Polinomios

15
1 En una división por el método de Ruffini se han borrado algunos de los coeficientes, quedando: 1 0 9 0 2 6 2 Si sabemos que la división es exacta, ¿puedes reconstruirla, y escribir los polinomios dividendo, divisor y cociente? Solución: Como la división es exacta, el último coeficiente de la tercera fila es cero, y el que está encima de él debe ser 6. Entonces el coeficiente del divisor, el primero de la segunda fila debe ser 3, pues, al multiplicarlo por 2 resulta 6. Ahora, solamente consiste en continuar con el método. Los polinomios pedidos son: 5 3 4 3 () 9 2 6, () 3, () 3 2 y () 0 Dx x x x dx x Cx x x Rx 2 Calcula la siguiente potencia: 3 (3 2) (3 5) x y x y Solución: En primer lugar, operamos en la base y simplificamos: 3xy 2y (3xy 5x) = 5x 2y. 3 2 2 2 3 2 2 2 2 3 3 2 2 3 (5 2) (5 2 )(5 2) (5 2 )(25 20 4 ) 125 100 20 50 40 8 125 150 60 8 . x y x y x y x y x xy y x xy xy xy xy y x xy xy y 3 Divide los siguientes polinomios: 3 2 6 4 5 3 a) (6 3 9 ):3 b) 4 4 6 :2 x x x x x x x x Solución: a) Cada monomio del polinomio es divisible por el monomio, resultando: 3 x x 2 2 . b) Cada término del polinomio es divisible por el monomio. Obtenemos: 3 2 2 2 3 . x x x 4 Efectúa los siguientes productos y reduce los términos semejantes: a) (x 2) (2x + 1) (x 2 1) (x + 2) b) (x + 2y) (3x y + 3xy 1) Solución: 2 3 2 3 2 2 2 2 2 2 2 2 a) 2 4 2 ( 2 2) 2 b) 3 3 6 2 6 2 3 6 3 5 2 2 x x x x x x x x x xy xy x xy y xy y xy xy x xy y x y 5 Efectúa las siguientes divisiones utilizando el método de Ruffini:

Transcript of Polinomios

1 En una división por el método de Ruffini se han borrado algunos de los coeficientes, quedando:

1 0 9 0 2 6

2

Si sabemos que la división es exacta, ¿puedes reconstruirla, y escribir los polinomios dividendo, divisor y cociente? Solución:

Como la división es exacta, el último coeficiente de la tercera fila es cero, y el que está encima de él debe ser 6.

Entonces el coeficiente del divisor, el primero de la segunda fila debe ser 3, pues, al multiplicarlo por 2 resulta

6.

Ahora, solamente consiste en continuar con el método.

Los polinomios pedidos son: 5 3 4 3( ) 9 2 6, ( ) 3, ( ) 3 2 y ( ) 0D x x x x d x x C x x x R x

2 Calcula la siguiente potencia:

3(3 2) (3 5)x y x y

Solución:

En primer lugar, operamos en la base y simplificamos: 3xy 2y (3xy 5x) = 5x 2y. 3 2 2 2

3 2 2 2 2 3 3 2 2 3

(5 2 ) (5 2 )(5 2 ) (5 2 )(25 20 4 )

125 100 20 50 40 8 125 150 60 8 .

x y x y x y x y x xy y

x x y xy x y xy y x x y xy y

3 Divide los siguientes polinomios:

3 2

6 4 5 3

a) (6 3 9 ) : 3

b) 4 4 6 : 2

x x x x

x x x x

Solución: a) Cada monomio del polinomio es divisible por el monomio, resultando:

3xx2 2

. b) Cada término del polinomio es divisible por el monomio. Obtenemos:

3 22 2 3 .x x x

4 Efectúa los siguientes productos y reduce los términos semejantes:

a) (x 2) (2x + 1) (x

2 1) (x + 2)

b) (x + 2y) (3x y + 3xy 1) Solución:

2 3 2 3

2 2 2 2 2 2 2 2

a) 2 4 2 ( 2 2) 2

b) 3 3 6 2 6 2 3 6 3 5 2 2

x x x x x x x x

x xy x y x xy y xy y x y xy x xy y x y

5 Efectúa las siguientes divisiones utilizando el método de Ruffini:

4 2

6 4 2

a) ( 3 5 8) : ( 2)

b) ( 3 5 4) : ( 2)

x x x x

x x x x

Solución:

a) 1 0 3 5 8

2 2 4 2 6

1 2 1 3 14 3 2( ) 2 3 y ( ) 14C x x x x R x

b) 1 0 3 0 5 0 4

2 2 4 2 4 2 4

1 2 1 2 1 2 0

5 4 3 2( ) 2 2 2 y ( ) 0C x x x x x x R x , R(x) = 0.

6 Divide los siguientes polinomios:

3 2 2(2 4 3) : ( 2).x x x

Solución:

3 2 22 4 0 3 x 2x x x

2x

3 + 4x 2x + 4

3x4x4 2

4x2 + 8

4x + 5 Es decir: C(x) = 2x + 4, R(x) = 4x + 5.

7 Nos dicen que al efectuar la división (2x3 + 5x

2 + 3x + 2) : (x

2 + 3x + 1), se ha obtenido como cociente C(x) =

2x 1 y como resto R(x) = 4x + 3. Comprueba si son correctos los resultados sin efectuarla. Solución: Utilizamos la ley de la división entera para comprobar si son correctos los cálculos:

D(x) = C(x) d(x) + R(x) = (2x 1) (x2 + 3x + 1) + 4x + 3 = 2x

3 + 6x

2 + 2x x

2 3x 1 + 4x + 3 = 2x

3 + 5x

2 +3x + 2

La última expresión coincide con el dividendo, luego son correctos los cálculos.

8 Calcula las siguientes potencias:

2 2 3

24 5

a) ( ) ( )

b) 2 2

xy x y

x

Solución:

2 2 3 2 2 2 6 3 8 5

2 2 24 5 4 4 5 5 8 10 10

a) ( ) ( ) ( 1)

b) 2 2 2 2 2 2 2 2 2 2

xy x y x y x y x y

x x x x x

9 Efectúa las siguientes operaciones:

4 3 2

3 2 3 2 3 2

a) 2 (3 ( 2 )) 1

b) ( 1) (( 1) ( 1)) ( )

x x x x

x x x x x x x x x

Solución:

4 3 2

3 2 3 2 3 2 3 2

a) 2 3 2 1

b) 1 1 1 3 3 3 3

x x x x

x x x x x x x x x x x x

10 2 3 21Si dividimos el monomio M entre 3x y obtenemos como cociente ,

2calcula el monomio M.

x y

Solución: El monomio M, el dividendo, es el producto del cociente por el divisor:

2 3 2 5 31 33

2 2M x y x y x y

11 Calcula las siguientes potencias y reduce los términos semejantes:

2 2 2( 3) (2 5) (4 3 ) .x x x

Solución: Desarrollamos los tres binomios y agrupamos los términos.

2 2 2 2 2 2 2( 3) (2 5) (4 3 ) 6 9 4 20 25 (16 24 9 ) 4 38 18x x x x x x x x x x x

12 Efectúa las siguientes operaciones:

3 2 4 3 4 2

2 2 2 2 2 2

a) ( 2 8) ( 3 5) ( 4 5 )

b) 10 3 ( 2 ) ( 5 )

x x x x x x x

a b ab a b ab a b ab

Solución:

4 4 3 2 3 2

2 2 2 2 2 2 2 2

a) 4 6 5 3 4 6 5 3

b) 10 3 2 5 10 10

x x x x x x x x

a b ab a b ab a b ab a b ab

13 Efectúa las siguientes divisiones utilizando el método de Ruffini:

5 3 2

4 3 2

a) (2 9 20 13) : ( 3)

b) (3 6 10 9) : ( 3)

x x x x

x x x x

Solución:

a) 2 0 9 20 0 13

3 -6 18 27 21 63

2 6 9 7 21 50 4 3 2( ) 2 6 9 7 21 y ( ) 50C x x x x x R x

b) 3 6 10 0 9

3 9 9 3 9

3 3 1 3 0 3 2( ) 3 3 3 y ( ) 0C x x x x R x

14 El siguiente esquema corresponde a la división de dos polinomios utilizando el método de Ruffini. Escribe

los polinomios dividendo, divisor, cociente y resto, y compruébala con la regla fundamental de la división 3 0 0 0 2 1

1 3 3 3 3 5

3 3 3 3 5 4

Solución: Los polinomios son:

5 4 3 2( ) 3 2 1, ( ) 1, ( ) 3 3 3 3 5 y ( ) -4D x x x d x x C x x x x x R x

Se debe cumplir: D(x) = C(x) d(x) + R(x). Operamos: 4 3 2 5 4 3 2 4 3 2

5

(3 3 3 3 5)( 1) ( 4) 3 3 3 3 5 3 3 3 3 5 4

3 2 1.

x x x x x x x x x x x x x x

x x

que, efectivamente, es el dividendo.

15 Efectúa los siguientes productos y reduce los términos semejantes:

a) (x + y) (x + z) (x- y) (x z)

b) (2x + y 2z) (2x y + 2z) Solución:

2 2

2 2 2 2 2 2

a) x + xz + xy + yz - (x - xz - xy + yz) = 2xy + 2xz

b) 4 2 4 2 2 4 2 4 4 4 4x xy xz xy y yz xz yz z x y yz z

16 3 21 3 1 2

Dados los polinomios ( ) 2 y ( ) 5. Calcula:2 2 3 3

P x x x Q x x x

a) 4P(x) + 3Q(x)

b) 2P(x) 6Q(x) Solución:

3 2 3 2

3 2 3 2

1 3 1 2a) 4 2 3 5 2 4 23

2 2 3 3

1 3 1 2b) 2 2 6 5 2 7 26

2 2 3 3

x x x x x x x

x x x x x x x

17 El cociente entre un polinomio y el monomio 3x3 es C(x) = 2x

3 + 3x

2 x + 1, y el resto es R(x) = 2x

2 x + 1.

¿De qué polinomio se trata? Solución:

La relación fundamental de la división nos da el polinomio pedido: D(x) = C(x) d(x) + R(x)

3 2 3 2 6 5 4 3 2(2 3 1)(3 ) (2 1) 6 9 3 3 2 1x x x x x x x x x x x x

18 5 3 2

5 4 2

Halla el polinomio que hay que restar a ( ) 3 5 1, para

obtener ( ) 2 4 5 3.

P x x x x

Q x x x x

Solución:

Nos piden R(x) para que P(x) R(x) = Q(x). Despejamos y sustituimos los polinomios:

5 3 2 5 4 2 5 4 3( ) ( ) ( ) 3 5 1 (2 4 5 3) 4 3 4R x P x Q x x x x x x x x x x

19 Efectúa las siguientes divisiones, indicando el cociente y el resto:

6 5 4 3 3

4 3 2 2

a) (18 27 9 6 8) : 3

b) (24 12 6 2 8) : 2

x x x x x

x x x x x

Solución: a) No es necesario el esquema de la división, se observa que todos los términos del polinomio son divisibles por

el monomio salvo el término independiente, luego:

3 2( ) 6 9 3 2 y ( ) 8C x x x x R x

b) Razonando como en el apartado anterior, tenemos:

2( ) 12 6 3 y ( ) 2 8C x x x x x

20 Dividiendo por el método de Ruffini, comprueba que las siguientes divisiones son exactas:

4 4

5 5

a) ( 3 ) : ( 3)

b) ( 3 ) : ( 3)

x x

x x

Solución:

a) 1 0 0 0 34

3 3 32 3

3 3

4

1 3 32 3

3 0

b) 1 0 0 0 0 35

3 3 32 3

3 3

4 3

5

1 3 32 3

3 3

4 0

Luego, en ambos casos es correcta la afirmación.

21 Utilizando el método de división de Ruffini, calcula el valor de a para que el resto de la siguiente división sea 25:

).5x(:)ax4x6x( 234

Solución:

La división por Ruffini es: 1 6 4 0 a

5 5 5 5 25

1 1 1 5 a 25

Igualamos el resto a 25: R(x) = a 25 = 25, luego, a = 50.

22 Efectúa las operaciones P + Q 3R y P 2 (Q R), siendo:

4 2 3 4 3 2 33 1 22 , 3 3 , 2

2 2 3P x x x Q x x x R x x x

Solución:

4 2 3 4 3 2 3 4 2

4 2 3 4 3 2 3 4 2 3 4 3 2

4 3 2

3 1a) 3 2 3 3 3 6 2 2 3

2 23 1 2 3 14

b) 2 2 2 3 3 2 2 2 22 2 3 2 3

1 174 2

2 3

P Q R x x x x x x x x x x x x

P Q R x x x x x x x x x x x x x x x x

x x x x

23 3 2 3 2 3Dados los polinomios ( ) 3 4 8, ( ) 2 5 7 y ( ) 3 8 11.

Calcula un polinomio S(x) que sumado con el opuesto de R(x) resulte un polinomio igual

a dos veces la dieferencia entre P(x) y Q(x

P x x x Q x x x x R x x x

).

Solución:

Planteamos la condición del enunciado: S(x) + ( R(x)) = 2(P(x) Q(x))

Despejando el polinomio pedido: S(x) = 2P(x) 2Q(x) + R(x) Sustituyendo:

3 2 3 2 3 3 2( ) 6 8 16 2 4 10 14 3 8 11 7 12 2 13S x x x x x x x x x x x

24

Dados los polinomios P y Q , hallar a y b para que su suma sea: 4 3 23 3 5 2.x x x x

4 3 3 2( ) 2 8 y ( ) 2 3 6P x x ax x Q x x x bx

Solución: Sumamos los polinomios:

4 3 2 4 3 2( ) ( ) ( 2) 3 ( 2) 2 3 3 5 2P x Q x x a x x b x x x x x

Igualamos los coeficientes de igual grado: a + 2 = 3 a = 1, b 2 = 5 b = 3

25 Utilizando el método de división de Ruffini, calcula el valor de a para que el polinomio cociente de la siguiente división no tenga término independiente:

)3x(:)5axxx2x( 234

¿Cuánto vale el resto? Solución: La división por Ruffini es:

1 2 1 a 5

3 3 3 6 18 3a

1 1 2 a 6 23 3a

El polinomio cociente es:

3 2( ) 2 6C x x x x a

Se pide: a 6 = 0, luego, a = 6.

El resto pedido es: R(x) = 23 3a = 5.

26 Calcula el valor de a para que la división sea exacta.

4 3 2 2(2 6 3 ) : (2 1)x x x x a x

Solución: Realizamos la división:

4 3 2 22 6 3 2 1x x x x a x

4 2 22 x 3x x x

ax3x0x6 23

36 3x x

a

Para que R(x) sea nulo, a = 0.

27 Efectúa las operaciones que se indican, y reduce los términos semejantes:

2 3 4 3

a) (2 ) (3 2 ) ( 2 )

b) ( 2) 2( 2 5)

x y x x y x y

x x x x x

Solución:

2 3 4 3 4 3 2

a) 2 3 2 2

b) ( 2 2 4 10) 2 5 8

x y x x y x y x y

x x x x x x x x x

28 En una división por el método de Ruffini se han borrado algunos de los coeficientes, quedando:

2 1 0 5 3

3

¿Puedes reconstruir la división, y escribir los polinomios dividendo, divisor, cociente y resto? Solución: Según la regla de Ruffini, el número del segundo cuadro de la segunda fila es un 4, y el primero de la tercera fila es un 2. Éste por el primero de la segunda fila debe darnos 4, luego, el primero de la segunda fila es 2. Ahora, solamente es continuar con el método. Los polinomios pedidos son: 4 3 3 2( ) 2 5 3, ( ) 2, ( ) 2 3 6 7, ( ) 11D x x x x d x x C x x x x R x

29 Efectúa los siguientes productos y reduce los términos semejantes:

2 2

2 2

1a) (2 4) (2 4)(1 )

2

b) ( )( 1) ( )( 1)

x x x x

x y x xy x y xy y

Solución: a) El primer paréntesis es factor común:

2 2 2 3 21 1(2 4) 1 (2 4) 2 4 8 2

2 2x x x x x x x x

b) El primer paréntesis es común:

2 2 2 2 3 2 2 3( )( 1 1) ( )( 2 ) 3 3x y x xy xy y x y x xy y x x y xy y

30 Calcula el cociente y el resto en las siguientes divisiones, utilizando el método de Ruffini:

3 2

4 3 2

1a) (4 8 2) :

2

2b) (3 2 1) :

3

x x x x

x x x x x

Solución:

4 8 1 2

1/2 2 3 2

4 6 4 0 2( ) 4 6 4, R(x) 0C x x x

3 2 1 1 1

2/3 2 0 2/3 2/9

3 0 1 1/3 7/9 3 7

( ) 3 1 3, ( )9

C x x x R x

31 2

4 2

En una división de polinomios el cociente es 2, y el resto es ( ) 4 4.

Si el dividendo es el polinomio , ¿qué polinomio es el divisor?

x x R x x

x x

Solución:

De la relación fundamental de la división: D(x) = C(x) d(x) + R(x), obtenemos:).4x4(xx)x(d)x(C 24

Dividiendo la última expresión por el polinomio cociente, obtenemos el divisor:

4 3 2 4 20 4 4 x x x x x x

4 3 2 22 2x x x x x

4x4xx 23

x2xx 23

4x2x2 2

4x2x2 2 0

2 El polinomio divisor es: ( ) 2d x x x

32 El volumen de un ortoedro viene dado por el polinomio V(x) = x3 + 2x

2 x 2, y su altura por H(x) = x 1.

¿Qué polinomio nos da el área de la base? Si uno de los lados de la base es x + 2, ¿qué polinomio nos da el

otro lado? Solución: La base pedida será el cociente entre el volumen y la altura dados:

3 22 2 1x x x x

3 2 2 3 2x x x x

23 2x x

23 3x x

2x 2

2x + 2

0 2La base, por tanto es: ( ) 3 2.B x x x

Si uno de los lados del rectángulo base es x + 2, de nuevo el cociente nos da el otro:

2 3 2 2x x x

2 2 x+1x x

x + 2

x 2

0

Las tres aristas del ortoedro son: x + 1, x + 2 y x 1.

33 Divide los siguientes polinomios:

)1x2x(:)x4x2x4x( 3346

. Solución:

6 5 4 3 2 30 4 2 0 4 0 2 1x x x x x x x x

6 4 3 3 2 2 1x x x x x

0x4x0xx2 234

4 22 4 2 0x x x

0x2x4xx0 234

3 2 1x x

24 1x

3 2Es decir, ( ) 2 1 y ( ) 4 1C x x x R x x

34 Utilizando el método de división de Ruffini, calcula el valor de a para que la siguiente división sea exacta:

4 3 2(3 2 8 ) : ( 2)x x x x a x

Solución: La división por Ruffini es:

3 2 8 1 a

2 6 8 0 2

3 4 0 1 a+2

Para que sea exacta: R(x) = a + 2 = 0, luego a = 2.

35 Efectúa las operaciones PQ + 2PR + QR, siendo: 2 2 2( ) 3 1, ( ) 5 1, ( ) 2 5 5P x x x Q x x x R x x x

Solución: Si sacamos factor común podemos mitigar el cálculo laborioso que se nos pide:

2 2 2 2 4 3 2

2 4 3 3 2 2 4 3 2

( ) ( ) (3 1)(3 4) (2 5 5)(4 6 ) 9 3 3

12 4 4 8 12 20 30 20 30 17 5 5 34 4

PQ PR PR QR P Q R R P Q x x x x x x x x x x

x x x x x x x x x x x x

36 Efectúa los siguientes productos notables:

2 3 2 3

2 2

a) 2 3 2 3

1 1b)

2 2

x y x y

x y x y

Solución: a) Se trata del producto de una suma por una diferencia:

2 22 3 2 3 2 3 4 62 3 2 3 2 3 2 9x y x y x y x y

b) El paréntesis es uno de los términos de la suma por la diferencia.

2

22 2 2 4 2 21 1 1 12

2 2 2 4x y x y x y x x y y

37 En una división por el método de Ruffini se han borrado los números de la primera fila, quedando:

2 4 8 8 10

2 4 4 5 15

¿Puedes reconstruir la primera fila, y escribir los polinomios dividendo, divisor, cociente y resto? Solución: Según la regla de Ruffini, los números de la primera fila son los de la tercera menos los de la segunda. También podemos calcularlos con la relación fundamental de la división:

3 2 4 2( ) ( ) ( ) ( ) (2 4 4 5)( 2) 15 2 4 13 25D x C x d x R x x x x x x x x

38 Efectúa la siguiente potencia y reduce los términos semejantes:

3

2 22 2

x xy y

Solución: La base de la potencia es el producto de una suma por una diferencia:

2

22 2 42 2 2

x x xy y y

La potencia pedida es:

32 2 42 2 2 2 4

6 4 2 4 2 6 4 22 4 2 4 6 2 4 6

4 4 2 164 4 16

34 8 64 12 64

64 2 4 64 4

x x xy y x y y

x x y x y x x yx y x y y x y y

39 Calcula a y b para que la siguiente división sea exacta:

3 2 2(4 6 ) : (2 1).x x ax b x

Solución: Efectuamos la división arrastrando los coeficientes a y b, para igualar el resto de la misma a cero:

3 2 24 6 2x 1x x ax b

34 2 2 3x x x

bx)2a(x6 2

26 3x

(a+2)x+ (b+3)

Para que la división sea exacta: a + 2 = 0 a = 2, y b + 3 = 0 b = 3.

40 Divide los siguientes polinomios:

4 2 2(9 4 4 1) : (3 2 1).x x x x x

Solución:

4 3 2 29 0 4 4 1 3 2 1x x x x x x

4 3 2 29 6 3 3 2 1x x x x x

1x4x7x6 23

x2x4x6 23

1x2x3 2

1x2x3 2

0

Es decir: C(x) = 3x2 + 2x 1, R(x) = 0, la división es exacta.

41 3 2

3

Hallar un polinomio S(x) que al sumarlo con P(x)=3x 2 2 3, resulte un

1 1polinomio cuyos coeficientes sean los del a suma de ( )

2 2y el opuesto de P(x) multiplicados por dos.

x x

Q x x x

Solución: Planteamos la condición del enunciado: S(x) + P(x) = 2 (Q(x) - P(x))

Despejando el polinomio pedido: S(x) = 2Q(x) 3P(x) Sustituyendo:

3 3 2 3 2( ) 2 1 9 6 6 9 7 6 5 8S x x x x x x x x x

42

2

3¿Cuál es el dividendo de una división de polinomios, si el divisor es 2x + , el

25 1

cociente 4x + 6x + y el resto ?2 4

Solución: La relación fundamental de la división nos da el dividendo pedido:

2 3 2 2 3 25 3 1 15 1( ) ( ) ( ) ( ) 4 6 2 8 6 12 9 5 8 18 14 4

2 2 4 4 4D x C x d x R x x x x x x x x x x x x

43 Efectúa las siguientes potencias:

232

2 3 2

a)

b) (2 2 )

x y z

x x

Solución:

23 22 3 2·3 3 2 12 6 2 12 6 2

2 3 2 3 4 3 4 2 3 2 3 4 2 3 6 4 3 2

a) ( 1) ( 1)

b) (2 2 )(2 2 ) 4 2 2 2 2 2 2 2 4 4 33 16 64

x y z x y z x y z x y z

x x x x x x x x x x x x x x x x

44 Calcula a para que la siguiente división sea exacta:

).3x2(:)6axx6x4( 23

Solución: Efectuamos la división arrastrando el coeficiente a:

3 24 6 6 2x+3x x ax

3 2 24 6 22

ax x x

6ax

a2

3ax

a2

36

Para que la división sea exacta:

4a0a2

36

. 2 El cociente sería: ( ) 2 2C x x

.

45 Halla a y b para que sea correcta la siguiente igualdad:

3 4 3 2(2 2 3)( ) 6 4 6 13 6x x ax b x x x x

Solución: Tenemos que multiplicar e igualar los coeficientes de igual grado de ambos polinomios:

3 4 3 2 4 3 2(2 2 3)( ) 2 2 2 (2 3 ) 3 6 4 6 13 6x x ax b ax bx ax b a x b x x x x

Igualando los coeficientes de igual grado :

6b3

13a3b2

6a2

4b2

6a2

En la primera, obtenemos a = 3; y en la segunda, b = 2; que también verifican las demás.

46 Halla a para que sea correcta la siguiente igualdad:

2 2 4 3 2(2 4)( 1) 2 9 3 15 4x ax x ax x x x x

Solución: Tenemos que multiplicar e igualar los coeficientes de igual grado de ambos polinomios:

2 2 4 3 2 3 2 2 2 4 3 2 2

4 3 2

(2 4)( 1) 2 2 2 4 4 4 2 3 ( 6) 5 4

2 9 3 15 4

x ax x ax x ax x ax a x ax x ax x ax a x ax

x x x x

2

3 9

Igualando los coeficientes de igual grado: 6 3

5 15

a

a

a

En la primera a = 3, que también verifica las otras.

47 Calcula el valor de a para que el resto de la división (2x5 7x

3 + 7x + a) : (x

2 2) tenga los coeficientes

iguales. Solución: Realizamos la división:

5 4 3 2 22 0 7 0 7 2x x x x x a x

5 3 32 4 2 3x x x x

3 23 0 7x x x a

33 6x x

x + a Para que los coeficientes de R(x) = x + a sean iguales: a = 1.

48 Una empresa tiene dos centros de montaje, A y B, de cierto producto industrial. El número de unidades

montadas en una jornada en el centro A está dado por 4t2 + 64t, donde t es el número de horas trabajadas,

y la producción de B es t3 + 15t

2 + 2t unidades en una jornada de t horas de trabajo. ¿Qué expresión da la

producción total? ¿Cuántas unidades monta la empresa durante 4 horas de trabajo? ¿Cuántas unidades se montan en la cuarta hora de trabajo? ¿Cuándo se trabaja con más eficacia, en la primera hora o en la cuarta?

Solución: El número total de unidades montadas por la empresa lo dará la suma de los dos polinomios:

2 3 2 3 2( 4 64 ) ( 15 2 ) 11 66t t t t t t t t

En cuatro horas de trabajo la producción es: 34 11 16 66 4 376 unidades.

En las tres primeras horas de trabajo se han montado:

27 + 99 + 198 = 270 unidades. Luego en la cuarta hora se han montado:

376 270 = 106 unidades. En la primera hora de trabajo se montaron:

1 + 11 + 66 = 76 unidades, luego, el rendimiento es superior en la cuarta hora.

49 Halla el binomio ax + b por el que se ha dividido P(x) = 3x3 7x

2 9x + 9, sabiendo que el resultado exacto

ha sido: 3x2 + 2x 3.

Solución: El dividendo es igual al cociente por el divisor cuando la división es exacta. Por lo tanto, ponemos:

3 2 2 3 2(3 7 9 9) (3 2 3)( ) 3 (2 3 ) (2 3 ) 3x x x x x ax b ax a b x b a x b

3 3

2 3 7Igualanando los coeficientes de igual grado:

2 3 9

3 9

a

a b

b a

b

En la primera, obtenemos a = 1; y en la última, b = 3. Valores que verifican las otras dos ecuaciones. El

binomio, por lo tanto, es: x 3.

50 Dado el polinomio P(n) = n (n + 1) (2n + 1), justifica que P(n + 1) P(n) es un múltiplo de 6. Solución: La expresión para P(n+1) es: P(n+1) = (n + 1) (n + 2) (2n + 3). Y la diferencia que plantea el problema:

P(n+1) P(n) = (n + 1) (n + 2) (2n + 3) n (n + 1) (2n + 1) Sacando factor común y operando:

2 2( 1) ( 2) (2 3) (2 1) ( 1)(2 7 6 2 ) 6( 1)( 1)n n n n n n n n n n n n

Es decir, seis veces el cuadrado de un número, luego, es múltiplo de 6.

51 Calcula a, b y c para que sean correctas las siguientes divisiones indicadas:

5 3 2 2 3

2 3 2 2 3 2

a) (2 2 ) : (3 ) 4 5 1

b) ( 3 ) : (2 ) 2 3

ax bx cx x x x

ax y bx y cxy xy xy x y

Solución: a) Los exponentes de la x de los distintos términos nos los dan ajustados, solamente hay que igualar los coeficientes de igual grado:

2 2 34 6, 5 15, 1

3 3 3 2

a b ca b c

b) Como anteriormente, debemos igualar los coeficientes en la división de cada monomio del polinomio por 2xy2:

3 41 2, 2 , 3 6

2 2 3 2

a b ca b c

52 Completa las siguientes expresiones para que sean cuadrados perfectos:

2

4 2

a) 25 ... 36

b) 18 ...

c) ... 40 25

x

x x

x

Solución:

2 2 2

2 2 2 2 2

2

a) (5 ) ... 6 . Falta el doble del producto de los términos 2 5 6 60 , para tener (5 6) .

b) ( ) 2 9 ... Falta el cuadrado de 9 parta tener el cuadrado (x 9) .

c) ... 2 5 4 (5) . Falta e

x x x x

x x

x

2l cuadrado de 4 para tener el cuadrado (4 5) .x x

53 Dados los polinomios P(x) = 3x3 + 2x

2 5, Q(x) = 4x

3 + 3x + a y R(x) = x

2 + bx + 2, sabemos que la suma de

P(x) con dos veces el opuesto de Q(x) menos R(x) solamente tiene términos de grado 3 y de grado 2. Calcula a y b. Solución: Planteamos la condición del enunciado:

P(x) + 2 [(Q(x) R(x)] = P(x) 2Q(x) + 2R(x), no tiene términos de grado uno ni independiente. Sustituyendo:

3 2 3 2 3 23 2 5 8 6 2 2 2 4 5 4 (2 6) 1 2x x x x a x bx x x b x a

Igualando a cero el coeficiente de x y el independiente:

2b 6 = 0 b = 3, 1 + 2a = 0 a = 1/2.