Medición de Densidad por Retrodispersiún Gamma-. Bases ...

40
REPÚBLICA ARGENTINA COMISIÓN NACIONAL DE ENERGÍA ATÓMICA INFORME N.o 137 Medición de Densidad por Retrodispersiún Gamma-. Bases para el Diseño de Equipos Aplicables a Suelos y otros Materiales por Antonio C. Castognet; Humberto Di Gregorio,- Jorge F. Doedderer y Antonio D. Vignolo BUENOS AIRES 1965

Transcript of Medición de Densidad por Retrodispersiún Gamma-. Bases ...

Page 1: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

REPÚBLICA ARGENTINA

COMISIÓN NACIONAL DE ENERGÍA ATÓMICA

INFORME N.o 137

Medición de Densidad por Retrodispersiún Gamma-. Bases para el Diseño de Equipos Aplicables

a Suelos y otros Materiales

por

Antonio C. Castognet; Humberto Di Gregorio,- Jorge F. Doedderer y Antonio D. Vignolo

BUENOS A I R E S

1965

Page 2: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

líedidor de Densidad desde Superficie (prototipo) Desarrollado por la CNEA.

Page 3: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

MEDICIÓN DE DENSIDAD POR RETRODISPERSIÓN GAMMA : BASES PARA EL DISEÑO DE EQUIPOS APLICABLES

A SUELOS Y OTROS MATERIALES

Antonio C. Castagnet, Humberto Di Gregorio, Jorge P. Doedderer y Antonio D. Vignolo

RESUMEN

Se analiza la tedría de funcionamiento de loa medidores de densidad desde superficie basados en la dispersión de rayos gam na, y la influencia de los distintos parámetros del proceso de medición en la relación señal-densidad, estableciéndose los principios generales de diseño y las limitaciones intrínsecas de estos instrumentos.

Los ensayos experimentales demostraron que variando la distancia fuente-detector del dispositivo, se pueden determinar la función de transferencia, distancia óptima fuente-detector y curva de calibración para cualquier material, utilizando una sola muestra de densidad conocida.

Partiendo de esta idea los autores desarrollaron un prot£ tipo cuyas principales características se describen, que ofre­ce la particular ventaja de poderse calibrar con facilidad pa­ra cualquier substancia, en el rango de densidad de uno a tres gramos por centímetro cúbico.

La unidad de medición (sonda), está asociada a un escalí-metro portátil transistorizado que indica automáticamente en forma digital, el tiempo transcurrido para acumular 10.000 im­pulsos de radiación, con error menor de 0,1 segundo. Este dato se utiliza para entrar en la curva de calibración y de ahí ob­tener la densidad.

El tiempo requerido para una determinación de densidad es, en general,menor que 5 minutos, siendo la precisión comparable a la de los métodos convencionales.

Page 4: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

4

ABSTRACT

The operation theory of surface density gauges based on gamma scattering and the influence of the various measuring procesa parameters on signal-density relation has been analized, to establiah the general design principies and the intrinsic limitations of these instrumenta.

The experimenta proved that varying the source-detector distance of the device, it is poasible to determine the trans-fer function, the optimun source-detector distance and the ca-libration curve for any material, using only one sample of known density.

Starting from this idea the authors developed a prototype (its main characteristics being described), which offers the particular advantage of easy calibration for any subatance in the denaity range from one to three grama per cubic centimeter.

The meaauring unit (probé) is associated to a transistori_ zed portable scaler showing automatically in digital readout the time elapsed to accumulate 10,000 radiation pulses, with error less than 0.1 second. Density is obtained by insertion of said valué in the calibration curve.

The time required for one density measurement is usually less than 5 minutes; the accuracy being comparable with the re. siilts of conventional methods.

I- INTRODUCCIÓN

Los medidores de densidad basados en la retrodispersión de rayos gamma, se utilizan desde hace varios años en diversas ramas de la ingeniería, industria y agricultura: (l), (2), (3).

La característica sobresaliente de estos equipos, es la de permitir la determinación de la densidad húmeda "in-situ" y en forma no destructiva. Los resultados se obtienen rápidamente (menos de 5 minutos), con precisión igual o superior a los mé­todos convencionales, estando garantizada la representatividad de las lecturas por el gran volumen de material medido.

Los equipos actualmente existentes son enteramente portá­tiles y pueden clasificarse en: medidores de superficie y de profundidad.

El trabajo descripto en el presente informe estuvo orien­tado al desarrollo y construcción de un prototipo para la medí ción de densidad en suelos y otros materiales, desde la super­ficie.

Page 5: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

5

Paralelamente se Investigó la influencia de los distintos parámetros del proceso en la relación señal-densidad, a fin de determinar los principios generales de diseño y las limitacio­nes intrínsecas de estos instrumentos.

Esta publicación tiene por finalidad divulgar los conoci­mientos y experiencia adquirida sobre el tema, así como las es_ pecificaciones técnicas del prototipo realizado, para promover el uso, construcción y perfeccionamiento de equipos similares en el país.

El propósito enunciado encuadra dentro de los objetivos de ésta Comisión, en lo que se refiere al desarrollo nacional de las aplicaciones pacíficas de energía atómica.

II- LINEAMIENTOS DEL PROBLEMA

Si se coloca un emisor puntual de rayos gamma monoenergé­ticos en la superficie de un medio de volumen infinito, se es­tablecerá dentro de este líltimo un transporte y transferencia de la energía irradiada por la fuente radiactiva.

En el transporte y transferencia de energía intervienen los fotones primarios emitidos originariamente por la fuente y toda la compleja familia de radiaciones secundarias nacida de los diversos y sucesivos procesos de interacción con la materia.

Considerando un volumen pequeño en la superficie del medio, alejado de la fuente, se observa entonces que llega a él energía transportada por fotones primarios (radiación direc_ ta) y secundarios (radiación dispersa).

II- 1.0. Principio de Medición.

Suponiendo que A T sea el volumen sensible de un detector, se podrá estudiar la correlación que existe entre la radiación secundaria que llega a y un parámetro del medio, en este caso la densidad fi.

El proceso de transporte en sí de los fotones y la energía secundaria en función de fi tiene evidentemente, a igualdad de otros factores, una ley física determinada, susceptible del c£ rrespondiente análisis teórico.

Experimentalmente, sin embargo, la relación obtenida depen derá en gran modo de la sensibilidad espectral del detector que se utilice, cuyas características no siempre pueden conocerse con exactitud:(4).

Page 6: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

6 Los procesos fundamentales de interacción de la radiación

gamma con la materia son: Compton, fotoeléctrico y producción de pares.

La probabilidad de que uno u otro de ellos ocurra, depen­de de la energía hVde los fotones y del numero atómico Z del medio. En la figura 1 se muestra gráficamente la importancia relativa de cada proceso.

120 -

EMERGÍA (le«) Figura 1 - Importancia Relativa de los Procesos de Interacción de la Radiación Gamma con la Materia, en Punción de la Energía

de los Fotones y el Numero Atómico (Ref. 4). Se observa que para valores intermedios de hV y todo el

rango de Z predomina el efecto Compton. El coeficiente lineal de atenuación total por Compton es

(Apéndice A) :

<T m p ./ — . e <T cm - 1 (2-1) A

donde p = densidad del material (g/cm^) JT = numero de Avogadro (átomos/mol) z = número atómico (electrones/átomo) A = peso atómico (g/mol) eff = sección eficaz media o total para choques Compton

(cm /electrón)

Page 7: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

7

Dado que e <T y JT son constantes y como Z/A es aproximada mente 0,45 ¿ 0,05 para todos los elementos, excepto el hidróge, no (para el cual Z/A « 1 ) , se sigue que la probabilidad de re­mover un fotón de un haz colimado por choque Compton, mientras pasa a travos de una substancia, es por cm de trayectoria, pro porcional a la densidad, con independencia de la composición química.

Esto sugiere la posibilidad de utilizar la radiación se­cundaria proveniente del efecto Compton, para medir la densidad de los materiales.

Tal posibilidad efectivamente existe y constituye el prin cipio de medición en que se basan los equipos desarrollados per diversos autores en diferentes partes, tanto para la medición de densidad desde superficie como en profundidad:(5), (6).

Un estudio detallado sobre la teoría y diseño de equipos para medición de densidad por dispersión gamma, fundamentalmen te en sondas de profundidad, se halla descripto en Ref.(7).

II-1.1. Teoría Simplificada de Medición.

Analizaremos primero el caso más general representado en la figura 2, de una fuente F que emite n 0 fotones por segundo, de energía hV D en un medio homogéneo de numero atómico Z y densidad p .

Figura 2 — Geometría y Notación para Estudiar el Transporte de Potones Secundarios Provenientes de una Puente Puntual en un Me

dio Homogéneo.

Vamos a considerar solamente el transporte de fotones orí. ginados en los procesos Compton primarios, hasta un elemento Av de volumen, ubicado en el punto P, a cierta distancia r de la fuente.

El minero n' de fotones secundarios incidentes por segundo

Page 8: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

8

en ¿ T , producidos por procesos primarios Compton en una esfera de radio 4c i*c con centro en la fuente, será (Apéndice B) :

J'ri c ̂ • ^ ° r ~W

I e D ( E < R ) . A A . e . s e n a > . da>. dr (2-2) o «4 d"" s e 8

donde

n Q a numero de fotones emitidos por la fuente (fotones/seg)

Ji s densidad del medio (g/cm"^).

Z = numero atómico (electrones/átomo).

Jf s numero de Avogadro (átomos/mol).

A * peso atómico (g/mol). u Q = coeficiente lineal de atenuación total para fotones

de energía nv'Q en el medio considerado.

r = distancia de la fuente al punto de interacción.

d(etf") — — s probabilidad de reflexión del fotón en dirección a dSl por unidad de ángulo sólido (cm2/elect.esterradian).

C^SLm ángulo sólido bajo el cual se observa A v desde el punto de interacción (esterradian).

« coeficiente lineal de atenuación total para la ener gía del fotón reflejado (cm - 1).

r1 = distancia del punto de interacción a Av (cm).

tu s ángulo entre r y el eje P-P.

La resolución de (2-2) para cada caso particular determi­nado por la energía inicial hV Q de los fotones, distancia P-P y tipo de material (yO, A, Z)nos daría un resultado aproximado en relación a posibles experimentos, ya que solamente se ha te nido en cuenta la radiación reflejada hacia el detector (el vo lumen A v ) , proveniente de procesos primarios Compton.

En realidad, fotones que han sufrido más de un choque pue den, aunque con menor probabilidad, alcanzar también el volu­men AV.

No obstante, la expresión (2-2) sirve para poner de relie ve, algunos aspectos fundamentales del mecanismo en que se ba­san los medidores de densidad por dispersión gamma.

Page 9: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

9 Dijimos al comienzo que el efecto Compton era predominante

para energías intermedias hV y para todos los elementos, sien do su probabilidad de ocurrencia proporcional a la densidad y a la relación Z/A del material.

La generación de fotones reflejados es, por consiguiente, para valores intermedios de hV, sólo función de la densidad y rige la misma ley física para todos los materiales excepto el hidrógeno.

La expresión (2-2) nos muestra que entre el origen de los fotones secundarios y su detección, interviene el factor e"^11" .

El coeficiente p 1 depende de la energía h v" del fotón reflejado, la cual es:

2 hv" . Mev (2-3)

1-cos 0 + (l/*) donde

m Qc - energía del electrón en reposo (0,51 Mev)

ot - hv* /m c o' o

6 m ángulo de reflexión, respecto al fotón original. Para hv"0 «0,6 Mev, el valor mínimo de hv" (0 * 180°)

valdrá 0,2 Mev. En este rango de energías relativamente bajas, el proceso de interacción ya depende de Z y para valores de Z mayores que 30 comienza a predominar el efecto fotoeléctrico, cuyo coeficiente de absorción (o probabilidad) es función de .

Son estos fotones de baja energía y los resultantes de otros sucesivos procesos de interacción, los que tornan sensi­ble el método a variaciones de la composición química.

Aparecen pues dos factores que establecen ciertas limita­ciones en la aplicación de la reflexión gamma para medición de densidad:

a) presencia de hidrógeno (relación Z/A);

b) Influencia de la composición química (Z), debida a fo­tones secundarios, terciarios, etc., de baja energía.

La presencia de hidrógeno aumenta la producción de fotones dispersados por procesos primarios en un dado volumen,pero tam bien aumenta la atenuación de los fotones secundarios que se dirigen al detector. Ambos procesos tienden, pues a, compensar se en cierta manera.

Page 10: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

10 Por otra parte, el bajo Z del hidrógeno, disminuye la ab

sorción de los mismos por efecto fotoeléctrico, lo cual se tra duce, en última instancia, en un incremento del numero de foto nes detectados.

Los elementos de alto Z, si bien no afectan la generación de fotones secundarios, contribuyen fuertemente a la absorción fotoeléctrica de éstos en su trayecto al detector, sobre todo en los de menor energía.

El grado en que la presencia de hidrógeno y/o variaciones de la composición química influyen, al margen de la densidad, en la detección final de radiación secundaria, dependerá de la energía inicial de los fotones emitidos por la fuente, de la distancia fuente-detector y de la sensibilidad espectral de és te último.

A mayor energía inicial, la probabilidad de fotones secun darios de baja energía como para dar lugar a interacciones fo­toeléctricas decrece, y con ello disminuye también la sensibi­lidad a la composición química. La contrapartida está en que la probabilidad de reflexión por unidad de recorrido en el ma­terial decrece (el camino libre medio aumenta), lo que se tra­duce a igual intensidad de fuente y volumen de material, en me, nos fotones secundarios disponibles para evaluar la densidad, vale decir, se pierde sensibilidad en la medición.

Si bien es cierto que el volumen de interacciones útiles se incrementa por la mayor penetración de la radiación, también aumenta paralelamente la distancia entre el detector y los pun tos de interacción con lo cual disminuye el ángulo sólido ASL. y crece la probabilidad de que el fotón, eventualmente refleja do hacia el detector, sea absorbido en el Ínterin.

El resultado final es menor sensibilidad a la composición química pero también menor sensibilidad a variaciones de densi_ dad.

Aumentar la distancia fuente-detector equivale a incremen tar la atenuación y absorción de los fotones de baja energía, evitando su influencia en las lecturas. Lógicamente la relación entre la radiación secundaria detectada y densidad también va­riará, como se verá más adelante (Sección III- 2).

Por último la sensibilidad espectral del detector inter­viene en la respuesta del medidor, a través de la discrimina­ción de bajas energías, sea por medio de filtros o por medios electrónicos. El sistema cristal de centelleo-fotomultiplica-dor permite establecer electrónicamente un umbral de energía mínima bien definido, para la detección de fotones. En el caso de los tubos G.M. también es posible, con una adecuada combina ción de filtros, blindar el detector para fotones de baja ener gía.

Page 11: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

11

Denominamos "función de transferencia" a la relación mate mática entre la respuesta del equipo y los parámetros del pro­ceso de medición, donde la densidad interviene como variable indepen diente.

El tratamiento teórico riguroso del proceso de medición, cuya complejidad fué insinuada en las secciones precedentes, escapa a los propósitos de esta publicación. Por ello hemo3 recurrido al empleo de fórmulas empíricas, cuya exactitud en la práctica es suficiente.

II-2.1. Derivación.

Dado un campo de radiaciones, se denomina exposición en un punto, a la velocidad de absorción de energía por gramo de aire en el punto considerado.

Se puede establecer una correlación entre la respuesta de un detector y la exposición. El conocimiento de la exposición debida solamente a la radiación secundaria nos permitirá enton ees determinar la función de transferencia.

Midiendo la exposición total a distancias variables de una fuente puntual en un medio infinito, esencialmente homogéneo, se comprueba que el valor observado difiere de la exposición primaria.

Los resultados experimentales y su teoría se describen con venientemente en términos del así denominado factor de "build-up" B, que se define como :

_ Exposición observada n Exposición secundaria ,„ o m . = x + — . (2—4;

Exposición primaria Exposición primaria

Llamando B' a la relación de exposiciones, resulta:

B* m ^ x P ° s i c i ^ n secundaria

Exposición primaria

de donde

E« . B«. E o

Si se elimina la radiación primaria (o directa) mediante un blindaje adecuado, la señal fi de salida del detector (sea

E (2-5)

(2-6)

II-2.0. Función de Transferencia.

Page 12: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

12

que midamos intensidad de corriente o pulsos por minuto) resul tara proporcional a la exposición secundaria (Apéndice C):

H a K . ? . E' (2-7)

donde

K a constante de proporcionalidad

f = factor de eficiencia media del detector para el espe£ tro de energía de los fotones secundarios.

A la distancia r de la fuente radiactiva, la exposición primaria para una fuente que emite n fotones/seg de energía h.V es, por definición!

o

- u r 0 . n . e /u \ E n - — 2 — [-1] hv Mev/seg . g . (2-8)

45Tr2 \j=lire o axre

donde

U q a coeficiente lineal de atenuación total en el medio (cm~^)

u a = coeficiente lineal de absorción total en aire (cm~^)

P = densidad del aire en condiciones normales (g/cm^)

Sustituyendo (2-8) en (2-6) y ésta en (2-7), obtenemos:

-u r r o

4ÍTr2 \/> a i

0

H «= g.f .B' . " ,. / _ ) pulsos/min (2-9)

lire

El factor de build-up B 1 se puede representar con suficien te aproximación, por una expresión del tipo:

B» - a^ 0

r> (2-10) o

donde

a, n a constantes que dependen del material que constituye el medio y de la energía de la radiación.

Reemplazando (2-10) en (2-9) y reuniendo todas las constan tes en una sola que denominaremos C, resulta:

-u r / Nn ~o (u r) . e

R « C . — - . pulsos/min (2-11) 2

r

Page 13: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

1 3

El coeficiente lineal de atenuación U q es, por definición:

> 0 - ?•• /> < 2 - l 2 >

donde

ji' m coeficiente másico de atenuación en cm /g

P m densidad de material

Sustituyendo en (2-U) :

E - C. e-A^ ( 2_ 1 3 )

2 r

Tenemos así finalmente expresada la respuesta del equipo en función de la densidad del material. Para radiación gamma de energía moderada, el coeficiente p.' será prácticamente igual a C//> ya que el efecto Compton es predominante. La expresión (2-1) nos muestra además, por las consideraciones ya expuestas, que O/P es igual para todos los materiales, excepto el hidrógeno.

Por lo tanto, una vez establecida la distancia fuente-de­tector "r", la señal sería sólo función de la densidad con in dependencia de la composición química, y la forma de dicha fun ción estaría representada por la ecuación (2-13).

En la práctica esto se cumple tan solo aproximadamente, por las causas analizadas en la Sección II-1.1., traducidas aquí en una variación de las constantes "a" y "n" de la (2-10), en función de la composición química.

No obstante la (2-13) representa con suficiente exactitud la relación señal-densidad para un dado tipo de material y, ba­jo este aspecto, se la puede utilizar para estudiar los parame tros de diseño de estos equipos.

Es obvio que, por razones de simetría, las conclusiones a que hemos arribado para una fuente puntual en un medio isotró­pico infinito, regirán también para un dispositivo fuente-dete£ tor ubicado en el plano de separación entre un medio cualquiera y el aire, como es el caso de los medidores de densidad desde la superficie.

En el modelo real podrán surgir diferencias debidas a las características constructivas del equipo (colimación y blindaje de la fuente, tipo y volumen del detector, estructura del equi po, etc.) que si bien no alteran la forma de la ecuación (2-13), obligan a determinar las constantes experimentalmente, en las

condiciones reales de operación.

Page 14: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

14 II-2.2. Análisis.

Escribiendo la ecuación (2-13) en la forma:

Rr 2 = C . (u«/)r)n . e"^'/ > r (2-14)

resulta Rr función de (u'^r), la cual responde idénticamen te frente a cambios de r o de ^ ,

Por lo tanto, las variaciones de densidad podrán simularse modificando la distancia r entre la fuente y el detector. El valor resultante de Rr 2 nos permitirá, en definitiva, obtener R en función de p para cualquier distancia elegida, mediante un simple cambio de escalas en el eje de la variable (u'/>r). Con ello se evita la preparación de numerosos barriles de distinta densidad y los errores consiguientes por falta de homogeneidad y/o diferencias de composición química en las muestras.

Para ilustrar el comportamiento de la ecuación (2-14) se ha representado en la figura 3 la función:

Rr 2 = (u'^r) 2 .*-*%Pr (2-15)

1 I 1

0,8-

2 — u 1 P r F i g u r a 3 - R e p r e s e n t a c i ó n G r á f i c a de (u* />r) e ' r en f u n ­

c i ó n de (u ' /Jr) .

Page 15: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

15

Para un valor fijo de r las ordenadas serán proporciona les a la señal fi y las abscisas a la densidad ya que n' es constante para un mismo material y fuente radiactiva.

Se observa que la curva crece rápidamente, pasa por un má ximo y luego decrece monótonamente con la densidad. Esta par­te decreciente es la que se suele usar en los medidores de den sidad.

El funcionamiento del equipo en la zona del máximo daría lugar a una incertidumbre en las lecturas y debe, por tanto, evi. tarse.

La densidad /> m que corresponde al máximo de la curva se obtiene haciendo dB/df= 0 en la (2-13) *•

A o _JL_ (2-16) m u'. r

La densidad P± en los puntos de inflexión surge de igua lar a cero la derivada segunda d2R/dp2:

¿ .JLÍJJL (2-i7) u T

La sensibilidad del equipo dada por la variación relativa de la señal frente a una variación relativa de la densidad, se rá:

d B / B - n -u'r/s (2-18) áp/p

La representación en escala logarítmica doble de la expre. sión

B r V ^ « <u'pr)n (2-19)

en función de r, dará una recta cuya pendiente es el valor de la constante n.

La función de transferencia y las expresiones derivadas de la misma resultan, como se verá en las secciones siguientes, muy titiles para el diseño y calibración de los medidores de den sidad.

Page 16: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

16

III - DESCRIPCIÓN SEL TRABAJO

Los ensayos experimentales estuvieron orientados iuridamen talmente a determinar:

1. Relación señal-densidad para una dada configuración fuente-detector;

2. Influencia de la distancia fuente-detector en la rela­ción señal-densidad;

3. Influencia de la composición química de las muestras, en la calibración del equipo.

Se efectuaron dos ensayos, denominados I y II, con los dispositivos ilustrados en la figura 4 a) y b). En ambos casos la distancia fuente-detector se podría variar moviendo la fuen te con su blindaje sobre la base de aluminio.

me

b) . G-M Philips 'MUS

C 0 7

S f „ e

Figura 4 - a) Esquema del Dispositivo Experimental Utilizado en el Ensayo I.

b) Esquema del Dispositivo Experimental Utilizado en el Ensayo II.

La fuente radiactiva utilizada fué Cs , (hV0 = 0,622 Mev), con una actividad de unos 5 milicurie. En el ensayo I se em­pleó un tubo G.M. Lionel/Anton 1007 T y en el II un tubo G.M. Philips 18503.

Page 17: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

17

Para la lectura de la señal se usó" un escalímetro CNEA (equipo 2111, construido por el Dpto. de Electrónica).

III*-1.0. Relación Señal-Densidad.

En un primer intento, sujeto a posterior comprobación, se supuso que la relación señal-densidad respondía a la ecuación (2-13).

Las pruebas se realizaron con una sola muestra de densidad conocida, empleando la ley de semejanza entre p y r para simu lar las variaciones de densidad.

III-1.1. Ensayo I.

Se empleó una muestra de arena seca no compactada, de di­mensiones suficientes como para cubrir el volumen sensible de interacciones (0 = 60 cm, h = 25 cm).

La distancia r se varió de cm en cm en el intervalo r s 9 cm r = 2 4 cm.

maz min

Se representaron los valores de Rr en función de r, figura 5, habiéndose determinado previamente:

p = 1,75 g/cm3

jj} = 0,077 cm2/g

2.10*

1.5

- cirva titrica • poetas t iptr i i t tul ts

0.5 -

oL 5

Figura 5 -

Page 18: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

18

La densidad f* se obtuvo por pesada. El coeficiente p.' se halla en tablas y gráficos en función de la energía de los rayos gamma y del numero atómico Z del elemento ( 9 ) , ( 1 0 ) , ( 1 1 ) .

En la figura 6 se ha representado el coeficiente másico de atenuación u', en función de Z para el Cesio 1 3 7 , según Hef. ( 1 0 ) .

10'

*N B «a

¡£ 5

- 2

2 10

i 5

10

Cui i -137

10 20 30 40 50 SO IÜHEI0 ATÓMICO Z

70 10

Figura 6 - Coeficiente Másico de Atenuación Total en Función del Número Atómico, para el Cesio 137 (Hef. 1 0 ) .

Para compuestos químicos u otras mezclas de elementos se supone que la atenuación primaria de rayos gamma depende sola­mente de la suma de las secciones eficaces presentadas por to­dos los átomos existentes en la mezcla. Se puede demostrar que el coeficiente másico de atenuación de un absorbedor de densidad bruta P , compuesto por la mezcla de elementos cuyos coeficien tes másicos con u J / P J vale:

£ - 2 — " wi < 2 - 2 0 )

donde

• fracción en peso del elemento "i"

En la figura 6 vemos que p/p varía poco con relación al coeficiente másico del aluminio, entre Z = 10 y Z = 20. Acep-

Page 19: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

19

tamos para la arena el valor de jí/p correspondiente al SiOg, dado en Ref. ( 7 ) .

Cabe mencionar, por último, que el coeficiente u 1 se puede determinar experimentalmente con un ensayo de absorción en "bue_ na geometría" (fuente y detector colimados), midiendo la inten sidad de radiación I trasmitida a través de un absorbente de densidad superficial conocida. Se emplea para ello la expresión:

I = I e~^%x pulsos/min (2-21) o

donde

I 0 = intensidad incidente de radiación (sin absorbente) 2

x s= densidad superficial del absorbente (g/cm )

La respuesta R del medidor se obtuvo como diferencia en­tre la señal y la radiación de fondo. Por esta líltima entende, mos la radiación directa que pasa a través del blindaje y la reflejada hacia el detector por la misma estructura del equipo experimental. Para determinar la radiación de fondo que corres, pondía a cada posición, se trazó una curva de señal en función de r con el dispositivo invertido, irradiando hacia el aire.

El coeficiente "n" se halló midiendo la pendiente de la recta obtenida al representar en escala doble logarítmica los valores de Rr2e?1,P r en función de r (figura 7 ). Resultó n = 1 , 3 1 .

1 "•' 1 » 1 1 1 1 1—•—I -I I 1 1,1-1 J 1 1 l L. ' '

9 10 15 20 25 30 DlSimil FUEITE DETECTOR r lu )

Figura 7 - Valores Experimentales de Rr e en función de r para el Ensayo I.

Page 20: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

20

El hecho de que efectivamente los puntos resultan alinea­dos sobre una recta, demuestra la validez déla expresión (2-13) supuesta al principio para la relación señal-densidad.

La constante de proporcionalidad de la ecuación ( 2 -13) se

obtuvo promediando los valores de Hr /(ji"/5r) para ca­da posición de la fuente: C = 4 ,73 x 1 0 ^ .

La sustitución de n, u', /> y C en la expresión ( 2 -13 ) per mite trazar la curva teórica de Hr 2 en función de r, la cual resultó en buen acuerdo con los puntos experimentales (figura 6). La dispersión de los puntos experimentales alrededor de la curva teórica puede deberse a:

a) diferencias locales en la consistencia (compactación) de la muestra;

b) diferencias de composición química;

c) errores experimentales (de operación y medición);

d) influencia de la estructura del equipo en el proceso de medición.

De cualquier forma el error total es pequeño (menor que el 3$) y la curva obtenida se puede usar para estudiar los pa­rámetros de diseño y para la calibración del equipo.

Conocida Hr = f(r) podemos representar R = t{p) para distintos valores de r. En efecto, los valores de r determinan para ji1 y p fijos la variable (ji'/ír) de la cual depende Rr2. Los mismos valores de (ji'/>r) pueden obtenerse dejando p } y r constantes y variandoP. De acuerdo a esto, denominando fi^ la densidad de la muestra utilizada y r6 la distancia fuente-de­tector para la cual deseamos conocer la respuesta del equipo en función de la densidad, resulta:

u'r c y O = u 'y3 cr (2-22)

Es decir

(2-23) r c

La escala de p resulta pues igual a la de r multiplicada por pc/rc.

Con una sola muestra de densidad pQ conocida, es enton­ces posible calibrar el instrumento para un rango variable de densidades del mismo material y para distintos valores de la distancia fuente detector r .

Page 21: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

21

En la figura 8 se han representado los valores de Rr en función de /> para r c = 17 cm y r c = 20 cm y en la figura 9 la curva de calibración R = t(P) obtenida para r c = 20 cm.

1 1.S 2 OEISlOáB i l i / M 1 )

2 Figura 8 - Curva Simulada de Rr c en función de fi, para r Q = 17 cm y r = 20 cm correspondiente al Ensayo I. c

5.101

3 •

S 2

1 1,S 2 2,5 B E I S I D 1 D / ( | / » ' )

Figura 9 - Curva de Calibración Simulada (R vs.yo) para r s 20 cm en el Ensayo I. °

Page 22: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

22

III- 1.2. Ensayo II.

Como muestra se utiliza un bloque de hormigón de 26 x 32 x 48 cm^, de densidad 2,12 g/cm^. Previamente se comprobó la homogeneidad de la muestra, midiendo varias zonas del bloque con el equipo experimental.

El trabajo se organizó en la misma forma que en el ensayo anterior, obteniéndose resultados similares. La figura 10 mués tra la diferencia entre la curva experimental y teórica de Rr2" en función de r; la figura 11 es la representación de la (2-19) en escala doble logarítmica, para determinar el coeficiente n.

Se observa que para los menores valores de r los puntos experimentales caen por debajo de la curva teórica. Ello se debe a la influencia del blindaje sobre la detección de los f£ tones reflejados por la muestra. Para pequeñas distancias fuen te-detector, el blindaje intercepta parte de la radiación secun daria que de otra forma sería detectada.

La recta de la figura 11 se trazó pues, considerando los puntos obtenidos a partir de r => 15 cm. Las ordenadas de la

Page 23: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

23

recta, divididas por e?Xr, permiten obtener Rr = f(r) y de allí R = t(j>) en la misma forma explicada anteriormente.

I IB 15 20 25 30 DISTANCIA FUENTE DETECTOR r ( ( • )

Figura 11 - Valores Experimentales de Rr^ePr en función de r para el Ensayo II.

III-2.0. Influencia de la Distancia Fuente-Detector.

En la figura 9 se observa que al aumentar r c la densidad para cuyo valor R es máximo disminuye, tal como estaba pre­visto por la fórmula (2-16). "

la sensibilidad relativa del medidor, dada por la (2-18), crece con r para un dado valor de El rango de medición no obstante disminuye al aumentar r, pues la señal decrece rá pidamente con la densidad para grandes valores de r.

Para fijar la distancia óptima, que es uno de los paráme­tros importantes de diseño, es necesario entonces establecer un

Page 24: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

24

compromiso entre sensibilidad y rango. Un método práctico con siste en calcular el valor de r para que la densidad en el punto de inflexión sea la media geométrica entre los valores extremos del rango (/,

m£n y / >

m ¿ x ^ :

med

Reemplazando fi por la (2-17) y despejando r se obtiene:

n + J n rópt • (2-25)

'med

Conviene siempre verificar que / )

m i n resulte suficiente­mente mayor que la densidad p (2-16) :

/min > (2-26)

Con ello se evitarán incertidumbres en las lecturas de den sidad próximas a / )

n i i n«

Los valores de r^-^ para las dos configuraciones estudia­das y densidades variables entre 1 y 3 g/cm^ resultaron: 18,5 cm en el ensayo I y 22 cm en el ensayo II.

De acuerdo a la (2-23) si en el ensayo II adoptamos r c = = 21,2 cm la escla de P resultaría igual a la de r dividida por 10 y la figura 11 podría utilizarse directamente como cur­va de calibración, dividiendo las ordenadas por (21,2)2.

III-3.0. Influencia de la Composición Química.

Si la curva de calibración obtenida con un determinado ma terial se quiere utilizar para medir densidad en otras sustan­cias, pueden presentarse errores por las causas ennumeradas en II-1.1. y II- 2.1., que afectan tanto al factor experimental de build-up B' como al coeficiente másico de atenuación u 1.

Los errores dependerán fuertemente de las características constructivas del equipo y serán menores para:

a) mayores energías de radiación gamma (entre 0,6 y 1 Mev)

b) mayores distancias fuente-detector compatibles con el rango de medición, según sección III- 2.0.;

Page 25: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

25

e) discriminación de fotones de baja energía (menores de 200 Kev) en el detector (G.M. de óatodo metálico, em­pleo de filtros, o contadores de centelleo con discri-minador).

Mediciones en arena, hormigón, y mezclas de arena y vermi culita con densidades variables entre 1,35 y 2,13 g/cm^ ejecu­tadas con los dispositivos descriptos, resultaron con error me ñor que ± 33* lo cual está dentro de los errores experimentales de las curvas de calibración (figuras 5 y 10).

En cambio, determinaciones sobre una muestra de arena y magnetita, de 1,94 g/cm^, (12# en peso de magnetita), dieron un error del 10?t en la densidad con el dispositivo I y del 8$ con el II. Las lecturas, en pulsos por minuto, resultaron me­nores que las dadas por las curvas de calibración, debida a la absorción de fotones de baja energía por efecto fotoeléctrico, en el hierro de la magnetita.

Las lecturas en agua resultaron un 5# mayores que las que hubieran correspondido a una muestra de arena de densidad uni­taria.

IV- CONCLUSIONES

Se ha visto que variando la distancia fuente-detector del dispositivo, se pueden determinar la función de transferencia, distancia óptima y curva de calibración para cualquier material, utilizando una sola muestra de densidad y coeficiente másico de atenuación conocidos.

Un equipo donde exista la posibilidad de variar dicha di£ taneia, ofrece la particular ventaja de poderse calibrar con facilidad para cualquier substancia y rango de densidades. 3as_ ta para ello obtener Rr2eJir para dos valores de r suficien temente alejados y trazar la recta que- define en papel doble logarítmico, procediéndose luego de acuerdo a lo expuesto en las secciones III - 1.0. y III - 2.0.

En base a esta idea y a los resultados experimentales, se proyectó y construyó el prototipo descripto en el Apéndice D.

Page 26: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

26

A P É N D I C E A

EFECTO COMPTON

Coeficiente Lineal de Atenuación Total.

El efecto Compton, por el cual un fotón es dispersado, tie ne lugar con electrones libres o débilmente unidos al átomo y su probabilidad de ocurrencia se define por electrón, con inde, pendencia del átomo al cual este pudiera pertenecer.

Por lo tanto, llamando e(T a dicha probabilidad absoluta, expresada en cm2/electrón, la sección eficaz de choque para un elemento de numero atómico Z, será:'

a(T < Z . e (T cm /átomo (A-l)

y para N átomos por cm^:

<T = N . Z . e CT cm"1 (A-2)

La expresión (A-2) es el coeficiente lineal de atenuación total por efecto Compton. El término N.Z es la densidad elec, trónica del elemento (electrones/cm^)y se puede expresar como:

Z 3 N.Z = p .J^. electrones/cm (A-3) J A

donde

P = densidad del material (g/cm^)

JT = número de Avogadro (átomos/mol)

A n peso atómico (g/mol) Sustituyendo (A-3) en (A-2), el coeficiente lineal de ate,

nuación total por Compton queda:

0" • p./T. — * e CT cm - 1 (A-4) A

Page 27: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

27

A P É N D I C E B

TEORÍA SIMPLIFICADA DE MEDICIÓN

Desarrollo.

Suponiendo una esfera de radio r con centro en la fuente (figura 2, Sección II-l.l.), tendremos a esa distancia un flujo de fotones primarios por unidad de superficie igual a:

dn n n ~^o r fotones ..» -— = — 2 — . e (B-l) ds 4TIr2 seg.cm2

donde u 0 a coeficiente lineal de atenuación total (cm ^) Nos interesan aquellos que interaccionan por Compton entre

r y r + dr de tal forma que se dirigen al volumen Av. La pro babilidad de que esto ocurra, está dada por la fórmula" (4)

donde

d(e<T) = lÍ.d A/jd : t f ^ + --3en 2e) ™ (B-2)

2 ^ v 0 / \ ^ V 0 i electrón

Tq m radio clásico del electrón (2,818 x 10~^ cm)

V" = frecuencia del fotón reflejado.

© -.-m ángulo de reflexión respecto a la dirección del fo­tón incidente.

Físicamente d(e(T) es el valor absoluto de la probabilidad de que un fotón de energía hv^, mientras pasa a través de un absorbedor que contiene un electrón por cm2, sufra un choque particular del cual el fotón reflejado emerja con energía hV*, dentro del ángulo sólido dA, con un ángulo medio de reflexión ©.

De la figura 2 vemos que 8 es constante para todos los pun tos ubicados en el segmento esférico diferencial de superficie '•

2 ds m 271r seno), dw (B-3)

Por lo tanto, el numero de fotones por segundo y por uni­dad de ángulo sólido reflejados en la dirección de 6, entre r y r + dr, para el segmento ds en un material de Z.N electrones por cm3, resultas

Page 28: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

28

tol » J ü.d.. ^ . N . Z . d r f o t o n e a (B-4) ds d A seg.esterrad.

Sustituyendo en (B-4) los valores de TX.Z y dn/ds dados en (A-3) y (B-l) obtenemos:

• - u r ' o n o e n ¡r „ d(e<T) . . fotones f-t>K\ dn1 = P. / • Z . - . sen co . da>. dr (B-5)

2 díl seg.esterrad.

Denominando AHÍ r,u>) al ángulo sólido del volumen AV visto desde el punto de interacción, y suponiendo este ángulo sólido lo suficientemente pequeño como para que 8 pueda considerarse constante para todos los fotones reflejados en Ail, el número de fotones secundarios que se dirigen a Av será:

dn 2 = dn^ . Aitfr.u,) f o t o n e a (B-6) seg

Estos fotones de energía hV (función de 9 y por lo tanto de<») y r) sufrirán a su vez, en su camino r' hacia av, procesos secundarios de interacción que los eliminarán del haz, y el nú mero de los que realmente llegan a será:

-u r' dn« a dn 2 . e (B-7)

donde

= coeficiente lineal de atenuación total para la ener­gía hV del fotón reflejado (cm - 1)

Cada uno de loa factores y.1 v r' e s también función de r yGJ . Por lo tanto, integrando la (B-7) tendremos una expresión aproximada de la cantidad de fotones secundarios transportados hasta ¿v y originados solamente en procesos primarios de inte_ racción Compton.

Para una esfera de radio ^ la integral doble sería:

Jr»ri fiír

I toi

o Jo ASI. e fotones

(B-8) seg

es decir:

d' , r'.AA.e 1 sena». da>. dr (B-9)

Page 29: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

29

A P É N D I C E C

RESPUESTA DE UN DETECTOR EN PUNCIÓN DE LA EXPOSICIÓN

La distribución espacial de los fotones secundarios inci­dentes en un punto P del medio y la distribución espectral de la energía transportada por los mismos, conduce a una defini­ción de intensidad de radiación tal que'. (8)

di = -A (UL\E . dE (C-1) añas vas/

2 es la intensidad en Mev/seg.cm .esterradián, de fotones de ener gía E incidentes en P por unidad de ángulo sólido, en la dirección J\ .

La exposición en P debida a todos los fotones secundarios será:

- * , 4 J T

E' = 2 d l*L) E (hÁ ASI. dE M e V (C-2)

Us/ l/5/aire s e g < g

aire o

Para un dado detector, la señal de salida R (sea en inten sidad de corriente o en pulsos por minuto), estará vinculada a la exposición por un factor f(E) que depende de la energía de los fotones . En el caso más general dado por (C-2) tendremos (supuesto el detector isotrópico):

j J anas / \ R = K| \ _ L ( H \E. fflOdíl. dE (C-3)

donde

K = constante de proporcionalidad que tiene en cuenta la geometría de detección.

Se puede establecer un factor medio f tal que:

Page 30: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

30

(C-4)

es decir

H = K . ?. E' pulsos/min (C-5)

Aunque f depende de f(E) y del espectro diferencial de la energía de los fotones, se puede asociar a un dado detector un factor promedio de este tipo aproximadamente independiente de la distancia fuente-detector, porque la forma del espectro di­ferencial de energía de los fotones secundarios es, dentro de ciertos límites (hasta u r2¿7) insensible a variaciones de di, cha distancia.

Page 31: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

31

A P É N D I C E D

MEDIDOR DE DENSIDAD DESDE SUPERFICIE, MODELO CNEA 02

Aplicaciones

Se trata de un prototipo proyectado para la medición in-situ de densidades en cualquier material, en el rango de 1 a 3 g/cm^, utilizando la técnica de reflexión de rayos gamma. Se puede emplear tanto en problemas de agrotecnia vinculados al estudio de suelos como en aplicaciones a la ingeniería e indu£ tria: compactación del terreno para construcción de caminos, pistas de aterrizaje y fundación de edificios, densidad bruta de minerales, etc.

Descripción General

Principio de Funcionamiento.

El funcionamiento del equipo se basa en la medición de la radiación gamma retrodispersada por el material cuya densidad se quiere determinar. A igualdad de otros factores, la inten­sidad de la radiación dispersada será función de la densidad del material expuesto al haz de radiaciones primarias.

El mecanismo de interacción de la radiación con la materia que vincula la radiación dispersada con la densidad, se halla descripto en la Sección II.

Unidades Funcionales.

El equipo se compone de las siguientes unidades:

a) Unidad de Medición.

Constituida por una caja de aluminio que contiene la fuen te radiactiva y el detector, separados por una distancia regu­lable (figura 12 a) y b).

137 La fuente radiactiva (Pos.l de la figura 1 3 ) es Cs con

una actividad de 5 me y responde a las especificaciones del C£ de CDCM 5 del Catálogo de "The Radiochemical Centre", Amersham, Inglaterra. Está alojada en un cilindro rotatorio de bronce (Pos. 2) cuyo interior está lleno de plomo, constituyendo un blindaje de protección contra la radiación externa.

Page 32: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

Figura 12 - Medidor de Densidad desde Superficie Modelo CNEA 02 (Unidad de Medición):

a) Posición de Transporte; b) en Operación.

Figura 13«- Esquema de la Unidad de Medición.

Page 33: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

33

El cilindro gira solidario a la manija (Pos. 3) que sirve tanto para el transporte del equipo(fuente cerrada figura 12 a) como para la operación (fuente abierta figura 12 b). Durante el transporte la fuente permanece bloqueada por el blindaje contra la radiación directa (Pos. 4) y asegurada en dicha posición me diante un cerrojo bajo llave (Pos. 5).

Como medida de precaución se ha previsto que al levantar el equipo por la manija, cuando la fuente se encuentra abierta, se produzca por propio peso el giro del cilindro y bloqueo auto mático de la fuente.

El detector (Pos. 6) es un tubo Philips N° 18503, que tra baja con una tensión de unos 450 V y aproximadamente 150 V de plateau. Está montado en un soporte (Pos. 7) deslizable median te un mecanismo de engranajes (Pos. 8) y tornillo, accionado ma nualmente desde el exterior con una perilla, moleteada (Pos. 9) lo cual permite variar la distancia fuente-detector entre 14 y 25 cm.

Un fiel (Pos. 10) solidario al soporte del tubo G.M., in­dica en una escala graduada sobre lucite, la distancia fuente detector en cm.

El peso de la unidad de medición es de 8 Kg aproximadamen te.

b) Unidad de Lectura. Consiste en un escalímetro portátil transistorizado, cons

truído especialmente para los equipos de medición de densidad y humedad desarrollados por la CNEA (12), figuras 14 y 15.

El circuito básico cuenta con una fuente de alta tensión a oscilador de autobloqueo, con salida variable entre 200 y 1000 V a 50 microamperes.

El escalímetro tiene cuatro décadas, compuesta cada una por cuatro circuitos binarios con realimentación, conectadas de tal forma que se obtiene un pulso d« salida por cada 10^ pul sos de entrada.

Un multivibrador (timer) empieza a oscilar a una frecuen­cia de 600 pulsos/min en el momento de iniciar una medición y se detiene al recibir el pulso de salida de las décadas. Los pulsos del multivibrador actiían un contador- mecánico tipo Sodeco de cuatro cifras, donde quedan registrados en forma digital. Una luz neón que se enciende cada 100 pulsos de radiación, per mi te comprobar el funcionamiento del equipo y dá una idea aprp_ ximada del régimen de cuentas que se está midiendo. El escalí metro se pone en marcha al accionar un pulsador. Si por cual-

Page 34: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

34

Figura 14 - Unidad de Lectura

CONTADOR n t PULSOS

MULTIVlMADOa MONOCSTABU COMPUERTA

tubo 6.M FUENTE DE ALTA TENSIÓN

MULTIVIBRAOOR ASTABLE

ESCALIMETRO (4 O E CAO AS)

MULTIVIBRAOOR

BIESTABLE

COMPUERTA CONTADOR MECÁNICO

V CRONOMETRO

Figura 15 - Diagrama en Bloques del Circuito Electrónico.

Page 35: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

35

quier causa se quiere suspender la medición antes de totalizar las 10.000 cuentas que provocan la parada automática, se pre­siona otro pulsador.

Los circuitos electrónicos están alojados en una caja her mética de aluminio. El peso de la unidad es de 2 Kg.

c) Unidad de Alimentación.

Está compuesta por un acumulador de 12 V contenido en una caja hermética de material plástico. La unidad pesa un Kg.

Manejo del Equipo

Calibración.

El equipo se puede calibrar para cualquier tipo de mate­rial, utilizando una sola muestra del mismo, -de densidad cono cida -, mediante el siguiente procedimiento!

2 M'PT

1. Se determina Rr e para dos posiciones del detector suficientemente alejadas (por ej. r^ = 15 cm; r ? = 25 cm); u 1 se obtiene de las tablas o gráficos en la for ma explicada en la Sección III - 1.0.

2. En papel doble logarítmico se traza la recta determina da por los valores anteriores, representados en función de r, y se obtiene n (pendiente de la recta) .

3. Dividiendo las ordenadas de la recta por ^ T se cal­culan los valores de Rr 2 en función de r, para r varian do de cm en cm desde 10 a 30, y se representan en papel milimetrado.

4. Se elige la distancia r óptima dentro del rango de den sidades a medir, de acuerdo a la fórmula (2-25).

5. Se transforma la escala de r en la de fi en la curva an­terior, multiplicando los valores de r por 3a relación/5

muestra/r^p-t^ H resulta de dividir las ordenadas de la curva por tr¿^)^.

6 . Se suma a R el valor del fondo para r̂ p-̂ con lo cual se obtiene finalmente la curva de calibración.

Dado que el esoal fmetro indica el tiempo en décimos de se_ gundo para acumular 10.000 impulsos, los valores de R utiliza­dos en la calibración podrán expresarse en pulsos por segundo. Para facilitar la interpretación de las mediciones posteriores,

Page 36: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

36 convendrá transformar la curva final de calibración de manera que las ordenadas representen los tiempos de lectura en lugar de pulsos/seg.

La calibración deberá repetirse sólo cuando el Z del mate_ rial a medir difiera apreciablemente del de la muestra utiliza da. En cualquier caso antea de proceder a una recalibración convendrá comprobar con una muestra de densidad conocida del nuevo material, si el error obtenido con la curva existente es_ tá o no dentro de los límites permisibles.

En la figura 16 se indica la curva de calibración del pro totipo obtenida con una muestra de hormigón de 2,12 g/cm^.

3811 1

D E N S I D A D / i l g / c m M

Figura 16 - Curva de Calibración del Prototipo (Tiempo vs. Den sidad) en Hormigón, para r = 24 cm (Distancia Fuente-Detec­

tor) .

Page 37: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

37

Error de Medición

Además de los errores instrumentales y operativos que sólo pueden reducirse con un buen diseño de las unidades y la utili, zación correcta del equipo, existe un error propio del sistema de medición y lectura.

En efecto, la señal que sirve de base para la medición de densidad está dada per la relación de dos magnitudes, N (nú mero de pulsos) y T (tiempo de contaje), cada una de las cuales tiene asociada una incertidumbre respecto a su valor verdadero.

Esta incertidumbre, motivada en el primer caso por la na­turaleza estadística de las desintegraciones nucleares y por el método de computación del tiempo en el segundo, definen la probabilidad de un error relativo para cada una de las magnitu des medidas.

Así por ejemplo, en el S0# de los casos el error relativo del número de pulsos para una determinación aislada será¡

Operación.

Completada la calibración, el equipo queda en condiciones de medir la densidad, operándolo en la siguiente forma:

1. Se coloca la unidad de medición de modo que apoye per­fectamente en la superficie donde se ha de efectuar la determinación de la densidad. Si se trata del suelo, deberá removerse la capa superficial dejando un espacio liso y limpio para la colocación de la sonda.

2. Se conecta la alimentación a la unidad de lectura.

3 . Se acciona el pulsador que pone en marcha al escalíme-tro. El contador se detendrá automáticamente indicando el tiempo para acumular 10.000 impulsos de radiación.

4. Con este valor del tiempo se entra en la curva de cali_ bración (eje de ordenadas) y se lee la densidad corres_ pondiente (eje de las abscisas).

Si se desea una mayor precisión y/o representatividad de la lectura, se puede repetir la determinación girando la sonda 90° en el mismo sitio, y utilizar el valor promedio de las dos mediciones para entrar en la curva de calibración.

Page 38: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

38

De acuerdo a la fórmula (2-18) el error en la medición de densidad resulta:

e. = ± 100 = ± ( * 5 / 5 ) 1 0 0 Jt (D-4) ' P n - u'r />

La experiencia demuestra que, en general, el error total obtenido es menor que í 3$ de la densidad medida, lo cual es tolerable para la mayoría de las aplicaciones.

e_ = ±*L . 100 « i 164^Zj6 (D-l) N N

Para N = 10.000, resulta e^ $ ± 1,64

En cuanto al tiempo, el error relativo será siempre:

e_ £ 1 . 100 (D-2) T

donde

= intervalo entre pulsos del multivibrador (seg).

T = numero de pulsos indicados multiplicado por^T (seg).

En nuestro caso A l = 0,1 seg de modo que e T < ± (10/T) #y

Page 39: Medición de Densidad por Retrodispersiún Gamma-. Bases ...

39

REFERENCIAS

1. U.S. Army Engineer District, Detroit, Michigan, Corps of En gineers, "Report on the Use of Nuclear Moisture and Density Probes for Controlling Compaction on Airfield Pavement Cons truction", (Jan. 1960).

2. CALDWELL, R.L. - "Using Nuclear Methods in 011-Well Logging", Nucleonics 16 (12), (Dec. 1958).

3. PHILLIPS, R.E.; JENSEN, C.R. and KIRHAM, Don- "Use of Radia tion Equipment for Plow-Layer Density and Moisture", Soil Science 89 (1), (Jan. 1960).

4. EVANS, R.D. - "The Atomic Nucleus", (Chaps. 23, 24, 25), ed. by SCHIFF, L.I.; Me GRAW-HILL, U.S.A., (1958).

5. KCJRANZ, John L. - "Heasurement of Moisture and Density in Soils by the Nuclear Method", ASTM Symposium on Radioisoto-pe Test Methods, Pacific Área National Meeting, San Francis co, California, U.S.A., (Oct. 1959).

6. Organismo Internacional de Energía Atómica - "Radioisotope Applications in Industry", Viena, (1963).

7. SEMMLER, R.A.; BRUGGER, J.E. and RIEKE, F.F. - "Gamma-Sca-ttering Density Meters: Analysi3 and Design with Applica­tions to Coal and Soil", Final Report, TID-14178, Washing­ton, U.S.A. (Dec. 1961).

8. GOLDSTELN, H.; WILZINS, J.E. Jr., "Calculations of the Pene tration of Gamma Rays", Final Report, USAEC, NYO - 3075, Washington, U.S.A., (June 30, 1954).

9. WHITE, G.R. - "X-Ray Attenuation Coefficients from 10 kev to 100 Mev", Nati. Bur. Standards (U.S.) Report 1003,(1952).

10. BERRY, P.F. - "Gamma-Ray Attenuation Coefficients", Nucleo­nics, 19_ (62), (Jun. 1961).

11. D.G. Chappell, "Gamma Ray Attenuation", Nucleonics 14_ (1), (Jan. 1956).

12. KDPP, M.C. y GARCÍA, 0. - "Escalímetro Portátil", Informe de la Comisión Nacional de Energía Atómica, (en publicación) Buenos Aires, 1964.

Page 40: Medición de Densidad por Retrodispersiún Gamma-. Bases ...