Miguel marquez

5
Leyes básicas para un Sistema El numero de Reynolds es quizá uno de los números adimensionales mas utilizados. La importancia radica en que nos habla del régimen con que fluye un fluido, lo que es fundamental para el estudio del mismo. Si bien la operación unitaria estudiada no resulta particularmente atractiva, el estudio del numero de Reynolds y con ello la forma en que fluye un fluido son sumamente importantes tanto a nivel experimental, como a nivel industrial. A lo largo de esta practica se estudia el numero de Reynolds, así como los efectos de la velocidad en el régimen de flujo. Los resultados obtenidos no solamente son satisfactorio, sino que denotan una hábil metodología experimental. Y sus Características son: Condicionen el flujo laminar dependen de las propiedades del líquido y de las dimensiones del flujo. Conforme aumenta el flujo másico aumenta las fuerzas del momento o inercia, las cuales son contrarrestadas por la por la fricción o fuerzas viscosas dentro del líquido que fluye. Cuando estas fuerzas opuestas alcanzan un cierto equilibrio se producen cambios en las características del flujo. En base a los experimentos realizados por Reynolds en 1874 se concluyó que las fuerzas del momento son función de la densidad, del diámetro de la tubería y de la velocidad media. Además, la fricción o fuerza viscosa depende de la viscosidad del líquido. Según dicho análisis, el Número de Reynolds se definió como la relación existente entre las fuerzas inerciales y las fuerzas viscosas (o de rozamiento).

Transcript of Miguel marquez

Page 1: Miguel marquez

Leyes básicas para un Sistema

El numero de Reynolds es quizá uno de los números adimensionales mas utilizados. La importancia radica en que nos habla del régimen con que fluye un fluido, lo que es fundamental para el estudio del mismo. Si bien la operación unitaria estudiada no resulta particularmente atractiva, el estudio del numero de Reynolds y con ello la forma en que fluye un fluido son sumamente importantes tanto a nivel experimental, como a nivel industrial. A lo largo de esta practica se estudia el numero de Reynolds, así como los efectos de la velocidad en el régimen de flujo. Los resultados obtenidos no solamente son satisfactorio, sino que denotan una hábil metodología experimental.

Y sus Características son: Condicionen el flujo laminar dependen de las propiedades del líquido y de las dimensiones del flujo. Conforme aumenta el flujo másico aumenta las fuerzas del momento o inercia, las cuales son contrarrestadas por la por la fricción o fuerzas viscosas dentro del líquido que fluye. Cuando estas fuerzas opuestas alcanzan un cierto equilibrio se producen cambios en las características del flujo. En base a los experimentos realizados por Reynolds en 1874 se concluyó que las fuerzas del momento son función de la densidad, del diámetro de la tubería y de la velocidad media. Además, la fricción o fuerza viscosa depende de la viscosidad del líquido. Según dicho análisis, el Número de Reynolds se definió como la relación existente entre las fuerzas inerciales y las fuerzas viscosas (o de rozamiento).

Page 2: Miguel marquez

Aplicación

Reynolds, en 1881, realizó experiencias que le permitieron definir y cuantificar, a través del número que lleva su nombre, la forma en que escurre un fluido. Las experiencias consistieron en hacer escurrir un caudal de agua variable a voluntad a través de un tubo cilíndrico horizontal de vidrio transparente. Lograba visualizar un filamento mediante la inyección de un colorante a través de una aguja inyectora, colocada en el abocinamiento de entrada del tubo. Observó que para pequeños caudales (consecuentemente bajas velocidades) con el mismo líquido y el mismo tubo (viscosidad y diámetro del tubo constantes) el cambio de régimen se producía a velocidades tanto más altas cuanto más altas fueran las viscosidades cinemáticas de los fluidos empleados.

Esto le permitió a Reynolds definir el número adimensional que lleva su nombre, que gobierna el proceso y que para tubos cilíndricos se expresa:

Page 3: Miguel marquez

Flujo laminar

se define como aquel en que el fluido se mueve en capas o láminas, deslizándose suavemente unas sobre otras y existiendo sólo intercambio de molecular entre ellas. Cualquier tendencia hacia la inestabilidad o turbulencia se amortigua por la acción de las fuerzas cortantes viscosas que se oponen al movimiento relativo de capas de fluido adyacentes entre sí. Por otro lado, en un flujo turbulento, el movimiento de las partículas es muy errático y se tiene un intercambio transversal de cantidad de movimiento muy intenso.El Número de Reynolds permite caracterizar la naturaleza del flujo, es decir, si se trata de un flujo laminar o de un flujo turbulento, además, indica la importancia relativa de la tendencia del flujo hacia un régimen turbulento respecto de uno laminar y la posición relativa de este estado dentro de una longitud determinada.

Reynolds estudió dos escurrimientos geométricamente idénticos, de esto pudo concluir que dichos flujos serian dinámicamente semejantes si las ecuaciones diferenciales que describían a cada uno estos eran idénticas.Dos escurrimientos son dinámicamente semejantes cuando:

Ambos sistemas son geométricamente semejantes, es decir, cuando se tiene una relación constante entre dimensiones de longitudes correspondientes.

Las correspondientes familias de líneas de corriente son geométricamente semejantes o las presiones en puntos correspondientes forman una relación constante.

Page 4: Miguel marquez

Al cambiar las unidades de mas, longitud y tiempo en un grupo de ecuaciones y al determinar las condiciones necesarias para hacerlas idénticas a las originales, Reynolds encontró que el parámetro adimensional ÞDv/u debía ser igual en ambos casos. En este parámetro v es la velocidad característica, D es el diámetro de la tubería, Þ es la densidad del fluido y u es su viscosidad. Este parámetro se conoce como numero de Reynolds (R).

Cuando las fuerzas de inercia del fluido en movimiento son muy bajas, la viscosidad es la fuerza dominante y el flujo es laminar. Cuando predominan las fuerzas de inercia el flujo es turbulento. Osborne Reynolds estableció una relación que permite establecer el tipo de flujo que posee un determinado problema.

Page 5: Miguel marquez

Cuando un fluido circula por una tubería lo puede hacer en régimen laminar o en régimen turbulento. La diferencia entre estos dos regímenes se encuentra en el comportamiento de las partículas fluidas, que a su vez depende del balance entre las fuerzas de inercia y las fuerzas viscosas o de rozamiento.

Como se verá posteriormente, el número de Reynolds es el parámetro que expresa la relación entre las fuerzas de inercia y las viscosas en el interior de una corriente, por lo que el régimen hidráulico va a depender de su valor.Para fluidos no ideales la ecuación de Bernoulli toma la forma

las partículas del líquido se mueven siempre a lo largo de trayectorias uniformes, en capas o láminas, con el mismo sentido, dirección y magnitud. Suele presentarse en los extremos finales de los laterales de riego y en microtubos de riego.En tuberías de sección circular, si hacemos un corte transversal, las capas de igual velocidad se disponen de forma concéntrica, con v > 0 junto a las paredes de la tubería y velocidad máxima en el centro.Corresponde el régimen laminar a bajos valores del número de Reynolds y suele darse a pequeñas velocidades, en tubos con pequeño diámetro y con fluidos muy viscosos (aceites). En estas condiciones, las fuerzas viscosas predominan sobre las de inercia.las partículas se mueven siguiendo trayectorias erráticas, desordenadas, con formación de torbellinos. Cuando aumenta la velocidad del flujo, y por tanto el número de Reynolds, la tendencia al desorden crece. Ninguna capa de fluido avanza más rápido que las demás, y sólo existe un fuerte gradiente de velocidad en las proximidades de las paredes de la tubería, ya que las partículas en contacto con la pared han de tener forzosamente velocidad nula.

Bachiller:Miguel Márquez CI:24601539

Introducción a los Fenómenos de Transporte