÉCTRICA Y ELECTRÓNICA

INSTITUTO DE INVESTIGACIÓN

PROYECTO DE INVESTIGACIÓN

“ESTUDIO DE LAS MÁQUINAS ELÉCTRICAS, SIMULACIÓN DIGITAL”

JEFE DEL PROYECTO: MSc. Ing. FÈLIX VÌCTOR CÁCERES CÁRDENAS INTEGRANTES: Ing. MODESTO TOMÁS PALMA GARCÌA Sr. DAVID FLORES RODRIGUEZ Sr. ERIC WASHINGTON TORRES PADILLA

LIMA – PERU

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

2002

Page 2: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

2

INDICE GENERAL CAPITULO 1. CIRCUITOS MAGNETICOS 1.1 Propiedades magnéticas de la materia 1.2 Características de magnetización 1.2.1 Representación matemática 1.3 Circuito análogo resistivo 1.4 Ecuaciones de Maxwell 1.4.1 Ley circuital de ampere 1.4.2 Configuración de laminas 1.5 Excitación de circuitos magnéticos 1.5.1 Excitación con corriente continua 1.5.2 Excitación con corriente alterna 1.6 Reactor con núcleo de hierro CAPITULO 2. TRANSFORMADOR NÚCLEO DE HIERRO 2.1 Introducción 2.2 Transformador ideal 2.2.1 Polaridad 2.2.2 Impedancias y variables reflejadas 2.3 Transformador núcleo de hierro 2.4 Determinación de parámetros ( condiciones nominales ) 2.4.1Prueba de cortocircuito 2.4.2 Prueba de vacío 2.4.3 Prueba bajo carga 2.4.3 Pruebas especiales 2.5 Eficiencia 2.5.1 Eficiencia durante todo el día 2.6 Regulación 2.6.1 Regulación de tensión bajo carga 2.7 Calentamiento en las máquinas eléctricas 2.7.1 Balance Termodinámico 2.8 Balance por unidad 2.9 Autotransformadores 2.9.1 Circuito equivalente 2.9.2 Ventajas y desventajas CAPITULO 3. TRANSFORMADORES EN SISTEMAS TRIFÁSICOS 3.1 Introducción. 3.2 Especificaciones técnicas. 3.3 Conexionado de transformadores trifásicos. 3.4 Tipos y grupos de conexión. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 3: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

3

3.4.1Tipo de conexión. 3.4.2 Grupos de conexión. 3.5 Banco de transformadores trifásicos. 3.6 Pruebas a banco de transformadores trifásicos. 3.6.1 Prueba de cortocircuito. 3.6.2 Prueba de vacío 3.7 Puesta en paralelo de transformadores. 3.8 Reparto de carga. 3.9 Sistemas eléctricos desbalanceados 3.10 Transformadores de tres arrollamientos. 3.10.1 Circuito equivalente. CAPITULO 4. CONVERSIÓN DE ENERGÍA ELECTROMECÁNICA 4.1 Introducción. 4.2 Ley Universal de Faraday. 4.3 Sistemas Eléctricos y mecánicos. Variables y funciones de estado. 4.3.1 Análisis para un elemento inductivo. 4.3.2 Análisis para un elemento inductivo. 4.4 Forma restringida de la ecuación de Lagrange. 4.5 Determinación de la fuerza mecánica a través del Principio de los trabajos virtuales. 4.6 Sistemas de excitaciones. 4.6.1 Excitación simple. 4.6.2 Excitación doble. CAPITULO 5. CONCEPTOS BÁSICOS PARA EL ESTUDIO DE LAS MÀQUINAS ELÉCTRICAS Y TRANSFORMACIONES. 5.1 Campo magnético generado por devanados estatóricos. 5.2 Campo magnético generado por devanados rotóricos. 5.3 La máquina primitiva. 5.4 Parámetros de inducción estacionaria de la máquina d-q. 5.5 Tensiones inducidas por rotación. 5.6 Ecuaciones de equilibrio de la máquina d-q. 5.7 Vectores espaciales. 5.8 Ecuación de equilibrio mecánico. CAPITULO 6. LA MÀQUINA DE INDUCCIÓN. 6.1 Planteamiento matemático de las ecuaciones eléctricas. 6.1.1 Determinación del flujo común de los devanados estatóricos y rotóricos. 6.1.2 Determinación del flujo de dispersión. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 4: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

4

6.1.3 Consideración conjunta del flujo común y del flujo de dispersión. 6.2 Interpretación física del concepto de vector espacial. 6.3 Segundo Método para la determinación de las ecuaciones eléctricas de la máquina. 6.4 Significado físico de las magnitudes Ls, Lr y Lm. 6.5 Deducción de la ecuación mecánica. Ecuación del torque. 6.5.1 Primer Método: Interacción campo magnético – corriente. 6.5.2 Segundo Método: Energía de campo. 6.6 Sistema general de ecuaciones electromecánicas. Solución del Sistema para el caso de régimen estático. 6.7 Sistema general de ecuaciones del régimen dinámico incluyendo el vector espacial de corriente de magnetización. 6.8 Sistema general de ecuaciones eléctricas considerando el efecto de la saturación magnética. 6.8.1 El efecto de la saturación. CAPITULO 7. ANÁLISIS TRANSITORIO DE LA MÀQUINA SINCRONA. 7.1 Inductancias de la máquina síncrona de polos salientes. 7.2 La transformación de Park. 7.3 Cortocircuito trifásico del generador síncrono en vacío. 7.4 Simulación: cortocircuito trifásico de la máquina síncrona. 7.4.1 Programa en Matlab. 7.4.2 Resultados de la simulación. 7.4.3 Comentarios. 7.5 Modelos Simplificados de la máquina síncrona para l análisis de transitorios. 7.5.1 Determinación de las constantes de tiempos τ`` , τ` de la máquina síncrona. 7.6 Estabilidad dinámica de la máquina síncrona. 7.6.1 Método de igualdad de área. CAPITULO 8. PROBLEMAS Bibliografía

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 5: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

5

CAPITULO 1

CIRCUITOS MAGNETICOS

1.1 PROPIEDADES MAGNETICAS DE LA MATERIA Toda materia está constituida fundamentalmente de átomos, y cada átomo consiste en electrones en movimiento. Estos circuitos de electrones, cada uno de los cuales esta confinado a un solo átomo son los que se define como corrientes atómicas. Parecería que se tuviera dos clases de corriente:

1) Una corriente verdadera, que consiste en transporte de carga; esto es el movimiento de electrones libres o de iones cargados, y

2) Corrientes atómicas, que son corrientes puras que circulan sin dar origen a transporte de carga. Sin embargo ambas clases de corrientes pueden producir campos magnéticos.

En las máquinas eléctricas tales como: transformadores, generadores y motores se utilizan una gran variedad de materiales magnéticos en cuanto a su tipo y formas. Todos los materiales ferromagnéticos utilizados en las máquinas eléctricas se caracterizan por poseer una permeabilidad relativa elevada ( µr ) y una relación no lineal entre la densidad magnética ( B ) y la intensidad magnética ( H ). PRINCIPALES SISTEMAS DE UNIDADES Tenemos los siguientes Sistemas de Unidades.

1. CGS ues, cuya cuarta magnitud es la permitividad (∈). 2. CGS uem, cuya cuarta magnitud es la permeabilidad ( µ ). 3. Sistemas mixtos de Guass (utilizado por los físicos).

4. MKSA Giorgi no racionalizado µ0=10-7; ∈=1,11*10-10 2

2

m.N)coule(

5. MKSA Giorgi racionalizado (utilizado por los electricistas) µ0=4π∗10-7 Vs/Am ó H/m, ∈0=8.85∗10-12 As/Vm ó F/m.

Los dos sistemas racionalizados y no racionalizado van a distinguirse únicamente por la relación del ángulo sólido. Sistema MKSA no racionalizado, unidad de ángulo sólido = estereorradián. Sistema MKSA racionalizado, unidad ángulo sólido espacio total spat. Spat = 4π estereorradián. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 6: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

6

Magnitud Unidad Símbolo Descripción

1) Angulo Sólido.

Estereorradián

Sr Ángulo sólido que subtiende una superficie de cualquier esfera con centro en su vértice. Equivale a una superficie de 14 de la superficie total de la misma.

Joule

J

Trabajo producido por una fuerza de 1,0 Newton al trasladar su punto de aplicación en la misma dirección y sentido una distancia de 1,0 m.

Watt-Seg.

Ws

Trabajo realizado por un sistema de potencia constante, de un watt en un segundo.

2) Trabajo y energía.

Electrón Volt. EV

Energía adquirida por un electrón acelerado por una diferencia de potencial de 1,0 voltio.

3) Potencia Watt W Potencia constante de un sistema que desarrolla uniformemente un trabajo de 1,0 Joule durante un intervalo de tiempo de 1,0 seg.

4) Intensidad de Corriente Eléctrica

Ampere A Intensidad de una corriente eléctrica invariable que mantenida en dos conductores paralelos, rectilíneos de longitud infinita y sección despreciable situados a una distancia de 1,0 m uno del otro en el vacío origina una fuerza de 2 x 10-7N. Sobre cada trecho de 1,0 m de longitud de cada uno de los dos conductores.

5) Carga Eléctrica

Coulomb C Carga eléctrica que atraviesa durante un segundo una sección transversal de cualquier conductor recorrido por una corriente eléctrica de intensidad constante igual a 1,0 Amperio.

6) Tensión Eléctrica

Voltio V Diferencia de potencial eléctrico existente entre dos puntos de un conductor recorrido por una corriente eléctrica de intensidad constante de 1,0 Amperio cuando la potencial disipada entre esos dos puntos es de 1,0 Watt.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 7: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

7

1.2 CARACTERISTICAS DE MAGNETIZACIÓN Cada material ferromagnético como por ejemplo: acero, fierro silicoso, grano orientado u otros; presentan su propia característica de magnetización, que son reflejados mediante la representación de curvas o de formulaciones matemáticas ( modelos). Los materiales ferromagnéticos se caracterizan por poseer uno ó varios de los atributos siguientes :

a) Pueden magnetizarse mucho más fácilmente que los demás materiales ( p.e. material diamagnético ). Esta característica viene indicada por que los materiales ferromagnéticos tienen una alta permeabilidad relativa ( µr ).

b) Se imanan con una facilidad muy diferente según sea el valor del campo magnético. Este atributo lleva a una relación no lineal entre los módulos de la densidad magnética ( B ) y la intensidad magnética ( H ).

c) Un incremento del campo magnético les origina una variación del flujo diferente de la variación que origina una disminución igual de campo magnético. Este atributo indica que las relaciones que expresan la inducción magnética y la permeabilidad µ como funciones del campo magnético, no son lineales ni uniformes.

d) Conservan la imanación cuando se suprime el campo magnético. e) Tienden a oponerse a la inversión del sentido de la imanación una vez

imantados. f) Tienen una densidad magnética intrínseca máxima Bmáx elevada.

Fig.1 Curva de Característica de magnetización de un material ferromagnético y las zonas definidas

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 8: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

8

1.2.1 REPRESENTACION MATEMATICA Existe una variedad de modelos matemáticos que son formulados para poder representar la curva de la característica de magnetización de los materiales ferromagnéticos, siendo algunas de estos los siguientes: A. Análisis por Zonas, esta forma de representar la curva de la característica de

magnetización de un material ferromagnético está relacionado con la definición de tres zonas típicas como son:

Zona I lineal : y = c0 + c1x Zona II Codo de saturación : y = c0 + c1x + c2x2 Zona III Saturación : y = c0 + c1x + c2x2 + c3x3

En las relaciones funcionales anteriores, están representadas la densidad magnética y la intensidad magnética como las variables x e y respectivamente. Las constantes co, c1 y c2 son propias de cada material ferromagnético. B. Aproximación Lineal, este método consiste en linealizar la función de la curva de característica de magnetización, para ello se aplica en cada punto el concepto de la derivada. C. Formulación Polinomial, este método consiste en expresar una relación polinomial de las variables magnéticas B y H, donde se distingue la No linealidad entre ellas, siendo expresadas por la relación siguiente:

H = a0 + a1B + a2B3 + a3B5 + ... ó ……….. (1.1)

i = b0 + b1λ+ b2λ3 + b3λ5 + ... ………. (1.2) Donde: H: Intensidad magnética B: Densidad magnética i : Corriente eléctrica λ: Acoplo inductivo a0, a1, ... an , b0, b1, ... bn : Constantes, obtenidas del ensayo de laboratorio. D. Ecuación de Froelich, esta relación funcional entre la densidad (B) e

intensidad (H) magnética es conveniente en la zona del codo de saturación, está expresada por:

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 9: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

9

21

0

aHaHaB+

= ; 21

0

cicicV

+=

........... ( 1.3 ) 1.3 CIRCUITO ANÁLOGO RESISTIVO Las máquinas eléctricas, como los transformadores, motores y generadores están constituidos por estructuras ferromagnéticas conformadas por un número de láminas en el primario(estator) y secundario(rotor); asimismo provistas por un conjunto de bobinas que contienen un número determinado de espiras. Para su análisis del comportamiento estacionario y transitorio se requiere realizar la formulación de las máquinas eléctricas en modelos circuitales, que se encuentran constituidas por elementos puros como son: inductancias, resistencias y capacitancias. Los circuitos análogos resistivos dependen de la configuración del circuito magnético, y para su formulación se requiere tomar en cuenta los conceptos siguientes: :

A. Continuidad de las líneas de flujo, nos indica que, en una superficie cerrada el flujo magnético entrante es igual al flujo magnético saliente de la superficie. La expresión matemática es la siguiente:

Σ φ = 0

........... ( 1.4 ) B. La Ley circuital de Ampere, esta expresada por: ∫ = wxI dl-H ............. (1.5 )

Ejemplo Ilustrativo: A2

φ

λ 2

C φ2φ1

I

A

N

DE F

B A

A1

λ λ 1 1

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Fig. 1.2 Circuito Magnético de tres columnas

Page 10: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

10

mm

mn Au

l=R ; lm: longitud media por donde recorre el flujo magnético

um: Permeabilidad magnética

Rm: Reluctancia magnética

Am: Área del material magnético por donde pasa el flujo Rm = 1/Pm ; Pm: Permeancia magnética

Rm: Reluctancia magnética qgqmeq RRR +=

NiRR qgqmn =+ )(φ ........... ( 1.6 )

Circuito eléctrico Análogo:

φ1 φ2 φ R1/2

R

NI

φ R2 R1

NI

R

Fig.1.3 Circuito Análogo- resistivo.

Las reluctancias en el lado 1 y 2 son iguales, es decir: R1 = R2

Del circuito equivalente de la fig.1.3, se expresa la relación siguiente:

+=→

+=

1

11

22 AANI

RRNI

µµφφ

λλ ; Si se tiene: A = 2 A1

........... (1.7 )

[ ] [ ] [ ]111 λλλλλλ +=→+=→+=µµµ

φ BNIABANI

ANI

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 11: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

11

Si: NI es conocido del grafico B-H, se calcula B y µ.

µ

B H

Fig. 1.4 Curva de la Característica de magnetización

( ) ( )11 λλλλ

+=→+=

NIHHNI

........... (1.8 )

ELECTRICOS MAGNETICOSVe I

Re J G

Vm φm Rm um P

CONSIDERACIONES:

a) Se considera que el flujo magnético es uniforme en una sección transversal del núcleo.

b) Las longitudes del circuito magnético son consideradas como longitudes

medias (lm). c) De la ecuación continuidad de las líneas de flujos, tenemos: ∑ =φ

ii 0

d) La ecuación de la ley circuital de Ampere se considera: NI ∑=n

iiiH λ

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 12: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

12

De la figura del ejemplo ilustrativo, podemos expresar: Para la trayectoria A-B-E-F-A, tenemos:

λ1*H1+λ*H.=Ni ...........( 1.9 ) Para la trayectoria A-C-D-F-A, tenemos:

λ1H1+λ2H2=Ni .......... ( 1.10 ) donde: Ni : FMM fuerza magnetomotriz Vmi = λiHi diferencia de potencial magnético en la rama i. para la rama 1, tenemos: Vm1=λ1H1; Vm1=λ1B1/µ1; Vm1=λ1φ1/A1µ1 .…….( 1.11 )

111

11m A

V φ

µ

=λ , se define:

11

11 Aµ=

λR Reluctancia de la rama 1.

111m RV φ=

Similarmente, para las otras ramas:

222m RV φ= ; 333m RV φ= ........... (1.12 )

1.4 ECUACIONES DE MAXWELL Es un conjunto de Ecuaciones que representan una generalización de algunas observaciones experimentales, dichas ecuaciones son:

tDJrotH∂∂

+= …........( 1.13 )

tBrotE∂∂

−= ...........( 1.14 )

divD = P ............( 1.15 )

divB = 0 ...........( 1.16 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 13: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

13

La ecuación ( 1.13 ), representa una extensión de la Ley de Ampere. La ecuación ( 1.14 ), es la forma diferencial de la Ley de Inducción Electromagnética de Faraday. La ecuación ( 1.15 ), es la Ley de Gauss que a su vez se deduce de la Ley de Coulomb. La ecuación ( 1.16 ), representa la continuidad de las líneas de flujos, el hecho de que los polos magnéticos simples no se han observado. Las ecuaciones de Maxwell representan expresiones matemáticas de algunos resultados experimentales, siendo evidente que no pueden demostrarse, sin embargo la aplicabilidad a cualquier situación puede ser verificada. 1.4.1 LEY CIRCUITAL DE AMPERE Para el análisis en bajas frecuencias, de la ecuación ( 1.13 ) se tiene que D =0, luego: rotH = J además: B = µ0H; siendo µ0: Permeabilidad del vacío o aire. luego: rotB= µ0J ........... ( 1.17 ) Aplicando el Teorema de Stokes, tenemos:

∫∫ =CS

dBndsrotB λοο ........... ( 1.18 )

Luego, utilizando la ecuación ( 1.17 ) para el rotacional de B, se tiene:

∫∫ µ=S0C

ndsJdB ολο ............ (1.19 )

Para una espira, tenemos: IdB 0C

µ=∫ λο

Para “N” espiras, tenemos: NIdB 0C

µ=λο∫

Luego, podemos expresar:

NIdHC

=∫ λο ............ (1.20 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 14: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

14

1.4.2 CONFIGURACION DE LAMINAS Los circuitos magnéticos están conformados por un conjunto de láminas, cuyos espesores pueden ser de 0,30 mm. ó 0,50 mm; asimismo presentan diversas configuraciones geométricas. La característica de que los circuitos magnéticos sean laminados es para reducir las pérdidas en el núcleo magnético. Las configuraciones de las láminas pueden ser de tipo C-I, E-I, E-E ú otras. Los materiales Magnéticos (ferromagnéticos) pueden ser :Acero-Silicoso, fierro fundido, fierro-silicoso, grano orientado y otros.

1.5 EXCITACION DE CIRCUITOS MAGNETICOS 1.5.1 EXCITACIÓN CON CORRIENTE CONTINUA Los circuitos magnéticos pueden presentar diversas configuraciones geométricas y ser excitados con fuentes de corriente continua, que para conocer sus variables eléctricas y magnéticas se requiere la utilización de métodos de solución, como son los siguientes: MÈTODO DE SOLUCION Se presentan dos métodos de solución, como son: el método gráfico y el método iterativo. A) METODO GRÀFICO Para la solución de los circuitos magnéticos mediante el método gráfico, se deberán tomar en cuenta los procedimientos siguientes: 1. Tener en cuenta la curva de la característica de magnetización del material ferromagnético en cuestión, es decir la curva B –H, que en la practica es proporcionado por el fabricante ó se determina de los ensayos en laboratorio; por ejemplo en el caso de un Transformador monofásico de núcleo de hierro, dicha curva B –H es obtenida realizando la prueba de vació. 2. De acuerdo a la configuración geométrica del circuito magnético, se formula la ecuación de equilibrio electromagnético, obteniéndose la ecuación de una recta con pendiente negativa. 3. La curva característica B – H, se debe llevar a una linealización debido a que la ecuación obtenida en el punto 2 es lineal. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 15: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

15

4. Relacionando el punto 2 y punto 3, determinamos el punto de intercepto de ambas características, obtenemos el punto de operación requerido.

H

HfH Ht

P Bt

BfB

B

Fig. 1.5 Determinación del punto de operación Ejemplo ilustrativo: Dado el circuito magnético siguiente:

I

N

φ

LfLg

Fig. 1.6 Circuito magnético con entrehierro Donde:

λf : Longitud media del material ferromagnético. λg : Longitud del entrehierro. Af : Área del material

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Ag : Área del entrehierro.

Page 16: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

16

Bf : Densidad de flujo en el material (Wb/m2). Bg : Densidad de flujo en el entrehierro. Hf : Intensidad de campo magnético en el material (Amp/m).

Aplicando la Ley Circuital de Ampere, tenemos:

NIHH ggff =+ λλ .........( 1.21 )

0

gg

BH

µ= .........( 1.22 )

por continuidad de flujo: φf = φg BfAf = BgAg fg

fg B

AA

=B

en la ecuación(1), tenemos:

NIBA

AH f

g0

gfff =

µ+

λλ ........... ( 1.23 )

fgf

fg0

gf

g0f H

AA

NIA

AB

µ−

µ=

λ

λ

λ ...........( 1.24 )

La ecuación ( 1.24 ) es una recta con pendiente negativa. De la ecuación ( 1.24 ), tenemos:

Si: Bf = 0 f

fHNIHλ

= ( intercepto con H )

Si: Hf = 0 NIA

A

gf

g0fB

µ=

λB ( intercepto con B )

B) MÉTODO ITERATIVO

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 17: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

17

El método Iterativo consiste en realizar iteraciones sucesivas hasta obtener un % Er ≤ 5%

Donde: 100xNI

NINI)dato(

)calculado()dato( −=Er ...........( 1.25 )

Para la solución de los circuitos magnéticos por el método Iterativo, se deberá considerar el procedimiento siguiente: 1. Se considera la permeabilidad magnética del material mucho mayor que la del vació o aire, es decir: um >> u0. 2. De acuerdo a la ley de Ampere, se tiene lo siguiente: NI = φnReq

φn = BnAn Req = Reqm + Reqg

[ ]geqmeqnn

eqnn RRA

NIBRNIAB

+== ; ………… ( 1.26 )

Si: um << u0

[ ]geqnn

gmcm

gmgm RA

NIBAul

R == ;,,

,, ...........( 1.27 )

3. Con el valor de Bn obtenido en la relación ( 1.27 ), obtenemos um y Hm de la

característica B versus H; es decir: Bn(1), um

(1), Hm(1)

4. Con um(1) obtenido reemplazamos dicho valor en la ecuación ( 1.26 ) y

obtenemos Bn(2), um

(2), Hm(2).

5. Luego se realizan las iteraciones sucesivamente hasta conseguir un porcentaje de error menor al 5 %;es decir:

% Er ≤ 5%.

Siendo: 100xNI

NINI)dato(

)calculado()dato( −=Er ………… ( 1.28 )

Donde: g

nngmm

calculado

AuBA

lHNINIlH0

)(.λ

+=⇒=∑ ………… ( 1.29 )

CALCULO DE INDUCTANCIA: “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 18: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

18

λ

I

Fig. 1.7 Elemento inductivo λ: Acoplo inductivo. λ = Li

)N(dtd

dtdN φ=υ→φ

=υ ……….. ( 1.30 )

)Li(dtdcteL:si y

dtdiL =υ→==υ …… ….. ( 1.31 )

Nφ= Li i

Nφ=L

además: λiNiAN

LiAHN

LiANB

L nnnnn µµ=→=→= …………. ( 1. 32 )

RNL

A

NL2

f

2

=→

µ

, donde: n

n

HB

=µ del gráfico B -H

EFECTO DE BORDE: Fig. 1.8 Influencia del entrehierro

b

Lg a

Siendo: “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 19: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

19

a: ancho del paquete de láminas. b: altura del paquete de láminas. n: numero de láminas. t: espesor de láminas. fa: factor de apilamiento. N: Número de espiras

lg: longitud del entrehierro Área del entrehierro: ( ) )( gggg lblaA ++= ……….. (1.33 )

Donde : fant

g =.b ……….. (1.34 )

Área del material: antAm ).(= ……….. (1.35 ) Donde : bef.= nt. Ademas : Am = bef.a = (fa.bg) a ……….. (1.36 ) 1.5.2 EXCITACIÓN CON CORRIENTE ALTERNA Los circuitos magnéticos al ser excitados con una fuente de tensión alterna, presentan pérdidas en el núcleo magnético y pérdidas en el conductor eléctrico ( generalmente se utiliza el cobre ), por lo que dichas pérdidas deben ser cuantificadas. Las pérdidas en el núcleo están conformadas por las pérdidas debidas a las corrientes parásitas( Eddy) y las pérdidas por Histéresis. Pérdidasnucleo = Phistéresis + Pfoucoult ............ ( 1.37 ) Pérdidas en el Cobre( efecto Joule): I2R ............ ( 1.38 ) Las pérdidas en el cobre están expresadas en función de la resistencia y la corriente que pasa por el conductor (Joule).

Siendo : R = ρ L/A ............ ( 1.39 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Donde:

Page 20: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

20

ρ: Resistividad del material. L: Longitud del conductor. A: Área de la sección transversal del conductor.

Formas de medir Resistencias: Método Tensión – Corriente (V, I ) Se aplica una tensión continua entre los bordes extremos del conductor y se registra los valores de las corrientes que son tabuladas. El área de la sección transversal es menor que el área geométrica del conductor. Método del Ohmimetro Con el instrumento llamado ohmimetro, se coloca las puntas en los extremos del conductor y se mide la resistencia en corriente continua. Para ambos casos se deberá realizar la corrección del valor de la resistencia medida en corriente continua, siendo afectada por un factor de corrección K , es decir: RAC > RDC RAC = K RDC ………… ( 1.40 )

K > 1 1 < K < 1,5 Para un caso particular, se tiene: k = 1,25 Pérdida en el Núcleo (Pnúcleo): Las pérdidas en el núcleo del material ferromagnético son debida a la Histérisis y las corrientes parásitas, es decir: Pnúcleo = Phistéresis + Pfoucoult Phistéresis:

Phist = Kn f Bmaxn ………… ( 1.41 )

Donde:

Kn: Cte. de histéresis Bmax: Densidad máxima magnética

f: frecuencia “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 21: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

21

n: Exponente de Steimetz

n< 2 ; función de las líneas de flujos magnéticos. Pérdidas por Foucoult (Corrientes parásitas)

Pfouc = Kf f2 B2max ………… ( 1.42 )

Donde:

ρπ6

)( 2tK f = ………… ( 1.43 )

ρ = % concentración de Silicio. t = espesor de la lamina. f = frecuencia. Bmax = Densidad máxima magnética.

Phistéresis Pnúcleo Pfoucoult W Pnúcleo = W - RI2 ......... ( 1.44 ) Pcobre

lectura Vatímetro Además, se tiene: Eeficaz = 4,44 f N Bmax Aneta ........... ( 1.45 ) Luego:

neta

efmax A.fN)f.f(4

EB = ........... ( 1.46 )

]nn

nef

nhisteresis A.N.f)f.f(4[E

fKP =

]neq1nn

n

nhisteresis xE

f1x

A.N)f.f(4,4[KP

=

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 22: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

22

1n

neq1

histeresis fEK−

=P ........... ( 1.47 )

[ ]2

eq2foucoult22n

2eq2

ffoucoult EKPxfNA)f.f(4

EfKP =→= ........... ( 1.48 )

Determinación de las Pérdidas en el núcleo, cuando el Flujo magnético es constante( φ = constante ) Se deben expresar las pérdidas por histérisis y corrientes parásitas, cuando el flujo magnético se mantiene constante, es decir: Phist, foucoult φ =cte = Bmax An Para una onda cualesquiera se tiene la expresión de la tensión eficaz inducida expresada por:

affBKP

bfBfKP

NfffEeffNffE

nnhisteresis

ffoucoult

eq

==

==

=

→=

max

22max

2

maxmax

)(4)(4 φφ

........... ( 1.49 )

........... ( 1.50 )

bfafP

bfafPPP

nuc

fouchistnucleo

+=

+=+= 2

........... ( 1.51 )

Para determinar los valores de las constantes a y b, se deberán realizar por lo menos dos ensayos a tensión y frecuencias diferentes, obteniéndose los resultados:

)(b

)( a

2121

12212222

1221

212

2212

111

fffffpfp

bfafP

fffffpfp

bfafP

nnn

nnn

−−

=+=

−−

=+=

........... ( 1.52 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 23: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

23

Luego, para un tercer valor de tensión y frecuencia se tiene las pérdidas en el núcleo expresada por:

2333n bfafP += ........... ( 1.53 )

Siendo, las pérdidas por histérisis y Foucoult :

Phistéresis = af3 ........... ( 1.54 )

Pfoucoult = bf32 ........... ( 1.55 )

1.6 Reactor con Núcleo de Hierro El reactor de núcleo de hierro es un dispositivo electromagnético estático conformado por una estructura ferromagnética ( laminas ) y un paquete eléctrico (bobinas) tiene diversas aplicaciones en las instalaciones eléctricas industriales y en los sistemas eléctricos de potencia. Para el circuito equivalente, se plantea la ecuación de equilibrio electromagnético siguiente:

)t(t

)t(Ri)t()t(vo

∂ψ∂

+=λ= ...........( 1.56 )

Siendo expresada el flujo magnético por:

∑≠=

ψ+ψ=ψM

Ki1i

iKKKK )t( ............( 1.57 )

El flujo magnético para una bobina está expresado por:

11propio flujo111 iL)t( =ψ=ψ

Luego, reemplazando en la expresión ( 1.56 ), se obtiene:

)Li(t

Riv )t()t( ∂∂

+= ............( 1.58 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 24: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

24

Desarrollando en derivada parciales la ecuación ( 1.58 ), obtenemos:

dxdx

dtdLi

dtdiLRiv tt .)()( ++=

dxdLxi

dtdiLRiv

o

ciónTransforma

tt ++= )()( ...........( 1.59 )

dxdLxi

o: Tensión producida por movimiento ( traslación o rotación )

Para el caso del reactor de núcleo de hierro que no experimenta movimiento de la bobina, obtenemos:

)()()( ; t

o

tt vdtdiLRiv =+= λ ...........( 1.60 )

ο

q : corriente que absorbe el reactor.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 25: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

25

CAPITULO 2

TRANSFORMADORES NÚCLEO DE HIERRO 2.1 Introducción. Forma Constructiva, Utilización, tipos. Los transformadores de núcleo de hierro son máquinas eléctricas que están conformados por estructuras magnéticas laminadas(de diversas configuración geométrica) y paquetes eléctricos conformados por dos o más devanados estacionarios que se encuentran acoplados magnéticamente. Tienen diversos usos como son: en los sistemas eléctricos de potencia, en las redes de distribución primarias y secundarias, en las subestaciones de las plantas industriales, en edificaciones de múltiple usos y centros de transformación. El principal uso de los transformadores son para el cambio de la magnitud de la tensión alterna. Por convención el devanado AC de entrada es usualmente referido como el devanado primario, y los otros devanados de salida son referido como devanados secundario o terciario. Los transformadores de núcleo de hierro son las máquinas eléctricas que presentan menores valores de pérdidas ( pérdidas en el núcleo, pérdidas en el cobre ) en relación a las otras máquinas eléctricas, como son: los generadores y motores eléctricos; por lo que los transformadores tienen un valor de alta eficiencia( pueden llegar hasta el 99 %). Trabajan a baja frecuencia entre 25 a 400 Hz, para aplicaciones de alta frecuencia se tienen núcleo de ferrita o núcleo con entrehierro para contrarrestar la excesiva pérdidas en el núcleo. Las pérdidas por corrientes de Eddy o corrientes parásitas en el núcleo de hierro pueden reducirse construyendo el núcleo laminado; para una frecuencia de 60 Hz la lamina del núcleo de hierro puede ser 0,35 mm de espesor. Los transformadores de potencia según su utilización, pueden ser: a. Transformador de unidad, conectado a la salida de un generador para elevar la

tensión a los niveles de transmisión. b. Transformador de Subestación, conectado en el otro extremo de la línea de

transmisión para reducir la tensión a los niveles de Distribución.

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 26: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

26

c. Transformador de Distribución, conectados en las redes de distribución primaria para reducir la tensión a los niveles de utilización.

Los devanados del primario y secundario están físicamente enrollados uno sobre el otro, el devanado de baja tensión está situado en la parte interna; esta disposición cumple dos objetivos: 1. Resulta menor flujo de dispersión en relación a disponer los dos devanados en

el núcleo separados. 2. Simplifica el problema del aislamiento del devanado de alta tensión desde el

núcleo. Los transformadores se construyen de dos tipos: 1. Tipo Núcleo, consta de una pieza rectangular de acero laminado con los

devanados enrollados sobre dos de los lados. 2. Tipo acorazado, consta de un núcleo de acero laminado de tres columnas,

cuyos devanados están enrollados en la columna central. 2.2 Transformador Ideal El Transformador ideal es un dispositivo que consta de un devanado de entrada y otro de salida, las relaciones entre las variables de tensión de entrada y tensión de salida, y entre las corrientes de entrada y de salida, están dadas por la relación entre el número de espiras de cada devanado del transformador. Un transformador ideal, tiene las características siguientes: 1. El flujo magnético está confinado en el núcleo, esto quiere decir que no existe

flujo de dispersión. Las pérdidas en el núcleo son consideradas despreciables; es decir no deben tener pérdidas por Histérisis ni corrientes parásitas.

2. Las resistencias de los devanados primarios y secundarios son despreciables, por lo que las pérdidas en el cobre son nulas.

3. La permeabilidad magnética del núcleo ( µm ) es considerada infinita. Al ser conectado el devanado primario a una fuente de tensión ν1 variable en el tiempo, en el núcleo magnético se establece un flujo φm. Una tensión e1 es inducido en el devanado y será igual a la tensión aplicada si la resistencia del devanado es despreciable( transformador ideal ), es decir se cumple:

ν1 = e1 = N1 dφm dt ....................( 2.1)

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 27: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

27

El flujo en el núcleo enlaza al devanado secundario y induce una tensión secundaria e2, siendo igual a la tensión en los terminales ν2, es decir se cumple:

ν2 = e2 = N2 dφm dt .....................(2.2) Relacionando las ecuaciones ( 2.1 ) y ( 2.2 ), obtenemos:

ν1 = N1 = a ν2 N2 .....................( 2.3 )

Donde ¨a¨ es denominada la relación de transformación. La ecuación ( 2.3 ) nos muestra que las tensiones en los devanados de un transformador ideal son directamente proporcional al número de espiras de los devanados. Asimismo, la fuerza magnetomotriz (FMM) neta que se establece en el transformador ideal es cero, es decir : N1 i1 – N2 i2 = FMM neta = 0 ...........................( 2.4 )

N1 i1 = N2 i2 ........................... ( 2.5 ) N2 = i1 = 1

N1 i2 a ..........................( 2.6 ) Relacionando la ecuación (2.3) y (2.6), establecemos: ν1i1 = ν2i2 . .................... ( 2.7) La ecuación ( 2.7 ) nos indica que la potencia instantánea de entrada del transformador es igual a la potencia instantánea de salida. Esto es debido a que todas las pérdidas son consideradas despreciables en un transformador ideal 2.2.1 Polaridad Los transformadores utilizan la convención de puntos que aparecen en cada extremo de los devanados, éstos indican la polaridad de la tensión y la corriente en el lado del transformador, la relación es la siguiente:

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 28: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

28

a. Si la tensión primaria es positivo en el extremo del devanado marcado con un punto, respecto al extremo que no tiene marca; la tensión secundaria será positivo también en el extremo marcado con punto.

b. Si la corriente primaria fluye hacia dentro del devanado primario por el extremo marcado con punto, la corriente secundaria fluirá hacia fuera del devanado secundario por el extremo marcado con punto.

2.2.2 Impedancias y Variables reflejadas Para el análisis operativo de los transformadores conectados bajo carga o en vacío, es de importancia de establecer el circuito equivalente del transformador referido al lado primario o secundario; para lo cual es recomendable realizar un tratamiento de las impedancias y variables reflejadas. Valores Reflejados: - Variables Reflejadas. - Impedancias Reflejadas.

V2´= aV2 ; Tensión secundaria reflejada al lado primario.

aV´V 1

1 = ; Tensión primaria reflejada al lado secundario.

; Corrientes primaria y secundaria reflejadas.

aII

aII1

2

11

´

´

=

=

V1I1 = V2I2 ...........( 2.08 )

..........( 2.09 )

2

2

1222

211 I Z IZ a

ZZ

=→=

Z1 = a2Z2 = Z2´ ...........( 2.10 )

Z2´ = a2Z2 .......... ( 2.11 )

Z1 = R1 + jX1 .......... ( 2.12 )

Z2 = R2 + jX2 .......... ( 2.13 ) “Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 29: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

29

R2’+jX2

’ = a2(R2 + jX2) ............( 2.14 )

............( 2.15 )

'2222

2'2

'2222

2'2

Xa1X

Ra1R

=→=

=→=

XXa

RRa

2.3 Transformador núcleo de hierro Para el análisis del comportamiento dinámico del transformador se plantean las ecuaciones de equilibrio electromagnético y para el análisis en régimen estacionario se requiere el circuito equivalente. A continuación se planteamos las ecuaciones de equilibrio electromagnético:

dt)t(d)t(iR)t(V 1

111ψ

+= ............ ( 2.16 )

dt)t(d)t(iR)t(V 2

222ψ

+= ..........( 2.17 )

Se denota:

)()( 12111

1

tt

in

Kii

KKKK

ψψψ

ψψψ

+=

+= ∑≠=

............. (2.18 )

)()( 21222 tt ψψψ += .............(2.19 )

Reemplazando las ecuaciones ( 2.18 ) y ( 2.19 ) en las ecuaciones (2.16) y (2.17 ), obtenemos las expresiones siguientes:

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 30: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

30

12121

21212

2222

1111

2122222

1211111

)()()(

)()()(

iMiMiLiL

ttd

dtdtiRtV

dttd

dtdtiRtV

====

∂++=

++=

ψψψψ

ψψ

ψψ

............( 2.20) Luego:

dt)t(diM

dt)t(diL)t(iR)t(V

dt)t(diM

dt)t(diL)t(iR)t(V

121

22222

212

11111

++=

++=

............( 2.21 ) La ecuación ( 2.21 ) esta expresada en términos de régimen transitorio o función del tiempo. El análisis en régimen estacionario, las ecuaciones en función del tiempo o ecuaciones diferenciales lineales son transformadas en ecuaciones de variable compleja que, a continuación son desarrollados:

Análisis en régimen estacionario:

==

∠=

jwdtdp

VV º0

........ ( 2.22 ) Luego:

12122222

11211221211111

IjwMIjwLIRV

IjwMIjwMIjwMIjwLIRV

++=

−+++=

........ ( 2.23 )

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 31: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

31

)(

)()(

2111111

21121121111

IIjXIjwlIRV

IIjwMIjwMLIRV

m +++=

++−+=

λ

........ ( 2.24 ) Análogamente:

)( 2122222 IIjXIjwlIRV m +++= λ ........ ( 2.25 )

Luego, los parámetros del circuito equivalente están expresados por:

=

+=

+=

eq

eqeq

eq

eq

RX

Tg

Xxx

RRR

1

1211

121

θ

λ

........ ( 2.26 ) Circuito Equivalente

E 1E 2

I p

I 1

I M

I 2

Fig. 2.1 Circuito equivalente exacto de un transformador de núcleo de hierro

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 32: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

32

2.4 Determinación de parámetros (condiciones nominales) Los parámetros de una máquina eléctrica son obtenidos a partir de la realización de pruebas de laboratorio, siendo estas:

- Prueba de cortocircuito. - Prueba de vacío.

Los parámetros de las máquinas eléctricas son obtenidos a condiciones nominales ( C.N. ), es decir en la prueba de cortocircuito se realiza a corriente nominal y en la prueba de vacío se aplica la tensión nominal 2.4.1 Prueba de cortocircuito (C.C): Con esta prueba se determinan los parámetros R1, R2, x1l, x2l.

Fig. 2.2 Circuito para la prueba de cortocircuito Procedimiento:

1. Se recomienda cortocircuitar el lado de baja tensión e instalar un amperímetro.

2. Se suministra la energía o corriente alterna por el lado de alta tensión (A.T), hasta conseguir que la corriente obtenida en el lado de Baja Tensión (B.T) sea la corriente nominal (INBT).

3. El valor de la tensión aplicada en el lado primario, para obtener la corriente secundaria equivalente a la nominal (INBT) es llamada Tensión de cortocircuito (Vcc)

100xVVU

N

cccc = Ucc: % tensión de C.C

4. La tensión de C.C porcentual esta comprendida en: Transformadores: 3% < Ucc < 15% Motores: 25% - 40%

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 33: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

33

Circuito Equivalente del Transformador: para determinar el circuito se requiere obtener los parámetros del transformador, es decir:

cceqcceqeq

cc

cceq jXRZ

IVZ +== ;

........... ( 2.27 ) Cálculo de Reqcc: W = I2Reqcc

21

I

WR

cceq =

121cceq RRR +=

............ ( 2.28 ) Se cumple:

2R

R

2R

R

cceq12

cceq1

=

=

21; 22

2

12

2

221

2

cceqRa

R

aRR

RaR

==

=

............ (2.29 )

análogamente obtenemos:

;2

2

12

1

cceq

cceq

XX

XX

=

=

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 34: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

34

21

22

2

12

2

221

2

cceqXa

X

aXX

XaX

=

=

=

.......... (2.30 )

2.4.2 Prueba de vacío (C. A.) Se determinan los parámetros Rp (resistencia de perdidas) y Xm ( Reactancia de magnetización) .

Fig. 2.3 Circuito para la prueba de vacío Procedimiento:

1. Se recomienda mantener a circuito abierto el lado de A.T. 2. Se suministra la energía o corriente alterna por el lado de B.T, hasta

conseguir, que la tensión aplicada en el lado de B.T, sea la tensión nominal (VNB.T).

3. El valor de la corriente en lado secundario para obtener la tensión secundaria equivalente a la nominal (VNB.T) es llamada corriente de vacío (Ic-a).

10000 x

II

iN

= ; i0: % de corriente en vacío.

4. La corriente de vacío porcentual esta comprendida en:

Transformadores núcleo de hierro: 2% < i0 < 10% Para Transformadores de núcleo de aire: i0 < 80%IN

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 35: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

35

Determinación de Rp: W = Ph + R2 I22 ………. ( 2.31 )

Ph = W - R2 I22 Ph = RP IP2 , 2P

hP I

P=R

E = RP IP 22 Ph

PP

P xREPR

REI =→=

h

2

P PER = ........... (2.32 )

Además:

ZIVE

jXRZ ; ZIEV

222

222222

−=

+=+= λ

........... (2.33 )

a.c21

22 VIWcos

VIWcos θ=θ→

=θ→=θ −

a.c

sccc θ≠θ

Luego: 2/12P

20m

mm )II(I;

IEX −==

............ (2.34 )

2

2

cc

cc

ccN

cci

IV

IV

=

ccNcc

cccc xI

IVV

=

2

2

........... (2.35 )

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 36: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

36

2.4.3 Prueba bajo carga Los Transformadores de núcleo de Hierro son diseñado y construidos para que trabajen a diferentes condiciones de carga, es decir las cargas pueden ser : resistiva, inductiva y capacitiva; según el tipo de carga los transformadores presentan unos indicadores operativos , como son : eficiencia y regulación.

Resistiva (R) : horno Predominante inductiva (XL): motor inducción

FACTOR DE POTENCIA Predominante capacitiva (XC): banco de capacitores.

- Potencia - Factor de Potencia - Resistivo: cosφ =0.0

CARGA

-Inductivo,capacitivo:cosφ <±1.0 Se realizan las pruebas bajo carga con ciertas consideraciones de las potencias y el factor de potencia, siendo estas según mostradas en el cuadro siguiente: .

100 KVA 25% 50% 75% 100% 110% - 120%cosφ 0,5 0,8 0,9 0,5 0,8 0,9 0,5 0,8 0,9 0,5 0,8 0,9 0,5 0,8 0,9

2.4.4 Pruebas especiales Estas pruebas son realizadas a transformadores de alta tensión (p.ej. 220 kV ) y niveles de potencia de cientos de MVA; siendo estas pruebas:

• Prueba a frecuencia industrial (50, 60 Hz) • Pruebas impulsionales ( alta frecuencias ). Simulaciones. • Pruebas de descargas parciales.

BiL: Nivel básico de aislamiento.

Por ejemplo, para realizar ensayos a transformadores de potencia de 220 kV, la Norma IEC recomienda tener un generador de 500 KV.

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 37: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

37

Estas pruebas especiales se realizan para transformadores mayores de 100 MVA a niveles de tensión de 220KV. Se debe de tener en cuenta el BiL (nivel básico de aislamiento): interno e externo 2.5 Eficiencia ( η ) En las máquinas eléctricas, la eficiencia es de importancia medirla por lo que nos indica la relación de potencia o energía que entrega la máquina eléctrica a la carga con respecto a la potencia o energía que absorbe de la fuente, dicho indicador operativo se expresa en porcentaje, siendo de la manera siguiente:

100xPP

entrada

salida=η

.......... (2.36 ) En toda máquina eléctrica real existe una potencia o energía de pérdida, por lo que está expresada por :

Pentrada = Psalida + Ppérdida ............ ( 2.37 ) Luego, reemplazando en la expresión de la eficiencia, tenemos:

100xPP

Pnperdidasalida

salida

+=

........... (2.38 ) La máquina eléctrica con mayor eficiencia creada por el hombre es el auto transformador , que alcanza eficiencia hasta el 99%.

eficiencia = f (Pot, cosφ) El Organismo Latinoamericano de Desarrollo de la Energía (OLADE), para Transformadores de distribución recomienda que, la eficiencia máxima se obtiene cuando el transformador se encuentra operando entre el 80 % al 120 % de su potencia nominal. nmáx e < 80% - 120% > PN

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 38: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

38

Las pérdidas de potencia o de energía de una máquina eléctrica depende del material a ser utilizado; cuya expresión esta dada por:

100E ; cos TD5

1

2

5

1

2.

xEE

xxHxSE

xHPxHxPEEE

perdTDiLiiNiTD

iiFeicuNiFeTDcuTDperd

+==

+=+=

=

=

ηφα

α

........... (2.39 ) Psalida = VL IL cosφL

Pperdida = Pnucleo + Pcu(bob)

PFe F(V)

eq22RI

f(I) Reflejado al primario, tenemos:

Req = R1 + R 12

ALR λ=

Por lo que, reemplazando las relaciones respectivas obtenemos:

eq

22FeLLL

LLL

RIPcosIVcosIV

++φφ

........... (2.40 ) La ecuación (2.40) nos representa la relación de la eficiencia para cualquier condición de carga, por lo que tomaría valores como se indican a continuación:

• Eficiencia máxima ( ηmaxima. ) • Eficiencia a plena carga ( ηp.c. ) • Eficiencia a un porcentaje de plena carga ( η%pc ) 50% p.c. - sub carga 110% p.c. - sobre carga.

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 39: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

39

El factor de Carga ( α ), expresa la relación existente de la corriente que absorbe la carga entre la corriente nominal del transformador, expresada por:

NN

IIII

222

2 ; αα == ...........( 2.41 )

Reemplazando la ecuación ( 2.40 ) en ( 2.41 ), obtenemos:

434 21NPcu

eqN22

2FeLN2L

LN2L

)RI(PcosIVcosIV

α++φαφα

............ (2.42 )

0 ; cos

cos2

2

2 =∂∂

++=

ααφαφα

η nPPIV

IV

cuFeLNL

LNL

........... ( 2.43 ) Para obtener la eficiencia máxima, se deriva la relación de eficiencia con respecto al factor de carga (

α∂∂ n = 0 ) o igualando las pérdidas en el fierro a las del cobre

a una condición de carga cualesquiera ( PfeN = α2 PcuN ), obteniéndoselo siguiente:

cuN

FeN

PP

=α ............ ( 2.42 )

2.5.1 Eficiencia durante todo el día (ηTD ) Para poder determinar la eficiencia durante todo el día ( ηTD ) en un transformador de núcleo de hierro se debe conocer y/o analizar el diagrama de carga diario y ver como ha ido desarrollando la tensión de carga ( VL ) y su factor de potencia ( cos φL ). El diagrama de carga diario deberá ser potencia versus tiempo.

TDTDTD

feTDsalidaTD

salidaTDTD PérdidaEnergiaEnergiaPP

P

Energia TD

+=

+= ηη

........... (2.43 )

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 40: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

40

Energía = Potencia x tiempo x cosφ En el cuadro adjunto, se muestra la variación de la potencia de la carga y de su factor de potencia durante todo el día, siendo: %PC 0% 50% 75% 100% 110% Pot. 0 50KVA 75KVA 100KVA 110KVA

Horas 6 6 6 3 3 CosφL 0 0,6 0,8 0,9 1,0 2.6 Regulación (%r) La regulación es un indicador operativo que expresa la relación existente entre la variación de la tensión de salida en la carga con respecto a la tensión sin carga; usualmente se indica en porcentaje, siendo:

.......... (2.44 )

100% xV

VVr

salida

salidaentrada −=

Asimismo, el porcentaje de regulación se puede expresar de la manera siguiente:

1) 100arg

2arg xV

VVr

ac

acvacio −=%

............. (2.45 )

2) 100xV

VVr

vacio

aargcvacio −=%

............. ( 2.46 )

3) 200

)cosusenu(senucosur2

LccrLccaLccrLcca

φ−φ+φ+φ=%

............ ( 2.47 ) En la ecuación (2.47 ) se tiene las relaciones siguientes:

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 41: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

41

cc

cccc

N

cccc

ccaccccr

ccrccaccccrccacc

IVZ

xVVu

uuu

uuujuuu

=

=

−=

+=+=

%100

)(

; )(;

2/122

2/122

........... (2.48 )

uI RV

x xII

uI RV I

x x

uP wattP KVA

ccaccN cc

N

N

N

ccaccN cc

P

N N

ccacuN

N

cuN

=

=

=

100

1001010

10

26 74 84

( )( )

........... (2.49 )

=θ −

cca

ccr1cc u

uTg

donde: ucc : Tensión de cortocircuito porcentual equivalente ucca: Tensión de cortocircuito porcentual de la componente activa. uccr: Tensión de cortocircuito porcentual de la componente reactiva.

Para una carga inductiva , se tiene la relación siguiente:

LTLTLeq

eq

LTeqeq

IZVV

IZVV

IZVIZVV

θθθθ

φθ

=→=−→+=

+=

−++=

0

)(

)cos(2)()(

121

212

12

21

12

12

212

212

21 4 34 21

............. (2.50 ) “Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 42: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

42

Por lo que, para regulación máxima se tiene: %Rmax φL = θT Para carga inductiva. Para porcentaje de regulación mínima se tiene: %Rmin φL ≠ θT 2.6.1 Regulación de tensión bajo carga Los transformadores de núcleo de hierro utilizados para los sistemas de distribución y de potencia, el devanado primario es construido con tomas variables para obtener la regulación de tensión variando el número de espiras de dicho devanado. En la práctica, las cargas a ser servidas se encuentran distantes del centro de generación o de las subestaciones transformadoras, por lo que es necesario regular la tensión del primario de los transformadores; comercialmente se proporciona las tomas siguientes:

a) ( ±2 x 2,5%)xV1

b) ( ±5 x 2,0%)xV1 c) ( ±10x 1,0%)xV1 .......... (2.51) Los transformadores presentan una impedancia equivalente, que al paso de la corriente eléctrica cuando se conecta la carga en el lado secundario se produce una caída de tensión, ocasionando una variación de la tensión en la carga por lo que es necesario variar la tensión de entrada del primario para garantizar que la tensión en la carga se mantenga constante, esta situación es dada cuando la solicitud de potencia de la carga es variable. Para el caso de un transformador que es representado como modelo eléctrico por una impedancia equivalente, al ser conectado en el lado secundario una carga a través de un conductor, la tensión en la carga se encuentra expresada por la ecuación fasorial siguiente: V Z Z I V

V Z Z I V

A T C L

A T C j

= + +

= + +

1

( ) L

........... (2.52 )

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 43: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

43

2.7 Calentamiento en las máquinas eléctricas En las máquinas eléctricas, una de las variables de importancia a ser medida y controlada es la temperatura, por lo que se requiere utilizar técnicas adecuadas para determinar los valores de temperatura en tiempo real en las partes constituyentes de una máquina eléctrica , como son : el núcleo magnético y las bobinas primarias (estator) y secundarias( rotor ). Existe un elemento utilizado para la medición de la temperatura en las máquinas eléctricas, conocido como: RTDS ( Detector Resistivo de Temperatura ). 2.7.1 Balance termodinámico Aplicando la primera ley de la Termodinámica, tenemos:

Pdt Cdt K a dtP PotenciaC CapacidadK Disipacion

= + −

( ):

::

θ θ

θ: Temperatura. Luego, obtenemos:

θ(t) = θa + θf (1 - e-t/T) ........... ( 2.53 ) Por ejemplo , para algunas máquinas rotativas , se tiene T: 5 periodo En la práctica existen diversos modelos termodinámicos para realizar un análisis riguroso de la temperatura en las máquinas eléctricas, donde se modelan las partes del rotor, estator, núcleo y la relación entre ellos y el medio ambiente. VALORES POR UNIDAD (P.U.) Los valores por unidad son de mucha utilidad en los procesos de cálculo en el campo de la ingeniería eléctrica, en particular en las máquinas eléctricas, por lo que se obtienen resultado numérico con menor porcentaje de error. La expresión del valor por unidad esta dado por la relación existente entre el valor real y el valor base de la variable o parámetro a ser evaluado, siendo dada por:

Base

alup VVV Re

. =

........... (2.54 )

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 44: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

44

VReal : Valor medido.

VBase : Valor de referencia.

Base

alup Z

ZZ Re. = . .......... (2.55 )

ZVS

n XZZBase

Base

Basep u sistema p u propia

Bpropia

Bsistema= =

2

; . . . .

.......... (2.56 )

2.9 Autotransformadores Son máquinas eléctricas que presentan un solo bobinado en cada fase del autotransformador, existiendo una conexión física entre la entrada y la salida de la potencia o energía de cada bobinado. Los Autotransformadores tienen diversas aplicaciones como son: en los Sistemas eléctricos de potencia y en el arranque de motores de inducción. Para el arranque de motores de inducción 3φ mediante la utilización por autotransformador 3φ, la norma VDE 0530 recomienda que se aplique una tensión del 50% del valor de la tensión nominal, es decir: VAplicada ≈ 50% Vn Lo indicado por la Norma VDE 0530 es referencial por que, en algunos casos para motores de inducción trifásicos de gran potencia ( p.ej. 1 200 kW ), la tensión aplicada para el arranque sería del 75 % de la tensión nominal, esto es debido a que en el arranque el motor tiene que ser capaz de vencer su gran masa inercial. 2.9.1 Circuito equivalente El autotransformador de núcleo de hierro, de acuerdo al análisis de las ecuaciones de equilibrio electromagnético, presenta los valores de su parámetros dadas por:

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 45: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

45

Z R jX

R R R a

X X X a

Z Z

eq autotransf eq autotransf eq autotransf

eq autotransf

eq autotransf

eq autotransf eq transf

. .

.

.

. .

( )

( )

= +

= + −

= + −

<

1 22

1 22

1

1λ λ

.

............ (2.57 ) 2.9.2 Ventajas y Desventajas con respecto al transformador

1.- El auto transformador presenta menor impedancia equivalente que el

transformador 2.- El auto transformador presenta una mayor regulación de tensión que el

trabajo. 3.- El auto transformador presenta una mayor capacidad de corriente de corto

circuito. 4.-El auto transformador presenta una mayor eficiencia que el transformador (>

99%). Ejemplo: Se tiene un transformador monofásico de 1,0 KVA, 220/110, 60Hz. Se requiere hacerlo trabajar como un autotransformador. Calcular la máxima potencia a entregar sin sobrecargarse.

KVAKVAxKVA

ampIII

ampI

ampI

bcbaac

bc

ba

39986,21000

63,13330

.63,13

.54,4220

1000

.09,9110

1000

arg

≈==

=+=

==

==

“Estudio de las Máquinas Eléctricas. Simulación Digital”. Junio 2002

Page 46: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

46

CAPITULO 3

TRANSFORMADORES EN SISTEMAS TRIFÁSICOS

3.1 Introducción Los transformadores trifásicos son aquellas máquinas eléctricas que tienen

múltiples aplicaciones en el sector eléctrico, siendo utilizados en: Centrales

Eléctricas, centros de transformación, subestaciones de distribución, plantas

industriales, electrificación urbana y rural, centros comerciales y otros. Debido a su

importancia se requiere realizar un análisis del comportamiento de operación bajo

carga cuando se encuentran conectados en paralelo dos o más unidades,

asimismo de especificar las características técnicas en cuanto a su tipo y grupo de

conexión para realizar una correcta puesta en paralelo e indicar las condiciones de

las mismas.

Los transformadores trifásicos pueden ser de dos arrollamientos ( primario y

secundario ) y de tres arrollamientos ( primario, secundario y terciario ). A

diferencia de los transformadores monofásicos, presentan otras características sus

arrollamientos ,como son:

a.- Transformadores trifásicos de dos arrollamientos.- están denotados por:

Nivel de tensión : V1/V2

Potencia : kVA , MVA

Impedancia porcentual de cortocircuito : %Xpu

Tipo y grupo de conexión : Ynd11

b.- Transformadores de tres arrollamientos.- están denotados por:

Nivel de tensión : V1 / V2 / V3

Potencia : S1 / S2 / S3

Impedancia porcentual de cortocircuito : %X1 / %X2 / %X3

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 47: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

47

Tipo y grupo de conexión : Ynynd5

A continuación, se indican una relación de características que debe tenerse en

cuenta para la correcta especificación técnica de los transformadores trifásicos,

que serán utilizados en las diversas instalaciones eléctricas

3.2 Especificaciones técnicas Para la solicitud de adquisición de los transformadores trifásicos se deberán tener

en cuenta los criterios de operación para lo cual se indicaran la potencia, nivel de

tensión, condiciones de operación, altitud, nivel de aislamiento entre otros, es decir

las características técnicas siguientes:

1.- Potencia: kVA, MVA

2.- Nivel de tensión: kV

3.- Frecuencia : Hz.

4.- Pérdidas: W, kW

- núcleo

- cobre

5.-Tipo de conexión: Estrella- delta

Delta-estrella.

6.- Grupo de conexión: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12

7.- Porcentaje de tensión de cortocircuito: %µ

8.- Tipos de refrigeración: ONAN, ONAF.

9.- Nivel de altura de trabajo: msnm.

10.- Características del neutro: - aislado.

- directamente a tierra.

- a través de impedancia.

11.- Nivel básico de aislamiento ( BIL): kV

- Interno.

- Externo. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 48: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

48

12.- Regulador de tensión bajo carga: ( +-5x2,0 % )V1

( +-10x1,0 % )V1

13.- Sistema de Protección: - Tierra (Puesta a Tierra).

- Relé diferencial

3.3 Conexionado de transformadores trifásicos Los transformadores trifásicos para ser conectados en paralelo, uno de los

requisitos que se deben tomar en cuenta es el tipo y grupo de conexionado, por lo

que se debe verificar su correcta conexión para evitar que se presenten

diferencias de potenciales entre diferentes puntos de una misma fase .

3.4 Tipos y grupos de conexión Dentro de las características de los transformadores trifásicos se encuentran el

tipo y grupo de conexión que son de importancia para la operación de dos o más

transformadores conectados en paralelo, siendo descrito de la manera siguiente:

3.4.1 Tipo de conexión.- Los tipos de conexión pueden ser estrella, delta, zigzag,

delta abierto o la combinación de cualesquiera de los mencionados, en el

siguiente cuadro se establecen los diversos tipos de conexionado:

TIPOS AT

(mayúsculas) BT (minúsculas)

- Estrella – estrella: Y y - Estrella – delta: Y d - Delta – estrella: D y - Delta – delta: D d - Estrella – zigzag: Y z - Delta – zigzag: D z - Delta - abierto

Cuadro 3.1 Tipos de conexionado

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 49: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

49

Dependiendo de la utilización de los transformadores trifásicos son requeridos los

tipos de conexionado por ejemplo: en los centro de generación se tiene el tipo

delta- estrella, en los centros de transformación del tipo estrella- delta, para

electrificación rural del tipo delta abierto.

Fig. 3.2 tipos de conexionado a) Estrella-estrella, b) Delta-delta 3.4.2 Grupos de conexión .- De acuerdo a las recomendaciones de la Norma

IEC, se tienen en cuenta los grupos de conexión siguientes:

Grupos Índice horario Grupo I 0, 4, 8, 12 Grupo II 2, 6, 10 Grupo III 1, 5, 9 Grupo IV 3, 7, 11 Como podemos observar, los grupos I y II son aquellos que tienen los índices

pares y los grupos III y IV son aquellos que cuentan con los índices impares. En la

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 50: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

50

práctica para realizar la puesta en paralelo de dos o más transformadores de un

mismo grupo o de diferentes grupos se deberán realizar corrimientos o

permutaciones de cada fase, según sea el caso.

Cada índice representa el desfase vectorial existente entre la tensión primaria con

respecto a la tensión secundaria, por lo que podemos denotar dos características

que son :

a. Permutación Se deben realizar entre los transformadores que presentan índices horarios de

diferentes grupos, por ejemplo:

- Grupo III de índice 1 se permuta ( 180º ) con el grupo IV de índice 11

- Grupo III de índice 5 se permuta ( 180º ) con el grupo IV de índice 7

b. Corrimiento Se deben realizar entre los transformadores que presentan diferentes índices

horarios de un mismo grupo, por ejemplo:

- Grupo III de índice 1 se realiza corrimiento ( 120º ) con el de índice 5.

- Grupo III de índice 11 se realiza corrimiento ( 120º ) con el de índice 7.

En el caso que se presentara realizar permutación y corrimiento a un

transformador trifásico o banco de transformador trifásico conformado por

transformadores monofásicos, como regla práctica se deberá tomar en cuenta lo

siguiente:

1.- Primero, se debe realizar corrimiento solamente en el lado secundario.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 51: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

51

2.- Luego se debe realizar permutación en el lado primario así como en el lado

secundario.

Regla: 1º Corrimiento : 120º 2º Permutación : 180º Por ejemplo, dentro los transformadores utilizados comercialmente de los grupos

III y IV, tenemos:

Grupo III : 1 5 Grupo IV : 7 11 A continuación presentamos algunos casos: A.- Corrimiento:

1 5 corrimiento 7 11 B.- Permutación 1 11

permutacion 7 5 C.- Corrimiento y permutación

1 7 ; 5 11 1°) 1 5 : Corrimiento 2°) 5 7 : Permutación “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 52: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

52

3.5 Banco de transformadores trifásicos Los bancos de transformadores trifásicos son utilizados en los sistemas eléctricos

de potencia como son en los centrales eléctricas, en los centros de transformación

y subestaciones de distribución. Pueden ser utilizados como una unidad trifásica o

un banco de transformadores trifásicos conformado por unidades monofásicas.

3.5.1 Casos que se presentan en el Conexionado de banco de transformadores A continuación se plantean los posibles casos en que se presentan para los

conexionados de los transformadores o bancos trifásicos conformados por

transformadores monofásicos, siendo dados por:

a.- Se tiene como dato el conexionado, es decir el tipo y grupo lo que se solicita es

el conexionado físico de las bobinas, ejemplo Dy1.

b.- Se tiene el conexionado físico de las bobinas del transformador o banco

trifásico de transformadores monofásico y se solicita el grupo de conexión a que

pertenece.

Fig. 3.3 Banco trifásico tipo D-y conformado por transformadores monofásicos

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 53: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

53

3.- Se tiene el tipo de conexión y a través de ensayos de laboratorio, se solicita el

grupo de conexión, esta parte es conocida como la determinación experimental del

índice de conexión.

3.6 Pruebas a banco de transformadores trifásicos Para obtener los parámetros eléctricos de los bancos de transformadores trifásicos

es necesario realizar las pruebas en laboratorio siendo las pruebas de cortocircuito

y de vacío ( circuito abierto ), estos parámetros son utilizados para establecer el

circuito equivalente por fase de los bancos de transformadores y utilizados en el

análisis de la operación del transformador conectado bajo carga, ya sea como

una unidad trifásica o conectado en paralelo con otras unidades trifásicas.

3.6.1 Prueba de corto circuito Esta prueba se realiza para obtener los parámetros R1, R2, X1 e X2 del banco

trifásico, se recomienda aplicar tensión por el lado de alta tensión y cortocircuitar

el lado de baja tensión, según mostrado en la figura 3.4.

Fig. 3.4 Esquema eléctrico para la prueba de cortocircuito

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 54: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

54

3.6.2 prueba de vacío Esta prueba se realiza para obtener los parámetros Rp, e Xm del banco trifásico, se

recomienda aplicar tensión por el lado de baja tensión y mantener a circuito

abierto el lado de baja tensión, según como se muestra en la figura 3.5.

Fig. 3.5 Esquema eléctrico para la prueba de circuito abierto 3.7 Puesta en paralelo de transformadores En las diversas Instalaciones Electromecánicas, existen transformadores

operando como una unidad trifásica o transformadores conectados en paralelo,

dependiendo de las características de operación de las cargas. Para la operación

de dos o más unidades de transformadores conectados en paralelo, se deberán

tener en cuenta las condiciones siguientes:

1. Igualdad de Potencia (KVA)

2. Igualdad de Frecuencia (Hz)

3. Igualdad de Tensión de Cortocircuito Porcentual

4. Igualdad de relación de Transformación

5. Igualdad de Grupo de conexión.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 55: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

55

En la práctica es poco probable que se cumpla con los cincos puntos planteados

por lo que, se deberán establecer medidas correctivas para garantizar un buen

conexionado para la puesta en paralelo de dos o más transformadores

aρ bρ

cρAρ

cρAρ

aρ bρ

aρ bρ

aρ bρ

w v u

11u

w

W V U

5

w v u

u

v

W V

w U

W V U

1 r

v s

t w

W V

u U

w v u

W V U Banco Yd1 : Grupo III (Referencia)

Banco

Yd5 : Grupo III Banco

Yd11 : Grupo IV v Fig. 3.6 Conexionado físico de las bobinas de los bancos de transformadores “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 56: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

56

Yd11 U V W u v w

U V W u v w

U V W u v w

Yd1 Yd5

R S T

r

s t

Fig. 3.7 Conexionado de la puesta en paralelo de 3 bancos de transformadores 3.8 Reparto de carga Cuando dos o más transformadores son conectados en paralelo, para su análisis

de la contribución de potencia a la carga es necesario establecer las condiciones

de cada unidad transformadora; es decir su potencia, impedancia porcentual de

cortocircuito y su relación de transformación.

Fig. 3.8 Conexionado en paralelo de dos transformadores “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 57: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

57

Para determinar la contribución o aporte de potencia de cada unidad

transformadora hacia la carga, es importante establecer el circuito equivalente por

fase, según mostrado en la fig. 3.7 donde se debe indicar todas las variables

eléctricas y los parámetros por fase. En el caso de los transformadores trifásicos

se deberá tener en cuenta que las relaciones de transformaciones serán por fase .

Fig.3.7 Circuito equivalente por fase del conexionado en paralelo Con respecto a la relación de transformación, se presentan dos casos, siendo:

CASO 1. Cuando los transformadores presentan relación de transformación iguales, es decir:

a1 = a2 .....= an

Del análisis circuital se demuestra que:

SY S

Y SxSK

K NK

i Nii

n L=

=∑

1

........... ( 3.1 ) Donde:

Y K : Admitancia en p.u del transformador k-esimo.

SNK : Potencia nominal del transformador k-esimo.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 58: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

58

SL : Potencia aparente de las cargas.

CASO 2.- Cuando los transformadores presentan relación de transformación diferentes, es decir:

a1 , a2 , ….. , an. son diferentes..

En la práctica esta situación planteada se presenta con mayor frecuencia, por lo que amerita su análisis de reparto de carga resolviéndose aplicando las ecuaciones de mallas. Siendo las siguientes:

Malla `1´ : ( )( )Va

Z I V L1

11 1

φ

φφ φ= + φ …....... ( 3.2 )

Malla `2´ : Va

Z I V L1

22 2

φ

φφ φ φ= + …....... ( 3.3 )

. . .

Malla `n´ : φLVIZaV

nφnφ

1φ += ...........( 3.4 )

En el nodo N se cumple:

I1φ + I2φ + ….. + Inφ = ILφ .......... ( 3.5 ) El conjunto de ecuaciones formuladas, se plantean en forma matricial de la manera siguiente:

[ V - LV ] φ = [Z] [I] φ .......... ( 3.6 ) a Asimismo, la expresión de la potencia sería:

φφφ KiK IVS 1= φ .......... ( 3.7 )

S3φK = 3SφK .......... ( 3.8 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 59: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

59

Como un caso particular desarrollamos las ecuaciones de equilibrio para

determinar la potencia que entregarían cada transformador a la carga, siendo las

siguientes:

Malla `1´ : φφφ

φ

φLVIZ

a+= 11

2

1V ……….. ( 3.9 )

Malla `2´ : φLV+= 2φ2φ

1φ IZaV …..........( 3. 10 )

Ecuación de nodo:

I1φ + I2φ = ILφ ……..... ( 3. 11 ) Cuando dos transformadores de diferentes relaciones de transformación son

conectados en paralelo, se presenta la corriente circulante por lo que la corriente

que contribuye cada unidad trifásica tiene dos componentes que son : la corriente

de carga ( ) y la corriente circulante ( I ), es decir: cargaI circulante

circulantecarga1φ III += ……..... ( 3. 12 ) Reemplazando la ecuación ( 3.11 ) en las ecuaciones ( 3.9 ) y ( 3.10 ) y reagrupando términos obtenemos las corrientes φ21φ I e I , es decir:

)ZZ(

Va1

a1

I)Z(Z

ZI

)ZZ(

Va1

a1

xIZZ

ZI

2φ1φ

2φ1φLφ

2φ1φ

1φ2φ

2φ1φ

2φ1φLφ

2φ1φ

2φ1φ

+

−+

=

+

++

=

........... ( 3.13 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 60: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

60

Para determinar la expresión de la tensión primaria φ1V , la expresión de la corriente 1φI es reemplazada en la ecuación (1) y reagrupando términos, tenemos:

+

++=

φ

φ

φ

φ

φφφφφφφ

1

12

2

11

12

11

1

2

11

1)(

aZ

aZ

VZZIZZV

LL

............. ( 3.14 ) Es importante tener en cuenta en los transformadores que, la relación de

transformación por fase con respecto a la relación de transformación trifásica

depende del tipo de conexionado, es decir:

Para el caso de tipo de conexión Y-d, tenemos:

3φ1φ1φ3φ

a

2

1

2

1

L2

L13φ

31a3a

VfVf3

VfVf3

VVa

∂∂ =→=

===

434 21

............. ( 3.15 )

............. ( 3.16 ) Para el caso de tipo de conexión D-y, tenemos:

3φ1φ1φ3φ

a

2

1

2

1

L2

L13φ

3aa3

1a

31

VfVf

Vf3Vf

VVa

∂=→=

=== x

321

............. ( 3.17 ) “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 61: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

61

3.9 Sistemas eléctricos desbalanceados En los sistemas eléctricos de potencia y en las máquinas el eléctricas, se

presentan diversos tipos de contingencias o eventos de características eléctricas

y/o mecánicas, ocasionando transitorios en el sistema o máquina eléctrica; por lo

que amerita su análisis de los sistemas desbalanceados.

Uno de los métodos de análisis de sistemas desbalanceados es mediante la

componentes simétricas, planteándose circuitos equivalentes para los diversos

componentes del sistema eléctrico, como son: generadores, líneas de transmisión,

motores, cargas, transformadores de potencia y otros. Una variable vectorial

puede ser expresada en función de tres componentes, es decir:

),,( 021 VVVfV = Donde:

V1: Componente de secuencia positiva ( directa ).

V2: Componente de secuencia negativa ( inversa ).

V0: Componente de secuencia cero ( homopolar ).

La configuración del neutro en un sistema o máquina eléctrica, puede ser :

· Neutro aislado.

· Conectado directamente a tierra.

· Conectado a tierra mediante una impedancia ( nZ )

3.5 Transformadores de tres arrollamientos Son aquellos transformadores que presentan en su estructura 3 arrollamiento,

siendo estas:

Arrollamiento primario (A.T.)

Arrollamiento secundario ( M.T)

Arrollamiento terciario ( B.T)

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 62: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

62

En su forma constructiva el devanado terciario es instalado cercano al núcleo

magnético, el devanado secundario a continuación del primario y por último el

devanado terciario. Son utilizados generalmente en los sistemas eléctricos de

potencia (SEP).

Las especificaciones técnicas son similares a los transformadores trifásicos, con el

adicional que se deben especificar las características del tercer arrollamiento, es

decir:

V1 / V2 / V3 ; 220 / 60 / 10KV

S1 / S2 / S3 ; 30 / 10 / 10 MVA

%X1 / %X2 / %X3 ; 3,5% / 4,0% / 4,5% 3.10.1 Circuito equivalente Para establecer el circuito equivalente del transformador de tres arrollamiento,

previamente es conveniente determinar las reactancias porcentuales de cada lado,

esto es debido a que los fabricantes proporcionan las reactancias correspondiente

vista entre dos lados del transformador, para lo cual se plantean las ecuaciones

siguientes:

XPS = XP + XS …..…..( 3.18 )

XPT = XP + XT …..…..( 3.19 )

XST = XS + XT ……....( 3.20 )

Resolviendo, obtenemos las reactancias siguientes:

2

2

2

PSSTPTT

PTSTPSS

STPTPSP

XXXX

XXXX

XXXX

−+=

−+=

−+=

............ ( 3.21 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 63: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

63

CAPÍTULO IV 4. CONVERSIÖN DE ENERGIA ELECTROMECÁNICA 4.1 Introducción

El análisis de la Conversión de energía electromecánica es de importancia en el

estudio de las máquinas eléctricas, por lo que se establecen las ecuaciones de

equilibrio electromecánicos de la máquina eléctrica lográndose comprender la

transformación de la energía eléctrica en energía mecánica y viceversa. Dentro las

características de las máquinas eléctricas, podemos establecer lo siguiente:

A.- Generadores eléctricos, de acuerdo a su conexionado y tipo de generación de

tensión, tenemos:

- Generadores AC ( Alternadores ) : Síncronos y Asíncronos

- Generadores DC.

B.- Motores eléctricos, de acuerdo a su conexionado y tipo de fuente de

alimentación de tensión, tenemos:

- Motores AC A) Asíncronos : -Anillos rozantes: Rotor Bobinado.

-Jaula de ardilla

B) Síncronos: compensadores

- Motores DC - Shunt.

- Serie.

- Excitación Independiente.

- Coumpound.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 64: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

64

4.2 LEY UNIVERSAL DE FARADAY La Ley Universal de Faraday es aplicable para el estudio de los generadores

eléctricos, siendo expresada por:

∫ ∫+=

+=

S wxri

rotacionciontransformai

dBxvxdStBe

eee

6

. λ∂∂

............ ( 4.1 )

−==

)cos(cos

max

0

αα

wtBBBB

B ........... (4.2 )

fresult = fcampo µ fmecan. ( B variable en el tiempo ) ............ ( 4.3 )

Cuando B es constante la frecuencia inducida es la misma que la máquina prima. 4.3 Sistemas eléctricos y mecánicos Para el análisis de la Conversión de energía electromecánica, se requiere tomar

en cuenta : los elementos puros, variables de estado, funciones estado energía y

coenergía siendo expresados en el cuadro siguiente:

SISTEMA ELEMENTO SIMBOLOGIA VARIABLES

DE ESTADO FUNCIONES DE ESTADO

Inductancia L λ , q Wm, W´m Eléctrico Capacitancia C λ , q Wm, W´m Conductancia G B.1 Traslación Mecánico Masa M P , x T , T´ Elástico K P , x V, V´ B.2 Rotación Inercia J l , θ T , T´ Elástico Ko l , θ V, V´

Cuadro 4.1 representación de las variables y funciones de estado de energía y

Coenergía. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 65: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

65

4.3.1 Análisis para un elemento inductivo En las máquinas eléctricas rotativas tales como generadores y motores tienen arrollamientos o bobinas en el estator y rotor , por lo que existe un predominio numérico del valor del parámetro inductivo; siendo desarrollado como variable de estado. El área encima de la curva representa la energía magnética: Wm El área debajo de la curva representa la coenergía magnética: Wm´. (Wm´): La coenergia magnética no tiene un significado físico pero si matemático.

...............(4.4)

........... (4.5 )

o

mm

o

m

o

m

o

m

o

m

qWW

qdWqddW

dqWdqdW

λ

λλ

λλ

=+

=→=

=→=

1

11

Fig. 4.1 Representación grafica de la energía y coenergía para un elemento

inductivo.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 66: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

66

Elemento inductivo:

Ld

d qd Ldo

o= → =

λλ q ............ (4.6 )

∫∫

=

⇒=

=⇒=→=

oo

m

ommooo

m

qdxqW

qfL

WWLinealcteLqLdqdqxW

λ

λλ

),(

Lineal No)(*

)(*),(

1

1

............ (4.7 )

........... (4.8 ) Si L = cte.

W x Lqm

o( , )λ =

12

2

........... (4.9 )

4.3.2 Análisis para un elemento de elasticidad y masa Ecuaciones de equilibrio mecánico en función de estado de energía. Elemento elasticidad, tenemos:

V Energia Potencial pa X dXo

a a

La

( ) = ∫ 1 1

0

( )

)()( XapXaXaV o

a=∂

∂ Fuerza sobre el resorte.

Para el elemento masa:

∫∫ ∫

∫∫ ∫

=

=→=

=→=

bX

bo

bo

b

oo

oo

XdXpT

xpdTxpddT

dpxTdpxdT

011

11

11

θ

............ (4.10 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 67: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

67

T

Xp Xo

b

b

o

b

1

= →( ) ob

b

pXT

dtd

=

∂∂ 1

Fuerza sobre la masa. ............ (4.11 )

Por el equilibrio de fuerzas: f(t): Fuerza sobre el resorte, Fuerza sobre la masa.

+

∂=

b

oX

Tdtd

XaXaVtf

∂∂ 1)()( ........... ( 4.12 )

Puerta: Es aquel punto por el cual ingresa o sale la energía. 4.4 Forma restringida de la ecuación de Lagrange Para el elemento de elasticidad:

(V X X p X X dXo

K K( , ,.....) , ,.....α β α β= ∫∑1

1 1 ) 1 ........... ( 4.13 ) Para el elemento de masa:

T X X p X X d Xo

a

o

b K

o

a

o

b

o

K

X

K

oK

1 11

0

( , ,.....) , ,.....=

∫∑ ........... ( 4.14 )

Por lo tanto la ecuación general, resulta:

ddt

T

XX X X

V X X XX

QK

o o o

nn

KK

∂∂

1

0 1 21 2, ,.....,

( , ,....., )

+ =

........... ( 4.15 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 68: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

68

Como ejemplo de aplicación, analizaremos para un caso donde un motor eléctrico es conectado a una carga, se establecen las ecuaciones de equilibrio. QK: Fuerza sobre el nodo ´K´. Coenergia Cinética del Sistema:

T do o

g

o o o

i1

1 2 1 2

1

θ θ θ θ θ, ,

=

∫∑ λ ........... ( 4.16 )

Energía Potencial (elemento elástico)

V d( ) ( )θ θθ

3 31

31

31

0

3

= ∫ λ θ

= J θ

........... ( 4.17 )

Considerando elementos lineales:

λ λ1 1 1 2 2 2= Jo oθ ; .......... ( 4.18 )

Reemplazando en la expresión para obtener T´, se tiene:

T Jo o

111

21

1 1

2

2 2

212

12

( , )θ θ θ θ= + J ......... ( 4.19 )

Para el elemento elástico, se tiene:

VK

( )θθ

321

2= θ3 ......... ( 4.20 )

Al hacer las uniones mecánicas tenemos:

213

1

oo

b

o

a

oo

b

o

a

o

a

oo

θθθθθ

θθ

θθ

−=−=

=

=

........ ( 4.21 )

En las expresiones de T´, V se obtiene:

( )

T J

VK

o

a

o

b

o

a

o

b

a b a b

11

2

2

2

2

12

12

12

( , )

( , )

θ θ θ θ

θ θ θ θθ

= +

= −

J

........ ( 4.22 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 69: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

69

Fuerzas externas: Se analiza para un motor eléctrico conectado a una carga, siendo expresadas por:

Motor: T1 = θa ........ ( 4.23 )

Carga: T2 = -θb ........ ( 4.24 ) Luego reemplazando en la ecuación restringida de Lagrange, tenemos: Para la coordenada θa:

JK

To

a a b1

0

1

1θ θ θ

θ+ − =( ) (Torque electromagnetico) ........ ( 4.25 )

Para la coordenada θb:

JK

To

b a b2

0

21

θ θ θθ

+ − =( ) − ( torque de la carga) . ........ ( 4.26 )

4.5 Determinación de la fuerza mecánica a través del principio de los

trabajos virtuales. La primera Ley de la Termodinámica, establece:

)( o

MomentoMTx

WpWWdtxpdtqneticoElectromag

Torque

n

fuerza

o

me

oooo===→∆+∆=+ λ

∂∂λ

............ ( 4.27 )

Torque ElectromagneticoT = [i][G][i]t

T K iT K i i

ds r

==

φγ1 sen

.......... ( 4.28 )

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 70: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

70

además:

dW xW

dWx

dx q dWx

dxmm m

om( , ) . . .λ

∂∂λ

λ∂∂

λ∂∂

= + = + ......... (4.29 )

dW q xWq

dqWx

dx dqWx

dxee e

oe( , ) . . .= + = +

∂∂

∂∂

λ∂∂

........( 4.30 )

Reemplazando ( 4.29 ) y ( 4.30 ) en ( 4.27 ), obtenemos:

λ λ∂∂

λ∂∂

o o oe

omdq pdx dq

Wx

dx q dW

xdx

+ = + + +. . ........ (4.31 )

pWx

qddx

Wx

o

fuerza

eo

m= + +∂∂

λ ∂∂

........ (4.32 )

La ecuación (4.32 ) representa la expresión general de la fuerza mecánica de origen electromagnética.

Fig. 4.2 Máquina simple reluctancia con una fase y dos polos en el estator y rotor

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 71: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

71

Fig. 4.3 Posición alineada

Fig. 4.4.Posición desalineada

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 72: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

72

Fig. 4.5 Variación de la inductancia y torque con la posición del rotor.

Fig. 4.6 Variación de la inductancia, corriente, flujo concatenado y fem con la

posición del rotor:

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 73: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

73

Fig. 4.7 Cálculo del flujo distribuido por el análisis de elemento finito

Para el caso de la influencia de elementos de almacenamiento de energía electromagnética, tenemos:

pWx

x pWx

q x

W W q

om

om

o

m m

o

= → = −

+ =

∂∂

λ∂∂

λ

( , ) ( , )1

1

........... (4.33 )

..........( 4.34 ) “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 74: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

74

4.6 Sistemas de excitaciones Las máquinas eléctricas son sometidas a excitaciones del tipo mecánica y eléctrica, se denomina puertas al punto por donde sale o ingresa la energía. Se tienen las excitaciones del tipo: simple, doble y múltiple. 4.6.1 Excitación Simple δ

Wr

0

i

N

Fig. 4.8 Máquina eléctrica reluctante

X

ο

q

ο

λ

K

3,0 Cm

3,0 Cm

N

Fig. 4.9 Dispositivo electromecánico de excitación Simple. “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 75: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

75

A continuación se desarrolla la expresión de la fuerza, para lo cual se establecen las ecuaciones siguientes:

f po

= = ∂ λ W ( ,x)m ........... ( 4.35 )

T Mθ θ ∂ λ θ= = W ( , )m ............ (4.36 )

dW d q W q x d qm

o

m

o o1 1= → = ∫λ ( , ) λ ............ (4.37 )

De la configuración del circuito magnético de la figura 4.9, tenemos:

o

ggmm

o

qNHH

qNNiH

=+

==∑λλ

λ

2 ........... (4.38 )

Por continuidad de líneas de flujos magnéticos, se tiene:

mg

ng

ggggmm

gm

AuAH

AHuABAB

β

φφ

=

==

=

0

0 ...........( 4.39 )

Reemplazando la ecuación (4.39 ) en la ecuación ( 4.38 ), obtenemos:

HA

u AB Nm m g

n

gm

oλ λ+ =2

0q ...........( 4.40 )

ββ

λ φ βλ

β

β

m m m mm

m

m m mn

m

mg

n

gm

o

m

o

m

mg

n

g

u H Hu

N NB ANA

uA

u ANq

Nq

uA

u A

= → =

= = → =

+

=

=

+

λλ

λλ

2

2

0

0 ........... ( 4.41 ) “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 76: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

76

luego:

λ

λλ

=

+

=

+

→ =

+

=

NANq

uA

u A

A N q

uA

u Aq

A N

uA

u A

L

n

o

m

mg

n

g

n

o

m

mg

n

g

on

m

mg

n

g

λλ

λλ

λλ

2

2 2

0

2

0

2

0

........... ( 4.42 )

.......... ( 4.43 )

Fig. 4.10 Característica λ – qº para diferentes longitudes de entrehierro

Para un sistema lineal, se tiene:

p qdLdX

o o= =

12

2 ∂∂ W X

m

........... (4.44 ) “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 77: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

77

Luego:

p qd

dXA N

uXA

u A

o on

m

m

n

g

=+

12 2

2

0

λ ............. ( 4.45 )

Para un sistema no lineal , se tiene la relación siguiente:

H C Cm m= +0 13β β m ........... ( 4.46 )

Para determinar la fuerza, se deberá obtener la energía o coenergía del sistema y posteriormente derivar con respecto a la posición espacial.

Fig. 4.11 Lugar geométrico de operación del sistema a corriente constante

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 78: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

78

Fig. 4.12 Lugar geométrico de operación del sistema a flujo constante 4.6.2 Excitación doble

Fig. 4.13 Dispositivo electromecánico de excitación Doble “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 79: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

79

De acuerdo a la figura 4.13 se plantean las ecuaciones de equilibro electromagnético, siendo estas: Para el devanado estatorico “1”:

(t))()(

, )()(

11111

1111

dtdtqRtV

NdtdtqRtV

oo

oo

ψλ

ψφλλλ

+==

==+==

............( 4.47 )

............ (4.48 ) Además:

θθλ

λ

ψ

ψψψ

ddMwq

dtqdM

ddLwq

dtqdLtqRtV

dtd

qMqLdtdtqRtV

dtd

qMqL

r

oo

r

oo

o

ooo

oo

221

11

11111

2111111

2111

12111

)()(

)()(

++++==

++==

+=

+=

.............. ( 4.49 ) Para el devanado rotórico “2”:

θθλ

ddMwq

dtqdM

ddLwq

dtqdLtqRtV

dtd

r

oo

r

oo

o

112

22

22222 )()( ++++==

............ (4.50 )

dW q d

W q d

m

o

m

o

=

= ∫

λ

λ∂θ

; T = Wd

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 80: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

80

Para la determinación del acoplo inductivo, de las ecuaciones anteriores, se tiene:

λθ θ

1 1 1 1 1 11

2 2( ) .t R q dt L d q q WdLd

dt Md q q WdMd

dto o o

r

o o

r= + + + +∫ ∫ ∫ ∫∫

......... (4.51 ) La característica de la inductancia puede ser:

a. Constante b. K1 + K2 cos 2θ

c. a b q cqo o

+ +1 12

Para el análisis de las máquinas eléctricas se presentan varios casos, siendo estos: Caso I.-

221122

)(11

K=L K=L

. DCmotor

cosM

DC

o

DC

o

V

IndependExcitacionMV

=

==

λ

θλ θ

Caso II.-

q qConexion seria

o o

1 2= , V M = K -K cos2 Motor DC

DC ( ) 3 qθ θ

Caso III.-

constante L ,L

induccion deMotor cos2 b+a=M ;coswt =(t) , 0

21

)(

max12

θλλλ

θ

oo=

Para el análisis de la velocidad, se tiene:

−=

SentidoModulo

Variable

teconswr

tan

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 81: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

81

Caso IV.-

λ

λ

O

O

2

1

=

=−

V

TensionFrecuencia

DC

==

)(),,(

,.

rFrec

wffwfV

fVθβ

Donde la velocidad puede ser:

fwPww

wwww

w ss

rs

rr Π==

<−>−

2 ; ;

−−

tan

VariableteCons

wr

Caso V.-

wtcos max2

Oλλ =

<−>−

s

rs

rr

wwww

w

rmecc

r

cr

teresul

fff

ffffwfV

fV

±=

==

),(),,(

,tan

θβ

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 82: Maquinas Electricas - UNI

C A P I T U L O V

EL CAMPO MAGNETICO EN EL ENTREHIERRO

El objetivo del presente capítulo es plantear las ideas básicas necesarias para abordar en profundidad el estudio de las máquinas eléctricas de corriente alterna. Una de la funciones principales de los devanados es la creación de un campo magnético cuya distribución espacial en el entrehierro sea sinusoidal (o muy próxima a la forma senoidal). Los devanados cumplen esta misión mediante una construcción y distribución adecuada de las bobinas a lo largo de la periferia del estator y rotor, la alimentación de dichos devanados con corriente polifásica contribuyen a conseguir la aproximación a la forma de onda senoidal. La polifasidad ejerce dos funciones principales como son: la creación de un campo magnético giratorio y la supresión adicional de armónicos de la onda de campo. 5.1 Campo magnético en una máquina eléctrica ideal. Se establece una máquina eléctrica cuyo estator lo constituye un cilindro perfecto hueco a base de chapas magnéticas en cuyo interior concéntricamente y con análoga constitución se encuentra alojado el rotor. Se plantean las hipótesis siguientes: 1.- La permeabilidad magnética del hierro( μm ) es muy grande comparada con la del vacío ( μo ). Se desprecian las pérdidas en el hierro.

2.- La dimensión del entrehierro( δ ) , que es simétrico y constante es muy pequeña comparada con el diámetro del estator( Ds ) y rotor( Dr ) . 3.- Los conductores están distribuidos en forma simétrica sobre la superficie cilíndrica exterior del rotor e interior del estator, dispuestos paralelamente al eje de la máquina y sus dimensiones radiales se consideran despreciables (conductores puntuales). 4.- En un primer análisis no se considera los fenómenos de una eventual saturación magnética. No se toma en cuenta la dispersión del campo de los bordes laterales de la máquina. En la Fig. 5.1, se muestra una sección transversal de la máquina eléctrica ideal donde se ha dispuesto arbitrariamente que existen seis conductores en el estator y rotor.

Page 83: Maquinas Electricas - UNI

a’

b c

c’ b’

a

Fig. 5.1 Distribución

Los conductores del estator pueden estar por ejemplo, conectados en serie entre sí y exteriormente a una sola fase de tensión continua o alterna, o bien estar cada dos conductores opuestos diametralmente unidos entre sí, resultando tres fases, o bien adoptar otra forma de interconexión diferentes de las anteriores. Similar consideraciones se pueden hacer para los conductores del rotor. 5.1.1 Fuerza magnetomotriz creada por una espira simple de paso diametral. Supongamos que no existe devanado en el rotor (o bien que se encuentre abierto) y, que el devanado del estator está conformado por una espira simple diametral aa' según fig. 5.2 por la cual circula una corriente continua I.

M

N

A D

Q

P

R

S

B C

α T a

V

Fig. 5.2

Debido al supuesto que la permeabilidad en el hierro( μm ) es infinita, las líneas del campo magnético en el entrehierro son radiales y el campo magnético en el hierro será nulo (es decir, toda la tensión magnética cae en el entrehierro). La primera ley de Maxwell establece:

Page 84: Maquinas Electricas - UNI

tDJHrot

∂∂r

rr+= .......(5.1)

Para corriente continua ó para bajas frecuencias, tenemos:

∂∂

rDt

≈ 0

Luego, la ecuación (5.1), podemos escribirlo:

rotH dA J dAr r r r

* *= …..(5.2) Aplicando el teorema de Stokes, tenemos:

r rH dl I* = ∑ …..(5.3)

ΣI representa la corriente encerrada por la superficie a la cual se ha extendido la integral. La ecuación (5.3) es conocida también como el teorema de Ampere.

r rH dl H dl H dl

ABCD AB DCCDAB. * *= +∫ ∫∫ 0=

g. 5.3

......(5.4)

Debido a las dimensiones muy pequeñas del entrehierro, se considera constante el valor del campo magnético en la dirección radial del mismo siendo δ la anchura del entrehierro, de la ecuación (5.4) podemos establecer:

HAB * δ = -HCD * δ = HCD * δ

HAB = HDC

Por consiguiente, la distribución del campo magnético en el entrehierro es uniforme, siendo por simetría de valor opuesto en la zona N ( Flujo entrante) y S (flujo saliente). N

S

En la Fig. 5.3, se representa mediante sus líneas de fuerzas correspondientes a la distribución del campo magnético en la máquina creado por una espira de paso Fi

HN = - HN

Distribución

Page 85: Maquinas Electricas - UNI

diametral. Se observa que las líneas de campo en el entrehierro muestran una distribución uniforme a lo largo de él, característica que traduce gráficamente la constancia del campo en el entrehierro. Aplicando la ecuación (5.3) a las trayectorias cerradas MNPQ y RSTV de la Fig. 5.2, tenemos:

f HI

f HI

N N

S S

= =

= =

*

*

δ

δ

2

2−

......(5.5) El valor H * δ en un punto de coordenada angular (fig. 5.2) recibe el nombre de tensión magnética ó fuerza magnetomotriz (f.m.m.) de entrehierro en dicho punto, y esta representada por fα.. Si desarrollamos el entrehierro de la máquina en forma lineal y se representa en función del ángulo α la f.m.m. de entrehierro, obtenemos la figura 5.4

f

a a’

0 π 2π

I/2

- I/2

α

Fig. 5.4

Si en lugar de una espira elemental, consideramos una bobina elemental con Ns espiras supuestas idealmente de dimensiones infinitesimales, tendríamos:

fN I N I

NS

SS= =

* *2 2

; f − ....(5.6)

5.1.2 Fuerza magnetomotriz de una bobina de paso recortado. Se considera una espira elemental según mostrada en la Fig. 5.5, cuyos lados no se hallan situados sobre el mismo diámetro.

α

Page 86: Maquinas Electricas - UNI

Aplicando el mismo razonamiento que del apartado anterior (5.1.1), se demuestra que el campo en el entrehierro a lo largo del arco aNa' posee en todas las partes el mismo valor. Simultáneamente ocurre para el arco aSa'. La tercera ley de Maxwell establece:

Div rB = 0 ......(5.7)

La ecuación (5.7) expresa que no existen cargas magnéticas libres, y por lo tanto el flujo magnético es conservativo. Por consiguiente, los módulos de las fuerzas magnetomotrices norte y sur tendrán que cumplir la relación:

ff

N

S=

′′

arco aNaarco aSa

..... (5.8)

La relación (5.8), traduce matemáticamente el hecho físico de que los flujos entrantes y salientes en el estator (fig. 5.5) son iguales. Asimismo, aplicando la ecuación (5.3) a dos superficies que contengan a cada una un conductor de la espira, obtenemos:

fN + fS = I Si en lugar de una espira, se considera una bobina elemental con Ne espiras, tenemos:

fN + fS = Ne * I

f

a a’ α

Page 87: Maquinas Electricas - UNI

En la fig. 5.6 se muestra la representación de la f.m.m. a lo largo del entrehierro. Como podemos observar en la fig. 5.5 se han dibujado más próximas las líneas de fuerza del campo en la zona norte, lo que significa que la densidad de líneas de fuerza (campo de f.m.m. de entrehierro) sean mayores en dicha zona. Consideremos ahora una segunda espira, análoga a la anterior pero desplazada un ángulo 2β ; según mostrada en la fig. 5.7.

a a’

b b’

Fig. 5.7

Las formas de ondas de la f.m.m. de entrehierro debidas a cada espira así como su resultante aparecen en la fig. 5.8. Podemos observar que la onda resultante tiene la tendencia ha aproximarse a la forma teórica senoidal buscada (posee menor contenido de armónicos que las ondas representadas en las fig. 5.4 y fig. 5.6. f

α

Page 88: Maquinas Electricas - UNI

5.1.3 Fuerza magnetomotriz de una bobina múltiple. Existe la posibilidad de repartir las NS espiras de la bobina elemental en una serie de 'q' bobinas elementales distribuidas a lo largo de la periferia conectada en serie entre sí y formada cada una de ellas a su vez por Ne espiras, constituyendo una bobina múltiple. En la figura 5.9 está representada una distribución de bobinas múltiples formadas por 5 bobinas elementales diametrales.

c’ c

a’ e

b’ d

d’ b

e’ a

γe

Fig. 5.9

La onda resultante del f.m.m. de entrehierro puede obtenerse directamente superponiendo las ondas correspondientes a cada bobina elemental, y se muestra en la Fig. 5.10.. Es apreciable la aproximación a la forma senoidal que se obtiene mediante este procedimiento. Se puede lograr una mayor aproximación, distribuyendo el devanado en un número superior de ranuras y empleando bobinas de paso acortado adecuado (asimismo, la

Page 89: Maquinas Electricas - UNI

polifasidad contribuye a eliminar nuevos armónicos). En el caso general de una máquina de 'p' pares de polos con 'q' bobinas elementales en serie por par de polos y con Ne espiras cada una, el valor de la f.m.m. máxima es:

f qN I N I

pme S= =*

* **2 2

......(5.9)

Siendo Ns el número total de espiras conectadas en serie.

qNeI 2

NeI 2 a b c d e a’ b’ c’ d’ e’

Fig. 5.10

5.1.4 Análisis de armónico. Las curvas obtenidas relativas a la distribución espacial de la f.m.m. en el entrehierro, representa a una cierta escala y con los supuestos admitidos en el estudio de la máquina ideal, las curvas de campo y de inducción en el entrehierro. Considerando la ecuación 5.5, tenemos:

B Hf

α ααμ μ

δ= =0 0* * .....(5.10)

Siendo μ0 yδ (entrehierro) constantes, queda demostrada la semejanza de las curvas.

FUNDAMENTAL 3 er ARMONICO

5 to ARMONICO

ONDA CUADRADA H

Page 90: Maquinas Electricas - UNI

En la figura 5.11 se muestra la curva de distribución de campo en el entrehierro creada por una única bobina de paso diametral de Ns espiras, siendo el valor máximo, Hm :

H f I Npm

m S= =δ δ

** *2

.....(5.11)

Si la intensidad I varia siguiendo una función del tiempo I = I(t), la configuración de la curva ser la misma variando únicamente la altura del rectángulo al ritmo de las variaciones de I, siendo:

H (t)=N

2 * p *ms

δ* ( )I t .....(5.12)

El desarrollo en serie de Fourier de una onda rectangular, tomando como origen del ángulos el origen del rectángulo, tenemos:

[ ]H H tmα α α α= + +4

1 3 3 1 5 5Π

* ( )* sen / sen / sen ...+ .....(5.13)

La expresión de la onda fundamental esta dada por :

H H tNp

I tms

1

4 42

= =Π Π

* ( )* sen ** *

* ( )* senαδ

α ......(5.14)

El valor máximo (en el espacio, para un instante determinado) es:

H t H tm1

4( ) * ( )=

Π m .....(5.15)

Page 91: Maquinas Electricas - UNI

El armónico de orden 'h' está expresado por:

H t H th

hh m( ) * ( )* * sen( )=4 1Π

α .....(5.16)

Su valor máximo es:

H th

H th

H tmh m m( ) * * ( ) * ( )= =1 4 1

1Π .....(5.17)

Es conveniente mencionar: a) No existen Armónicos pares. b) La amplitud de los armónicos es inversamente proporcional al orden del armónico. 5.2 Factores de Paso y de Distribución. 5.2.1 Factor de Paso Si consideramos el caso de dos bobinas de paso acortado conectados en serie, se obtiene la curva mostrada en la figura 5.8. El desarrollo en serie de Fourier de dicha onda rectangular, eligiendo como origen de ángulos el punto intermedio entre los rectángulos esta expresado por:

Hh

H h hmh

( , ) * * * cos( )* sen( )α β β α==

∑ 4 11 Π

Desarrollando, tenemos:

H Hm( , ) * sen * cos * sen * cos .....α β α β α β= +⎡⎣⎢

⎤⎦⎥

4 13

3 3Π

+ ..... (5.18)

El ángulo 2β es el acortamiento de paso expresado en magnitudes angulares eléctricas. Generalmente el acortamiento se da por una función (1/3,1/4,..., en general 1/k) del paso polar, como el paso expresado en ángulo eléctrico corresponde a Π radianes, tenemos:

22

β β= =Π Πk k

; *

Luego, la ecuación (5.18), podemos expresarla:

H Hk k kmα α α α= + +

⎛⎝⎜

⎞⎠⎟

42

13

332

15

552Π

Π Πsen cos sen .cos sen cos .....+

Π .....(5.19)

Page 92: Maquinas Electricas - UNI

Se define el factor de paso ( kp ) como la relación que existe entre el valor máximo de la onda fundamental o armónico producido por la bobina de paso acortado, y el que correspondería si las bobinas fueran de paso diametral. De las ecuaciones (5.13) y (5.19), se deduce para la componente fundamental:

Kkp1 2

= =cos cosβΠ

.....(5.20)

Y para el armónico de orden 'h', tenemos:

K hh

kph = = ⎡⎣⎢

⎤⎦⎥

cos( ) cos**

βΠ

2 .....(5.21)

La ecuación (5.21) expresa que cualquier armónico 'h' puede eliminarse de la curva de inducción ó de la curva de campo acortando el paso en una fracción h=k. Podemos observar que el acortamiento de paso que suprime por completo un armónico, no influye demasiado a la componente fundamental, aunque el armónico suprimido sea de orden bajo. Por ejemplo: Para : h = k = 5 , resulta: kp1 = 0.951 h = k = 7 , resulta: kp1 = 0.975 5.2.2 Factor de Distribución Para este caso consideramos una bobina múltiple formada por varias bobinas elementales distribuidas sobre la periferia (según fig. 5.9). Se define el factor de distribución (Kd) como la relación entre el módulo del vector resultante y la suma aritmética de los módulos de los vectores componentes. En otra expresión, como la relación entre la amplitud de la onda obtenida con un devanado distribuido y aquella que se obtendrá si todas las bobinas elementales estuvieran concentradas formando una única bobina diametral. Sea 'Q' el número total de ranuras por polo, si la máquina tiene 2p polos (p: número de pares de polos) el número total de ranuras Nr será:

Nr = 2 * p * Q El ángulo geométrico τg formado por dos ranuras, está expresado por:

τ g*

*p*Q=

22

Π

Page 93: Maquinas Electricas - UNI

Y el ángulo eléctrico τe, es:

τ τe gpQ

= =*Π

.....(5.22)

En el caso más general de un devanado de 'm' fases, se da como dato el valor 'q' que representa el número de ranura por polo y fase. Podemos establecer:

Q = q * m ....(5.23) Dividiendo una circunferencia en 2Q partes iguales (según fig. 5.12). Cada lado del polígono inscrito AB BC, , etc. representa en magnitud y fase el vector representativo de la onda fundamental de campo debido a cada una de las bobinas elementales alojadas en la ranuras 1, 2, ...., q correspondiente a una bobina múltiple de una fase.

r

E

B

C

D

A γe

qγe

Fig. 5.12

El vector de campo resultante será:

AE AB BC CD DE= + + + El factor de Distribución de acuerdo a su definición es:

KAE

q ABr q

q r

Kq

q

de

e

de

e

= =

=

** * sen( * / )* * * sen( / )

sen( * / )* sen( / )

2 22 2

22

ττ

ττ

...........(5.24)

Page 94: Maquinas Electricas - UNI

En el caso ideal, de que el número de bobinas elementales fuera muy grande podrá admitirse teóricamente que están distribuidas ocupando todo el arco. Luego el valor límite de Kd, es:

( )* * sen( * / )

* ( * )

( )sen( * / )

( * / ).

Kcuerdaarco

r qr q

Kq

q

d limitee

e

d lime

e

= =

=

2 2

22

ττ

ττ

.......(5.25) El factor de distribución Kdh correspondiente a un armónico cualquiera de orden h, se expresa:

Kq h

q hdhe

e=

sen( * * / )* sen( * / )

ττ

22

.....(5.26)

Para el caso de bobinados trifásicos, se tiene Q = 3 * q. De la fórmula (5.22) se tiene:

τ e q=

Π3*

Podemos considerar que la distribución del devanado actúa como un filtro pasa banda que disminuye la amplitud de todos los armónicos, mientras que el acortamiento de paso equivale a un filtro selectivo que elimina un armónico particular. 5.2.3 Factor de Devanado. Devanado Eléctrico Equivalente En el caso general de un devanado con bobinas distribuidas y de paso acortado, el valor de la onda fundamental ó de la onda de cualquier armónico, se calcula a partir del valor de la onda que se obtiene con una bobina única de paso diametral que tenga la totalidad de las espiras concentradas, multiplicando por un factor igual al producto Kp * Kd, para la onda fundamental y Kph * Kdh para el armónico de orden h. A este factor se le denomina factor de devanado K,Kh respectivamente.

K = Kp * Kd

Kh = kph * Kdh Por consiguiente, a efectos de creación de ondas de f.m.m. o de campo, una bobina de paso y distribución cualquiera con un número real q * Ne de espiras en serie por par de polos y fase, puede sustituirse por una única bobina concentrada de paso diametral y con un número efectivo de espiras por par de polos y fase Nef, variable para cada armónico, siendo:

Nef = (q * Ne) * K

Page 95: Maquinas Electricas - UNI

Nefh = (q * Ne) * Kh ....(5.27)

Luego, de las ecuaciones (5.12),(5.17) y (5.27) se deduce que el valor máximo del campo en el entrehierro correspondiente al armónico de orden h, producido por un devanado distribuido y de paso recortado, para un instante cualquiera es:

H th

N K I tpmh

S h( ) * ** * (* *

=1 4

2Π δ)

Si se considera la componente fundamental, su valor máximo es:

H tN K I t

pmS

14

2( ) *

* * ( )* *

=Π δ

Como podemos observar, el valor máximo de esta onda así como el de cualquier armónico no es constante, variando en el tiempo de acuerdo con las variaciones de I(t). Para el caso práctico de que la corriente a través de la fase sea senoidal, tenemos:

I(t) = √2 * Ief * sen (w1 * t) Reemplazando I(t) en la expresión de Hm1(t), tenemos:

H tN K I

pw t

H tK N Ip

w t

mS ef

mS ef

1 1

1 1

42

0 9

( )*

** *

** sen( * )

( ). * * *

** sen( )

=

=

Π δ

δ

......(5.28) La ecuación (5.28) proporciona el valor de la amplitud en todo instante de la onda fundamental del campo magnético en el entrehierro, creada por una fase alimentada por corriente alterna sinusoidal. 5.3 Onda de Campo en el entrehierro senoidal pura. Devanado Eléctrico equivalente ideal. Se busca la expresión matemática del devanado eléctrico equivalente a aquel que genera un campo senoidal puro en el entrehierro, introduciéndose para ello el concepto de capa de espiras que es definida como la densidad de conductores por unidad de longitud periférica por los que circula la corriente en sentido positivo. Se demuestra, que si la capa de espiras presenta una distribución senoidal tal como aparece en la figura 5.13, se consigue una onda de f.m.m. de entrehierro también senoidal pura.

M Q

N P

α

Page 96: Maquinas Electricas - UNI

Debido a que todas las espiras están recorridas por la misma corriente, la densidad lineal de corriente a lo largo de la periferia (llamada también capa de corriente) seguir también una ley senoidal representada por :

Aα = Am * senα Siendo Aα el valor de la densidad lineal de corriente en el punto de coordenada angular α y, Am el valor máximo. Por simetría, el campo magnético en los puntos α y Π-α tiene el mismo módulo pero de sentido opuesto. Aplicándose el teorema de Ampere a la superficie cerrada MNPQ (fig. 5.13), podemos expresar:

r rH dl A r dm* * * sen∫ ∫=

−α α

α

αΠ*

Resolviendo, tenemos :

− − = − =

= −

= −⎛⎝⎜

⎞⎠⎟

H MN H PQ H A r

H A r

f A r

m

m

m

α α α δ

α δ α

α α

* * * * * *

* * * cos

* * sen

2 2

αcos

....(5.29) La ecuación (5.29) expresa que, la curva de f.m.m. de entrehierro es también senoidal pura y que se encuentra retrasada 90° en el espacio con respecto a la onda de la capa de corriente(según fig.5.14). Así mismo podemos observar en la fig. 5.13, que la densidad de las líneas de campo varia sinusoidalmente a lo largo del entrehierro, presentando su valor máximo positivo con un retraso de Π/2 radianes con respecto al punto de máxima densidad de conductores positivos. f (α) = fm.sen (α - π/2)

Page 97: Maquinas Electricas - UNI

Por consiguiente, todo devanado formado por un conjunto de espiras conectadas en serie construidas y distribuidas de modo cualquiera, pero tal que produzca una onda f.m.m. de entrehierro senoidal pura puede ser sustituido a efectos de f.m.m.‚ inducción por otro cuya capa de espiras supuestas diametrales siga una ley de distribución sinusoidal. En la práctica por razones constructivas, no se realiza físicamente un devanado como en la fig. 5.13 sino que, en general todas las ranuras contienen igual número de conductores. La forma senoidal del campo se consigue por otros procedimientos, habiéndose desarrollado los más importantes para máquinas de entrehierro constantes en los capítulos anteriores. Con un sistema polifásico de infinitas fases (en la práctica muchas fases) formada cada una de ellas por una sola espira diametral se conseguiría una curva de f.m.m. senoidal pura. Las ventajas de trabajar con capas de espiras en lugar de capas de corrientes se lograrán al efectuar el análisis dinámico y estático de las máquinas eléctricas de corriente alterna polifásicas mediante vectores espaciales. 5.4 Campos Magnéticos Giratorios 5.4.1 Obtención mediante un elemento móvil Debido a un solo devanado formado por un conjunto de espiras en serie, que se agrupan formando diversas bobinas elementales puede lograrse un campo en el entrehierro cuya configuración espacial se asemeja a una senoide, según desarrollado en el apartado 5.1 si la corriente que alimenta el devanado es constante, el campo no cambia; si se alimenta con una corriente que varía en el tiempo siguiendo una ley determinada (se suponen variaciones cuya rapidez esté comprendida en el campo de las frecuencias industriales), el módulo del campo variará al mismo ritmo que la corriente, pero su configuración espacial (senoidal) permanece inalterable. Es decir, resulta un campo de módulo variable en el tiempo pero de eje fijo en el espacio. En la máquinas de corriente alterna de campo giratorio se desea obtener lo contrario; es decir un campo de distribución senoidal de módulo constante en el tiempo, pero de eje variable en el tiempo (campo giratorio).

Page 98: Maquinas Electricas - UNI

Una primera forma de conseguirlo consiste en desplazar físicamente mediante un acoplamiento mecánico exterior, el estator, por cuyo devanado se hace circular una corriente continua. Este procedimiento se emplea en los generadores síncronos, con la única diferencia de hacer girar exteriormente el rotor en lugar del estator. Supongamos el devanado del estator de una máquina constituido por un conjunto de espiras conectadas en serie, alimentadas con corriente continua y distribuidas de tal manera que dan origen a un campo senoidal en el entrehierro de 'p' pares de polos. Manteniendo la corriente constante, se hace girar al estator con una velocidad angular Wmec. constante en sentido positivo; al cabo de un tiempo t, la onda senoidal de campo en el entrehierro que inicialmente ocupaba la posición '1' en la figura 5.15 estará representada por la curva de posición '2'. En un punto 'p' cualquiera, el valor del campo en el instante t=0, es:

β

‘1’ ‘2’

2π rad. geom.

P = 2

Fig. 5.15

0

H

H(0,α) = Hm * cosα En un instante t, posterior, el ángulo eléctrico recorrido por la onda de campo en su giro será p * wmec * t. Luego, el valor del campo en el mismo punto 'p' para el instante considerado es: H(t,α) = Hm * cos(α - p * wmec * t) = Hm * cos(p * wmec t - α) H(t,α) = Hm * cos(w1 * t - α) .....(5.30) Siendo: w1 = p * wmec, velocidad angular eléctrica. Si el giro del estator es de sentido contrario, la expresión del campo es:

H(t,α) = Hm * cos(w1 * t + α) .....(5.31) Generalizando, podemos establecer:

H(t, α ) = Hm cos(w1t + α) ....(5.32)

Page 99: Maquinas Electricas - UNI

La ecuación (5.32), constituye la expresión general de un campo giratorio de velocidad angular eléctrica constante w1 (correspondiente a una velocidad mecánica w1/p) y de modulo constante en el tiempo. 5.4.2 Obtención mediante procedimientos estáticos. Estudio de la Componente fundamental. Considerando un devanado trifásico colocado en el estator y alimentado por un sistema de corrientes trifásicas senoidales. En la figura 5.16 cada fase esta representada por una bobina concentrada de paso diametral; en estas condiciones cada fase originará un campo magnético en el entrehierro de configuración espacial pero de amplitud variable en el tiempo, el campo real en todo instante es una resultante originada debido a la interacción de los tres campos en cada momento. En un primer análisis consideramos las componentes fundamentales, con la suposición que los armónicos de cada fase resultan despreciables, y que éstas generan campos senoidales puros.

T S

S´ T´

α

R

Se elige como origen de tiempo el instante en que la intensidad por la fase 'R' alcanza su valor máximo. En un instante 't' posterior, los valores máximos del campo para cada fase son:

Fig. 5.16

HRm(t) = Hm * cos(w1 * t)

HSm(t) = Hm * cos(W1 * t – 2Π/3)

HTm(t) = Hm * cos(w1 * t - 4Π/3) Hm corresponde al 'maximun maximorum' es decir, al valor máximo posible que puede alcanzar el campo creado por una fase y que se presenta justamente cuando la corriente de dicha fase pasa por el máximo. Las expresiones HRm, HSm y HTm representan los valores máximos instantáneos (cambiantes con el tiempo) y que, en el espacio se presentan en aquellos puntos fijos del entrehierro situados en los ejes de la fase correspondiente. Como dicho puntos tienen una desfase entre si de 2Π/3 radianes eléctricos en el espacio, el valor del campo magnético creado por cada una de las fases en un punto del entrehierro distante

Page 100: Maquinas Electricas - UNI

en ángulo 'α' del origen de espacios (que en la fig. 2.16, para simplificar las expresiones matemáticas se ha hecho coincidir con el eje de la bobina de la fase 'R') en el instante 't' es: HR(t, α)= HRm * cos α = Hm * cos(w1 * t) * cosα HS(t, α)= HSm * cos(α - 2Π/3) = Hm * cos(w1t - 2Π/3) * cos(α - 2Π/3) HS(t, α)= HTm * cos(α - 4Π/3) = Hm * cos(w1t - 4Π/3) * cos(α - 4Π/3)

.....(5.33) Puesto que el campo en los tres casos es radial, el campo resultante H(t, α) ser también radial y de valor igual a la suma aritmética de HR(t, α), HS(t, α) y HT(t, α); es decir:

H(t, α) = HR(t, α) + HS(t, α) + HT(t, α) Reemplazando la ecuación (2.33), tenemos:

H(t,αα α

α)

cos( * ) cos cos( * / )* cos( / )cos( * / )* cos( / )

=+ − −

− −⎡

⎣⎢

⎦⎥H

w t w tw tm

1 1

1

2 3 2 34 3 4 3

Π ΠΠ Π

+

Aplicando identidades trigonométricas, la expresión H(t, α) resulta:

H(t,αα α α

α)

* cos( * ) cos( * ) cos( * / )cos( * / )

=− + + + + − +

+ −⎡

⎣⎢

⎦⎥

H w t w t w tw t

m

23 2

4 31 1 1

1

ΠΠ

3

Como podemos observar, los tres últimos sumandos del corchete representan tres vectores de módulo igual a la unidad y desfasados 2Π/3 rad., cuya suma es nula. Luego podemos expresar:

H(t,α α) * * cos( * = −32 1H w tm ) .....(5.34)

La ecuación (5.34) coincide con la (5.30) y representa la expresión matemática de un campo giratorio de módulo constante y de velocidad angular igual a w1 radianes eléctricas por segundo. Los efectos magnéticos del sistema trifásico analizado se traducen en la creación de un campo magnético en el entrehierro cuya configuración espacial es una senoide, dicho campo gira físicamente en tono al eje axial de la máquina manteniendo constante su forma, con una velocidad angular geométrica de w1/p radianes por segundo. Desde el punto de vista del campo magnético nos ubicamos exactamente en la misma situación

Page 101: Maquinas Electricas - UNI

que la analiza en el apartado 5.4.1, pero sin necesidad de efectuar el giro mecánico del rotor o del estator. En el caso general de un sistema de 'm' fases, operando de la manera análoga se obtiene la expresión siguiente:

H(t,α ) * cos( * =m

H w tm2 1 m α ) .....(5.35)

5.4.3 Obtención mediante sistema polifásico. Análisis de los armónicos. Realmente, la onda de campo ó de f.m.m. de entrehierro producida por cada fase no es una senoide pura, la descomposición en serie de Fourier de dicha onda conduce a una componente fundamental y una serie de ondas armónicas senoidales. De la misma manera que lo analizado para la onda fundamental, los armónicos de un mismo orden correspondiente a las tres fases y cuya resultante no sea nula, se combinarán entre sí originando campos armónicos giratorios. Para el análisis, se consideran como origen de escalas y espacios los mismos que los señalados en el figura 5.16, siendo 'α' un ángulo eléctrico referido a la componente fundamental. Como origen de tiempo se fija el instante en que la intensidad por la fase 'R' representa su valor máximo. En un instante 't' cualquiera el valor del campo correspondiente al armónico de orden 'h' creado por la fase 'R' en su eje (que coinciden con el origen de coordenadas) es:

HRh(t) = Hmh * cos(w1 * t - 2Π/3) ....(5.36) siendo:

HHhmh

m=

Hmh, representa el valor máximo correspondiente a dicho armónico. Similarmente, el valor del campo del armónico de orden 'h' creado por las fases S y T en los ejes de sus bobinas correspondientes, para un instante 't' cualquiera, están expresados por:

HSh(t) = Hmh * cos(w1 * t - 2Π/3) ....(5.37)

HTh(t) = Hmh * cos(w1 * t - 4Π/3) .....(5.38)

Además, el punto de entrehierro dado por la coordenada angular 'α' corresponde a un ángulo 'hα' referido al armónico h. Por lo tanto el valor del campo en dicho punto correspondiente al armónico de orden h, debido a la fase 'R' es:

HRh(t, α) = Hmh * cos(w1 * t) * cos(h * α) .....(5.39)

Page 102: Maquinas Electricas - UNI

El campo debido a las fases S y T en dicho punto y para el mismo armónico son:

HSh(t, α) = Hmh * cos(w1 * t - 2Π/3) * cos[(α - 2Π/3) * h] ....(5.40)

HTh(t, α) = Hmh * cos(w1 * t - 4Π/3) * cos[(α - 4Π/3) * h .....(5.41) Debido a que el campo en los tres casos es radial, el campo resultante será también radial y de valor igual a la suma aritmética de los componentes de cada fase. Sumando las ecuaciones (5.39), (5.40) y (5.41), tenemos:

H (t,RST,h αα α

α)

cos( ) cos( ) cos cos

cos cos =

+ + −⎛⎝⎜

⎞⎠⎟ −

⎛⎝⎜

⎞⎠⎟ +

−⎛⎝⎜

⎞⎠⎟ −

⎛⎝⎜

⎞⎠⎟

⎢⎢⎢⎢

⎥⎥⎥⎥

Hw t h w t h

w t hm

1 1

1

23

23

43

43

Π Π

Π Π

Efectuando operaciones y simplificando, obtenemos las siguientes expresiones: 1.- Para h=3, ó múltiplo de 3; es decir h = 3 * K, tenemos:

HRST, 3K (t,α) = 0 .....(5.42) 2.- Para h = 5, en general para todos los armónicos de orden h = 6 * K - 1, tenemos:

HRST, (6K - 1) (t, α) = 3/2 * Hm(6K - 1) * cos[w1 * t + (6 * K - 1) * α] ....(2.43)

3.- Para h = 7, en general para todos los armónicos de orden h = 6 * K + 1, tenemos:

HRST, (6K - 1) (t, α) = 3/2 * Hm(6K + 1) * cos[w1 * t - (6 * K + 1) * α] ....(2.44)

De las ecuaciones (5.42),(5.43) y (5.44), podemos establecer las siguientes conclusiones: a.- Los campos armónicos de la fases individuales de orden (6K + 1) de eje fijo en el espacio y de módulo variable senoidalmente en el tiempo, se combinan dando lugar a un campo magnético giratorio armónico de orden (6K + 1) que gira en sentido contrario que el campo fundamentalmente y con una velocidad geométrica igual a ns/(6K + 1). El valor del módulo del campo es:

mKm HK

H *)1*6(

1)16( +

=+

Siendo Hm, el módulo del campo giratorio fundamental.

Page 103: Maquinas Electricas - UNI

b.- Los campos armónicos de las fases individuales de orden (6K - 1), de eje fijo en el espacio y módulo variable senoidalmente en el tiempo de combinan dando lugar a un campo magnético giratorio armónico de orden (6K - 1) que gira en el mismo sentido que en el campo fundamental y con una velocidad geométrica igual a ns / (6K - 1). El valor del módulo de dicho campo es:

mKm HK

H *)1*6(

1)16( −

=−

c.- Los campos armónicos de las fases individuales de orden 3 * K, quedan eliminados. La conclusión 'c' permite comprender como un sistema trifásico (en general, polifásico) suprime adicionalmente armónicos no eliminados por las fases individuales, acercando la forma de onda del campo aún más a la senoide, por esta razón los devanados de las máquinas reales tienden a un acortamiento reducido, y al armónico restante de orden más bajo es el 11, cuya amplitud es muy pequeña. 5.5 Campo Magnético en el entrehierro creado por el devanado del rotor. Los análisis de los capítulos anteriores, donde se consideró a los conductores localizados en el estator y el devanado del rotor en circuito abierto, son aplicables para el caso opuesto (circuito de estator abierto e corriente circulante por las bobinas del rotor, es decir cualquiera que sea la disposición de los conductores o bobinas del rotor, cuando por ellos circula una corriente, se produce en el entrehierro de la máquina el mismo campo que el producido por un devanado idéntico situado en el estator y atravesado por la misma corriente, puesto que las dimensiones radiales de los conductores se han supuesto despreciables, así mismo las dimensiones del entrehierro frente al diámetro del rotor. 5.6 Campo magnético en el entrehierro creado por la acción conjunta de los devanados del rotor y estator en el caso de una máquina eléctrica ideal. En el caso teórico ideal, los devanados del rotor y estator producen individualmente dos ondas del campo de entrehierro perfectamente senoidales, con independencia de que las corrientes que atraviesan ambos devanados sean diferentes. En el caso teórico de devanados cuya capas de espiras sea senoidal (caso ideal equivalente al cual se aproximan los devanados reales) las formas de los campos de entrehierro de rotor y estator no dependen del valor instantáneo de la corriente que atraviesa los devanados, sino que presenta siempre una configuración senoidal; lo que si dependen de las corrientes es el valor efectivo de dichas ondas de campo. Además, como sucede siempre en la práctica el número de pares de polos de las ondas de campo correspondientes a los bobinados de rotor y estator es lo mismo, dichas ondas senoidales se suman produciendo en todo instante una onda de campo senoidal, y al suponer la ausencia de saturación, la onda de inducción de entrehierro de la máquina ideal presenta también en estas condiciones una configuración senoidal.

Page 104: Maquinas Electricas - UNI
Page 105: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

172

CAPITULO VIII

MAQUINAS ELECTRICAS I EXAMEN FINAL

Prob. 1: Se tiene un contactor según mostrado en la figura adjunta, cuyo núcleo

ferromagnético esta conformado por 60 laminas de espesor t = 0,5 mm c/u.

Cuando las secciones del núcleo son mantenidas juntas el entrehierro inherente

es de 1,0 mm. La bobina consta de 250 espiras y de una resistencia de 7,5

ohmios medida en DC.

Considerar: Um >> U0, RAC = 1,2 RDC.

X

ο

q

ο

λ

K

3,0 Cm

3,0 Cm

N

1.1 Si la bobina es excesitada con una fuente de tensión continua, tal que, para

mantener las dos secciones juntas desarrolla una fuerza de 333,25Kg.f.

1.2a) La tensión aplicada.

1.1b) La corriente que absorbe el contactor.

1.1c) La energía magnética.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 106: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

173

1.2 Si al contactor aplicamos una tensión alterna a una frecuencia de 60 Hz, tal

que, para mantener las dos secciones del núcleo juntas desarrolla una fuerza

de 69.51 Kg.f (prom.)

1.2a) La energía magnética.

1.2b) La tensión aplicada.

Prob. 2: Una maquina de inducción 3φ, según mostrado en la figura adjunta, de

rotor bobinado, conectada en estrella, 2 polos, 3kW, 220V, 60Hz, cuando esta

parada tiene una tensión de terminal de línea para el rotor en circuito abierto, que

es dos veces la tensión aplicada entre líneas al estator. Con el circuito del rotor

abierto, el eje de éste gira a 1600 rpm, en el sentido del campo giratorio. Se

aplican al estator la tensión y frecuencia nominales.

2.1a) Hallar las expresiones convenientes para las tensiones que, en circuito

abierto, aparecen en cada par de los anillos de deslizamiento.

2.1b) A qué velocidad tendría que ser impulsado el rotor, para suministrar una

frecuencia de 80 Hz?

2.1c) Si el rotor se mueve a 1800 rpm. Hallar la magnitud y frecuencia de la

tensión inducida en él, para los dos casos, es decir, en el sentido del campo y

contraria al campo.

n

Pdc

Pac Anillos deslizantes

Maquina

DC

Maquina

de Inducc.

Fuente3φ + VDC -

P2

Frecuencia Variable

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 107: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

174

Prob. 3: Un generador síncrono 3φ, 60Hz, conexión estrella tiene 8 polos, 96

ranuras en el estator y un acortamiento de paso 9/12. La densidad de flujo en el

entrehierro muestra que el tercer y quinto armónicos están presentes, y tienen

amplitudes del 30% y 15% de la onda fundamental. Calcular la relación

proporcional entre la tensión de línea y la tensión de fase.

Considerar: E α Bmax KW, 212

5213 .....)EE(EL ++=

Donde: KW: Factor de devanado. 212

523

21 .....)EEE(f +++=E

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 108: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

175

EXAMEN FINAL 2 MAQUINAS ELÉCTRICAS I

Prob. 1: Se tiene un transductor rotativo de excitación simple, cuya bobina está

conformada por 450 espiras y una permeancia característica (P), según como se

muestra en a figura adjunta.

≤<+

≤<−=

ΠθΠΠ

ΠθΠ

2

20

2

2

,K)Ni(

,K)Ni(Tei

0,05

0

P

Π2

23ΠΠ

1a. Deducir el torque instantáneo.

1b. Calcular el torque promedio si la bobina es excitada con una corriente i(t) =

2 x 15 sen (377t + 15°) Te , TeKN I

WAVmax= −

2 2

sen( )δ AV= -612,25 N.m.

Prob. 2: Se ha formado un banco trifásico con tres transformadores monofásicos

de relación de transformación 380/220 Voltios, el tipo y grupo de conexión del

banco trifásico obtenido es Yd1. Se reúne el borde U de A.T. con el borde µ de

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 109: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

176

BiT, y se alimental el lado de A.T. con una fuente de tensión trifásica de valor

eficaz 380 voltios.

YWu = 380 Voltios.

YWυ = YWW = 277, 37 V

Calcular las tensiones entre los bornes W - w, W - υ, W - u.

Prob. 3: Un generador síncrono trifásico, conexión estrella, 6 polos, tiene una

densidad de flujo espacial expresado por B(e) = 1,00 sen θ + 0,45 sen ∂e + 0,25

sen 5θ.

El estator tiene 36 ranuras y un devanado trifásico balanceado de doble capa, el

paso de bobina es 120°. En términos de la tensión eficaz fundamental E1.

Determinar:

EE

f

L=

13

3a. La relación entre la tensión de fase (ELN) con respecto a la de línea (Eu).

Prob. 4: Un rotor gira a una velocidad angular Wr rad/seg. de manera que la

inductancia de los devanados excitadores del dispositivo electromagnético que se

muestra en la figura varia en forma sinusoidal entre un máximo de 2L y un mínimo

de cero.

δ

Wr

0

i

N

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 110: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

177

4a. Determinar el torque promedio para W = Wr. δ221 2 senLIefAV =T

4b. Determinar el voltaje en el devanado excitador cuya resistencia de la bobina es

despreciable.

V(t) = -Wr L Im sen Wr t (1 + cos 2δ) - 2Wr L Im cos Wr t sen 2θ

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 111: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

178

EXAMEN PARCIAL 1

Prob. 1. Se desea diseñar con núcleo de hierro para ser utilizado con una lámpara

fluorescente, cuya característica es: 220V, 60Hz, 9W; el cual debe tener una

reactancia de 565.5 ohmios. La plancha utilizada es de material H-23, cuyo

espesor de lamina es 0.5 mm. las dimensiones son mostradas en la figura

adjunta. Considerar: factor de apilamiento igual a 0.98, Bmax = 1.15T, la bobina

tiene 300 espiras.

a

lg

2a a

a

6a

5a 1a) Calcular el numero de laminas utilizado. 1b) Si practicamos un entrehierro en la columna central (λg), de tal modo que se consiga un valor de la inductancia que sea igual al 90% del valor inicial. Calcular dicha longitud de entrehierro. 1c) considerando una característica no lineal de la inductancia, donde se cumple: i = C0λ +C1λ3. Utilizando el circuito equivalente del reactor y aplicando una tensión

tsenx)t(v 3772202= . Plantear la ecuación diferencial de la corriente de magnetización. 1d) Si al circuito magnético aplicamos un tensión de amplitud Y = 220 voltios y de forma onda cuadrada, a una frecuencia de 60Hz. Despreciar la resistencia de la bobina.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

1d.1) Calcular la densidad magnética máxima. Graficar la tensión aplicada y el φ máximo.

Page 112: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

179

1d.2) Si se desea obtener una densidad magnética máxima de 1.25 T. Calcular el voltaje máximo aplicado. Prob. 2. Un transformador 1φ, 10 KVA, (10± 2 X 2.5%) / 0.23, 60 Hz, fue sometido a ensayos de laboratorio obteniéndose los resultados siguientes: Prueba de vacío: 230V, 1.30A, 150W; Prueba de cortocircuito: 600V, 1.50A, 815W. 2.1) Si el transformador alimenta una carga de 15 KVA, f.d.p. 0.81 capacitivo y la tensión aplicada es de valor nominal. 2.1a) Calcular la tensión en la carga (despreciar la corriente del circuito de Rp y Xm). 2.1b) Calcular el % de regulación y eficiencia. 2.1c) Si se mantiene la tensión y corriente de carga constante, y esto se varia el f.d.p. de la carga. Determinar el ángulo de la carga para obtener regulación cero. 2.2) Al transformador aplicamos una tensión primaria nominal y conectamos una carga de 11.50 KVA con f.d.p. 0.866 en atraso. Si deseamos mantener la tensión en la carga 230 Voltios. Determinar la posición del tap. 2.3) si el transformador durante todo el día presenta el ciclo de carga siguiente:

%P.C. 25 50 75 100 110 f.d.p. (ind) 0.95 0.98 0.85 0.90 0.99

horas 6 6 6 3 3 2.3a) Calcular las perdidas totales. 2.3b) Calcular la eficiencia.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 113: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

180

EXAMEN PARCIAL 2

Prob. 1: Se desea diseñar un reactor con núcleo de hierro, cuya plancha a ser

utilizada es de material H23 de espesor 0.50 mm cada lámina; cuyas

características técnicas son 110V, 60Hz, 10W, reactancia del reactor 7180

ohmios, 600 vueltas, factor de apilamiento 0.98, densidad máxima 1,25 Tesla. La

configuración geométrica del núcleo es la siguiente: tres columnas, dos ventanas,

el ancho de la columna central es igual al doble del ancho de la columna del

extremo, el ancho de la ventana es igual al ancho de la columna extrema, la altura

de la ventana es igual al triple del ancho de la ventana y la altura del núcleo es

cinco veces el ancho de la columna del extremo.

1a) Calcular el peso del material magnético a ser utilizado.

1b) Si practicamos un entrehierro en la columna central (lg) de tal forma que se

consiga un valor de la inductancia que sea igual al 80% del valor inicial. Calcular

dicha longitud de entrehierro.

Prob. 2: Un transformador monofásico de 100 kVA, 60Hz, (4800 +-5x1%)/230

Voltios, tiene un circuito equivalente exacto cuyos parámetros son:

R1 = 0.805 Ohmios, X1 = 2.034 Ohmios, Xm = 5.487 Ohmios.

R2 = 0.003 Ohmios, X2 = 0.007 Ohmios, Rp = 86.02 Ohmios

El transformador es conectado a diferentes tipos de cargas, según lo indicado en

las preguntas 2a), 2b) y 2c) respectivamente.

2a) Si se conecta una carga en el lado de baja tensión que, consume una corriente

1.10 ln a una tensión Nominal y el factor de potencia 0.866 en atraso. Calcular:

2a1) La tensión que es necesario aplicar al lado de alta tensión.

2a2) La eficiencia del transformador.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 114: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

181

2b) Si el transformador alimenta a una carga que consume una corriente de 1,25

ln y con un factor de potencia, tal que, se obtenga un valor del porcentaje de

regulación máxima. Calcular:

2b1) La tensión en la carga si, la tensión primaria aplicada es igual a la tensión

nominal.

2b2) La posición del tap si, la tensión de alimentación del primario es 4 796 voltios

y, se desea mantener en la carga la tensión nominal.

2c) Si el transformador alimenta una carga que consume una corriente de 1,15 ln y

con una tensión primaria de 4944 Voltios. Calcular la tensión y el factor potencia

en la carga para conseguir un porcentaje de regulación nula (utilizar circuito

equivalente aproximado).

2d) Si el transformador conectado a cargas variables durante todo el día presenta

el ciclo de carga siguiente:

%P.C. 20 40 60 100 110

f.d.p. (induct.) 0.92 0.94 0.95 0.91 0.97

Tiempo (Hr.) 6 6 5 4 3

Calcular la eficiencia del transformador.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 115: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

182

EXAMEN PARCIAL 3

Prob. 1: Se desea diseñar un reactor con núcleo de hierro, cuya plancha a ser

utilizada es de material H23 de espesor 0,50 mm cada lamina; cuyas

características técnicas son 220V, 60Hz, 10W, reactancia del reactor 7180

ohmios, 600 vueltas, factor de apilamiento 0,98, densidad máxima 1,30 Tesla. La

configuración geométrica del núcleo es la siguiente: tres columnas, dos ventanas,

el ancho de la columna central es igual al doble del ancho de la columna del

extremo, el ancho de la ventana es igual al ancho de la columna extrema, la altura

de la ventana es igual al triple del ancho de la ventana y la altura del núcleo es

cinco veces el ancho de la columna del extremo.

1a) Calcular el peso del material magnético a ser utilizado.

1b) Si practicamos un entrehierro en la columna central (lg) de tal forma que se

consiga un valor de la inductancia que sea igual al 90% del valor inicial. Calcular

dicha longitud de entrehierro.

Prob. 2: Un transformador monofásico de 100 kVA, 60Hz, (4800 +-5x1%)/230

Voltios, tiene un circuito equivalente exacto cuyos parámetros son:

R1 = 0.805 Ohmios, X1 = 2.034 Ohmios , Xm = 5.487 Ohmios

R2 = 0.003 Ohmios, X2 = 0.007 Ohmios , Rp = 86.02 Ohmios

El transformador es conectado a diferentes tipos de cargas, según lo indicado en

las preguntas 2a), 2b) y 2c) respectivamente.

2a) Si se conecta una carga en el lado de baja tensión que, consume una corriente

1.10 ln a una tensión Nominal y factor de potencia 0.866 en atraso. Calcular:

2a1) El porcentaje de variación de la tensión aplicada con respeto a la tensión

Nominal.

2a2) La eficiencia del transformador.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 116: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

183

2b) Si el transformador alimenta a una carga que consume una corriente de 1,25

ln y con un factor de potencia tal que se obtenga un valor del porcentaje de

regulación máxima. Calcular:

2b1) La tensión en la carga si, la tensión primaria aplicada es igual a la tensión

nominal.

2b2) La posición del TAP si, la tensión de alimentación del primario es 4796 voltios

y, se desea mantener en la carga la tensión nominal.

2c) Si el transformador alimenta una carga que consume una corriente de 1,15 ln y

con una tensión primaria de 4944 Voltios. Calcular la tensión y el factor de

potencia en la carga para conseguir un porcentaje de regulación nula (utilizar

circuito equivalente aproximado).

2d) Si el transformador conectado a cargas variables durante todo el día presenta

el ciclo de carga siguiente:

%P.C. 20 40 60 100 110

f.d.p. (induct.) 0.92 0.94 0.95 0.91 0.97

Tiempo (Hr.) 6 6 5 4 3

Calcular la eficiencia del transformador

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 117: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

184

SEGUNDA PRACTICA CALIFICADA

Prob. 1: Un transformador monofásico de 100KVA, 60Hz, (3800 ± 5 x 2.0%) / 230

Voltios, fue sometido a los ensayos de vacío y cortocircuito a condiciones

nominales, ambas lecturas se tomaron con alimentación por el lado de baja

tensión, de las que se obtuvieron:

Prueba de vacío: 230V. 18A, 3312W.

Prueba de cortocircuito: 12V.

La eficiencia máxima se obtiene para una carga del 86% de plena carga.

R1 = 3.22 Ohm.

R2 = 0.0118 Ω

RP = 15.97 Ω

Xm = 24.30 Ω

X1 = 1.95 Ω

X2 = 0.0071 Ω

1.a) Determinar los parámetros del circuito equivalente exacto.

1.b) Si se alimenta una carga que consume una potencia 110 KVA a un f.d.p. igual

a 0.866 capacitivo a una tensión de 230 Voltios. Calcular la tensión del primario.

V4 = 3913∠2.79º Voltios.

1.c) Utilizando el circuito equivalente aproximado. Si se alimenta al primario con

una tensión de 3800 Voltios y se conecta al lado de baja tensión una carga que

consume una potencia de 120 KVA y f.d.p. tal que el valor del porcentaje de

regulación sea máxima. Calcular la tensión en la carga. V1 = 215 Voltios.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 118: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

185

1.d) Si el transformador alimenta la misma carga de la pregunta 1c), siendo la

tensión de alimentación al primario de 3700 voltios, y se desea mantener la

tensión en la carga a 230 Voltios. Determinar la posición del tap. posición: 10, (-4

x 2.0%) VNP.

Prob. 2: Se dispone de tres transformadores monofásicos de 1,0 KVA, 60 Hz,

110/440. Se desea alimentar una carga trifásica resistiva en 380 voltios desde

una red de alimentación trifásica.

2.1) Dibujar el esquema de conexiones.

Smax = 6.0 KVA

2.2) La potencia máxima que se puede suministrar a la carga, sin sobrecargar los

trafos 4φS.

2.3) Calcular la tensión de la fuente de suministro. Vsum = 190 Voltios.

Prob. 3: Marcar Verdadero (V) ó Falso (F) y justificar en el cuadernillo.

3.1) La regulación de tensión del transformador no depende necesariamente del

tipo de carga para un mismo factor de potencia. ( )

3.2) Para un transformador de 500 KVA donde las perdidas en el fierro

representan el 62% de las perdidas en el cobre nominal la eficiencia máxima se

obtiene cuando alimenta una carga de 394 KVA ( )

3.3) Si un transformador trabaja a tensión y frecuencia nominal, luego si se

alimenta con la misma tensión eficaz pero una frecuencia igual al doble de la

nominal, entonces la densidad de flujo máxima y las perdidas por histéresis se

duplican. ( ) “Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 119: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

186

SEGUNDO CONTROL DE MAQUINAS ELÉCTRICAS

1. Se tiene un transformador monofásico de 10 kVa, 10/0.23 KV, 60 hz, se han

realizado la prueba de cortocircuito con 550V, 1.20 Amp, y 600 Watts; y la

prueba de vacío son 230V, 1.739Amp, y 200 Watts.

Determinar:

1.a) El circuito equivalente exacto referido al lado de T A.T.

1.b) El diagrama fasorial cuando se alimenta una carga de potencia nominal y

f.d.p. = 0.866 (capacitivo).

2. Si el transformador del problema 1, alimenta una carga cuya potencia es el

10% más que la potencia del transformador y f.d.p. = 0.809 (capacitivo)

manteniendo la tensión de entrada en 10 kV. Calcular:

2.a) La tensión en la carga (despreciar la corriente de vacío.) 224 V.

2.b) La regulación para la carga mencionada. %r = 2.678%.

3. Para el transformador utilizado, si se alimenta una carga nominal con f.d.p.

0.707 inductivo.

Calcular:

3.a) La eficiencia a plena carga. np.c. = 91.97%.

3.b) La corriente de carga para obtener la eficiencia máxima. I = 30.121 Amp.

4. Poner verdadero (V) o Falso (F) las sentencias siguientes justificando su

respuesta en el cuadernillo.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 120: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

187

4.a) Cuando un transformador este operando a media carga y a tensión nominal,

pasa a operar a plena carga y a tensión nominal; entonces las perdidas en el fierro

aumentan y las perdidas en el cobre se mantienen constantes. ( )

4.b) La tensión en vacío de un transformador con núcleo de hierro es siempre

mayor que la tensión a plena carga. ( )

4.c) La corriente en vacío de un transformador de potencia es siempre menor que

la de un transformador de audio. ( )

4.d) Para un transformador de audiofrecuencia, la ganancia máxima es obtenida

cuando trabaja a altas frecuencias. ( )

4.e) La eficiencia de un transformador bajo las mismas condiciones de tensión y

corriente es mayor con carga resistiva que con respecto a una carga inductiva.

( )

5. La toma variable “k” del autotransformador de la fig. mostrada se encuentra en

el punto medio del devanado, siendo las corrientes I1, I2, I3. Cómo varían estas

corrientes cuando “k” se desplaza hacia arriba.

K`I3

I1

V

I2

RL

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 121: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

188

TERCERA PRACTICA CALIFICADA

PROB. 1: Se ha formado un banco trifásico con tres transformadores monofásicos

de relación de transformación 220/110 Voltios, el tipo y grupo de conexión del

banco trifásico obtenido es Yd1. Si se une los bornes U de A.T. con el borne u de

B.T., y se alimenta el lado de .T. con una fuente de tensión trifásica de valor eficaz

220 Voltios.

Calcular las tensiones entre los bornes W-w, W-u, W-v.

PROB. 2: Se tiene dos transformadores monofásicos, cuyas características

técnicas son las siguientes:

Potencia (KVA) relación de transformación Impedancia de Cortocircuito64 10000/230 Voltios ºZ 851251 ∠=

50 10000/220 Voltios ºZ 821402 ∠=

2.a) Si ambos transformadores se conectan en paralelo para alimentar a una

carga que consume una potencia de 120 KVA y f.d.p. 0.85 inductivo a una tensión

de carga de 230 Voltios. Calcular:

2.a.1) La potencia que entrega cada transformador.

2.a.2) El porcentaje de variación de la tensión aplicada con respecto a la tensión

nominal primaria.

2.b) Si súbitamente se desconecta la carga y manteniendo la tensión en la carga a

230 Voltios. Calcular el porcentaje de variación de la tensión aplicada.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 122: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

189

PROB. 3: Se tiene tres bancos de transformadores trifásicos según mostrados en

la figura:

U V W U V W U V W

w v u w v u w v u

BANCO N° BANCO N° BANCO N°

3.a) Determinar los grupos de conexión de cada banco.

3.b) Realizar las conexiones físicas de los bancos trifásicos para la puesta en

paralelo.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 123: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

190

PROBLEMA DE APLICACIÓN: Se ha diseñado un reactor de las siguientes características: 220 V, 60Hz. -Numero de espiras : N = 40.5 - Numero de placas : n = 80 - Espesor de placa : t = 0.5 mm - Ancho de ventana : 1” - Ancho de núcleo : 2” - Altura de ventana : 3” - Factor de apilamiento : 0.98 - Densidad del fierro : 7.65 gr/cc. a) Si se aplica a la bobina de excitación un voltaje senoidal de 200 volt. (eficaz) y 60 Hz, la perdida por histéresis es de 40 W/ocl y la debida a las corrientes parásitas de 20 W/ocl. La densidad de flujo es 0.93 Wb/m2. determinar las perdidas por histéresis y corrientes parásitas, cuando se aplica una tensión de: υ(t) = 250 senWt + 71.5 sen 3Wt. Asumir n= 1.6 b) Si el reactor hubiera sido ensamblado con 51 planchas del mismo material y dimensiones, pero de 0.70 mm. de espesor (manteniendo inalterable el numero de vueltas de la bobina). Luego al ser operado a los mismos valores de tensión y frecuencia del caso a) con voltaje senoidal (200V, 60Hz). Determinar las perdidas respectivas.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 124: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

191

Prob. 1: Un circuito magnético compuesto en el que varia la sección transversal se muestra en la figura. La porción de fierro es de grado H = 23 de 0,55 mm de espesor con f.a. = 0,9 los datos son: N = 1000 espiras. L1 = 4 L2 = 40 cm. S1 = 2S2 = 10 cm2 Lg = 2 mm Sg = 10,1 cm2 φd = 0,01 mwb Calcúlese la corriente necesaria para establecer en el entrehierro una densidad De flujo de 0,6 Tesla (βg = 0,6t). Prob. 2: El núcleo del circuito magnético que se muestra en la figura es de aleación de hierro y Si/grado H-23, formado por 90 laminas de 0,5 mm de espesor y un factor de aislamiento de 0,96 (f.a), la bobina tiene 200 espiras. Determinar: a) El flujo magnético para un entrehierro de: n = 90 laminas (0,5 mm) fa = 0,96 N = 200 Prob. 3: El material empleado en la estructura de la figura es de Acero-Si con espesor de laminas 0,5 mm; se sabe que el fa =0,92. además I1= I2 = 5A, N1 = 1000 espiras; N2 = 924 esp. Determinar el flujo en el entrehierro, sabiendo además que A = C, B = D = E. (todo en milímetros) Prob. 4: El núcleo mostrado en la figura es de material ferromagnético. Grado H-23 (0,5 mm de espesor), fa = 0,9, 110 V, 60 Hz. Presenta una reactancia inductiva XL = 137 con unas perdidas en el núcleo no mayor de PT = 1w y lg = 2 mm, PFe =

7750 3g

mK

(densidad del material ferromagnético). Se sabe que PFe = 1,8

β2max

gKWatt

; 8,0

AA

g

n = .

Determinar: n = ? (# de laminas) N = ? (# de espiras de la bobina).

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002

Page 125: Maquinas Electricas - UNI

Universidad Nacional de Ingeniería Facultad de Ingeniería Eléctrica y Electrónica Instituto de Investigación

192

Prob. 5: Las perdidas en el núcleo de un reactor de Hierro son 548 W; de los cuales 402 W son perdidas por histéresis esto cuando el voltaje aplicado en 240 Volt. Y la frecuencia 30 Hz.

a) Determinar las perdidas en el núcleo cuando el voltaje y la frecuencia se duplican.

b) Determinar la frecuencia si el voltaje es 220v, la f = 60Hz. Prob. 6: Con el núcleo mostrado en la figura se diseñara un reactor para las siguientes condiciones: Eléctricas: V=180v, f=60Hz, XL=150Ω, Bmax=1,02T Núcleo: Laminas: E-I, 0,5mm Grado: H-23 Densidad: 7750 Kg/m3 Dimensiones: 2a = 25,4 mm

b = 24,74 mm fa = 0,95 Perdidas = 2,15β2

max(watt/Kg).

a) Calcular N (# de vueltas de la bobina) b) Calcular lg (entrehierro necesario) c) Calcular IP (I de perdida), Im (magn.), f de P que presenta la bobina. d) Para un incremento del 50% de la longitud del entrehierro (g) cual será el

valor de la inductancia y el f de P.

“Estudio de las Máquinas Eléctricas. Simulación Digital” Junio 2002