Practica Superficies Con MAPLE

26
 SUPERFICIES Y CURVAS EN EL ESPACIO Es este material se presentan algunas gráficas confeccionadas con el software MAPLE. A continuación de cada una se indica la sentencia utilizada para obtenerla. Tenga en cuenta que: 1) antes de realizar este tipo de gráficas es necesario cargar, por una sola vez durante la sesión de trabajo, el paquete de comandos gráficos, escribiendo with(plots):. 2) después de ingresar cualquier sentencia se debe terminar con ; . Ejercicio 1: Estudiar y representar gráficamente el lugar geométrico de los puntos del espacio , cuya ecuación es: a) 9 3  = +  y .  x Esta ecuación representa (en R 3 ) un plano proyectante sobre el plano coordenado XY. 3 y 9 z x b) 4 2 . (Implícitamente la variable y asume cualquier valor). 2 = +  z  x La ecuación podría escribirse y representa un cilindro circular proyectante sobre el plano XZ. 4 2 2 = +  z  x 4 0 2 2 = + +  z  y  x  > with(plots):  > impl ici tpl ot3d(x^ 2+z^2=4, x=-5..5 ,y=- 5.. 5,z =-5 ..5 ,numpoi nts=3000,labels=[y,x,z]);  c) 16 . 9 2 2 = +  y  x  Esta ecuación representa en R 3 un cilindro elíptico proyectante sobre el plano XY. Se muestran las gráficas de la superficie cilíndrica y de la directriz de ecuaciones: . = = + 0 16 9 2 2  z  y  x Observación: La curva directriz es una elipse. Considerada como una curva de R 3  se expresa a través de la intersección del cilindro elíptico con el plano coordenado XY. En la gráfica que se muestra, el eje Z es perpendicular al plano del papel. La ecuación de esa elipse como curva en R 2  se expresa a través de la ecuación: . 16 9 2 2 = +  y  x  > implicitplot3d(9*x^2+y^2=16,x=-2..2,y=-5..5,z=-5..5,numpoints=3000,labels=[y,x,z]);  1

Transcript of Practica Superficies Con MAPLE

Page 1: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 1/26

 

SUPERFICIES Y CURVAS EN EL ESPACIO

Es este material se presentan algunas gráficas confeccionadas con el software MAPLE. A continuación de cada una se indica la sentenciautilizada para obtenerla.Tenga en cuenta que: 1) antes de realizar este tipo de gráficas es necesario cargar, por una sola vez durante la sesión de trabajo, el paquetede comandos gráficos, escribiendo with(plots):. 2) después de ingresar cualquier sentencia se debe terminar con ;.

Ejercicio 1: Estudiar y representar gráficamente el lugar geométrico de los puntos del espacio, cuya ecuaciónes:

a) 93 =+ y . x

Esta ecuación representa (en R3) un plano proyectante sobre el plano coordenado XY.

3y

9

z

x

b) 42. (Implícitamente la variable y asume cualquier valor).

2 =+ z x

La ecuación podría escribirse y representa un cilindro circular proyectante

sobre el plano XZ.

422 =+ z x 40 22 =++ z y x

 > with(plots): > implicitplot3d(x^2+z^2=4,x=-5..5,y=-5..5,z=-5..5,numpoints=3000,labels=[y,x,z]);  

c) 16 .9 22 =+ y x

 Esta ecuación representa en R

3un cilindro elíptico proyectante sobre el plano XY. Se muestran las gráficas

de la superficie cilíndrica y de la directriz de ecuaciones: .

⎩⎨⎧

=

=+

0

169 22

 z

 y x

Observación: La curva directriz es una elipse. Considerada como una curva de R3

se expresa a través de laintersección del cilindro elíptico con el plano coordenado XY. En la gráfica que se muestra, el eje Z esperpendicular al plano del papel.

La ecuación de esa elipse como curva en R2

se expresa a través de la ecuación: .169 22 =+ y x

 

> implicitplot3d(9*x^2+y^2=16,x=-2..2,y=-5..5,z=-5..5,numpoints=3000,labels=[y,x,z]);  

1

Page 2: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 2/26

 

d)  z x 42 = .

Esta ecuación representa un cilindro parabólico proyectante sobre el plano X, cuya directriz está dada por

las ecuaciones: .

⎩⎨⎧

=

=

0y

z4x2

 > implicitplot3d(x^2=4*z,x=-2..2,y=-5..5,z=-1..1,numpoints=3000,labels=[y,z,x]);  

e) 16 .4 22 =− y x

Esta ecuación representa un cilindro hiperbólico proyectante sobre el plano XY, cuya directriz está dada por

las ecuaciones:

⎩⎨⎧

=

=−

0

164 22

 z

 y x

 

> implicitplot3d(4*x^2-y^2=16,x=-10..10,y=-15..15,z=-5..5,numpoints=3000,labels=[y,z,x]);  

f) 0=− y x .sen

Es la ecuación de un cilindro proyectante sobre el plano XY. Las ecuaciones corresponden

a la curva directriz que se representa en el segundo gráfico.

⎩⎨⎧

=

=−

0

0

 z

 ysenx

 > implicitplot3d(sin(x)-y=0,x=-3*Pi..3*Pi,y=-5..5,z=-5..5,numpoints=3000,labels=[y,x,z]);

g) 1= z x .

Es la ecuación de un cilindro hiperbólico proyectante sobre el plano XZ. La curva de ecuaciones:

corresponde a la directriz que se representa junto a la superficie.⎩⎨⎧

=

=

0

1

 y

 z x

  2

Page 3: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 3/26

 

 > implicitplot3d(x*z=1,x=-3..3,y=-5..5,z=-5..5,labels=[z,y,x],numpoints=9000);  

h) . Sea A=0= z x ( ){ }0 / ,, 3 =ℜ∈ z x z y x .

P z x z x AP ⇔=∨=⇔=⇔∈ 000 pertenece al menos a uno de los planos coordenados YZ o XY.

i) . Es la ecuación de un cilindro elíptico proyectante sobre el plano XY.08565 22 =−++ y y x x

 >implicitplot3d(5*x^2+6*x*y+5*y^2-8=0,x=-3..3,y=-5..5,z=-5..5,numpoints=3000,labels=[y,x,z]);

  j) . No existe ningún punto del espacio R3 cuyas coordenadas verifiquen esta ecuación.022 =+ x

 Ejercicio 2: Hallar la ecuación de la superficie cilíndrica, en los siguientes casos:

a) Generatriz paralela al eje “z” y directriz dada por las ecuaciones: .

⎩⎨⎧

=

0

22

 z

 y x

La superficie cilíndrica esta formada por todos los puntos que pertenecen a las rectas:

(1), cuando

),,( z y xP

ℜ∈⎪⎩

⎪⎨

+=

=

=

t  z z

 y y

 x x

g

0

0

0

) ( )0,00 , z y x varia en Γ .

( ) ⇔Γ∈000 ,, z y x (2).⎪⎩

⎪⎨⎧

=

=

0

2

0

0

2

0

 z

 y x

Despejando de (1) y reemplazando en (2) resulta:( 000 ,, z y x ) .0

22

ℜ∈⎩⎨⎧

=−

=t 

t  z

 y x

En consecuencia:  z y x ∀= 22 es la ecuación de la superficie cilíndrica parabólica proyectante sobre el

plano XY pedida. Se muestra su gráfica y la de la curva directriz, contenida en el plano XY.

>implicitplot3d(x^2=2*y,x=-5..5,y=-5..5,z=-5..5,numpoints=10000);  

3

Page 4: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 4/26

 

b) Generatriz paralela al vector (1, -1, 3) y la directriz es la curva .

⎩⎨⎧

=

=−Γ

5

149 22

 x

 y z

La superficie cilíndrica esta formada por todos los puntos que pertenecen a las rectas:

(3), cuando

),,( z y xP

∈t,

t3zz

t-yy

txx

)g

0

0

0

⎪⎩

⎪⎨

+=

=

+=

( )0,00 , z y x varía en Γ .

( ) ⇔Γ∈000 ,, z y x (4).⎪⎩

⎪⎨⎧

=

=−Γ

5

149

0

2

0

2

0

 x

 y z

Despejando de (3) y reemplazando en (4) resulta: .

Eliminando el parámetro t , obtenemos la ecuación:

( 000 ,, z y x )⎩⎨⎧

=−

=−−−

5

1)2(4)3(9 22

t  x

t  yt  z

( )( ) ( )( ) 152453922=−+−−− x y x z que

representa la superficie cilíndrica hiperbólica buscada.

Se muestran las gráficas de la superficie cilíndrica y de la directriz de ecuaciones: .⎩⎨

=

=−

Γ 5

149 22

 x

 y z

 > implicitplot3d(9*(z-3(x-5))^2-4*(y+2(x-5))^2=1,x=4.5..5.5,y=-6..3,z=-2..5,labels=[x,z,y],numpoints=10000);

c) Proyectante sobre el plano YZ, directriz la circunferencia en ese plano de centro (0, 1, 0) y radio 2.

La superficie cilíndrica esta formada por todos los puntos que pertenecen a las rectas:

(5), cuando

),,( z y xP

ℜ∈⎪⎩

⎪⎨

=

=

+=

 z z

 y y

t  x x

g

0

0

0

) ( )0,00 , z y x varia en Γ .

( ) ⇔Γ∈000 ,, z y x (6).⎪⎩

=

=+−

Γ 0

4)1(

0

2

0

2

0

 x

 z y

Despejando de (6) y reemplazando en (5) resulta: . Luego( 000 ,, z y x )⎩⎨⎧

=−

=+−Γ

0

4)1( 22

t  x

 z y

( ) x z y ∀4=+1 22es la ecuación de la superficie cilíndrica circular proyectante sobre el plano YZ

buscada.

4

Page 5: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 5/26

 

>implicitplot3d((y-1)^2+z^2=4,x=-5..5,y=-2..4,z=-2..2);

d) Generatriz paralela a la recta de ecuación 32

21 +=

−=− z y

 x cuya directriz es la hipérbola equilátera

con centro en el origen de coordenadas, eje focal se encuentra sobre la recta de ecuación  x y = . La mitad

de la distancia focal es de longitud igual a 2.

Debemos encontrar la ecuación de la hipérbola sabiendo que sus focos se encuentran sobre la recta x y = . Pensando en que los ejes x e y han sido rotados 45º, llegamos a que la ecuación de la hipérbola en

el sistema rotado es: 12

`

2

`22

=−y x

(7).

Reemplazamos en (7) las ecuaciones de rotación correspondientes:

( )

⎪⎪⎩

⎪⎪⎨

+−=

+=

)(2

2

 y x y

 y x x

, y obtenemos las

ecuaciones (8).⎩⎨

=

=

Γ 0

1

 z

 y x

 

La superficie cilíndrica está formada por todos los puntos que pertenecen a las rectas:

(9) cuando

),,( z y xP

ℜ∈⎪⎩

⎪⎨

+=

+=

+=

t  z z

t  y y

t  x x

g

0

0

0

2) ( )0,00 , z y x varia en Γ .

Despejando de (9) y reemplazando en (8) resulta:( 000 ,, z y x )( ) ( )

⎩⎨⎧

=−

=−−

0

12

t  z

t  yt  x. Eliminando el

parámetro t obtenemos: ( ) ( ) 12 =−− z y z x .

> implicitplot3d((x-z)*(y-2*z)=1,x=-10..10,y=-4..4,z=-2..2,numpoints=10000,labels=[y,z,x]);  

e) Generatriz paralela a la recta de ecuación  z y x −=+=− 31 y cuya directriz es la curva

(10). Estudiar y graficar la curva directriz.

⎩⎨⎧

=

=++

0

0

 z

 y x y x

 Como la curva directriz es una ecuación de 2º grado con término rectangular, efectuamos la rotación de ejescorrespondiente a 45º para identificar de qué curva se trata.

5

Page 6: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 6/26

 

Las ecuaciones de rotación están dadas por:

⎪⎪⎩

⎪⎪⎨

+=

−=

´)´(2

2

´)´(2

2

 y x y

 y x x

, reemplazándolas en (10) obtenemos

14

´

4

2´2

2

=−⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛  − y x, que es la ecuación de una hipérbola con centro en el punto de coordenadas:

( ) )0,2´´, = y x y vértices en ( ) )0,22´´, +±= y x .

La superficie cilíndrica esta formada por todos los puntos que pertenecen a las rectas:

(11), cuando

),,( z y xP

ℜ∈⎪⎩

⎪⎨

−=

+=

+=

t  z z

t  y y

t  x x

g

0

0

0

) ( )0,00 , z y x varia en Γ .

( )⇔Γ∈

000

,, z y x (12).

⎩⎨⎧

=

=++

0

0

0

0000

 z

 y x y x

Despejando de (11) y reemplazando en (12) resulta: .( 000 ,, z y x )⎩⎨⎧

=+

=−+−+−−

0

0)()()()(

t  z

t  yt  xt  yt  x

 Eliminando t  obenemos la ecuación de la superficie cilíndrica buscada:

( )( ) ( ) ( ) 0=++++++ z y z x z y z x  

> implicitplot3d((x+z)*(y+z)+(x+z)+(y+z),x=-12..12,y=-12..12,z=-3..3,numpoints=10000,labels=[y,z,x]);  

Ejercicio 3: Hallar la ecuación de la superficie cónica, en los siguientes casos:

a) Vértice V (1,1,2) y directriz

⎪⎩

⎪⎨

=

=+Γ

0

194

22

 z

 y x

.

La superficie cónica esta formada por los puntos de las rectas que contienen al vértice V (1, 1, 2) y a un

punto de la directriz

⎪⎩

⎪⎨

=

=+Γ

0

194

22

 z

 y x

.

6

Page 7: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 7/26

 

Las ecuaciones de dichas rectas se pueden expresar a través de: 0

)2(1

2

)1(1

1

)1(1

1

)

0

0

0

⎪⎪⎪

⎪⎪⎪

−+=

−+=

−+=

 z

 z

 yt 

 y

 xt 

 x

g , con

variando en . (Notar que estas ecuaciones paramétricas no permiten obtener las

coordenadas del vértice del cono).

( 000 ,, z y x ) Γ

 

Luego (13).

⎪⎩

⎪⎨

−+=

−+=

−+=

t  z z

t  y y

t  x x

)2(2

)1(1

)1(1

0

0

0

( ) ⇔Γ∈000 ,, z y x

⎪⎩

⎪⎨

=

=+Γ

0

194

0

2

0

2

0

 z

 y x

(14)

Reemplazando (13) en (14) resulta:( )( ) ( )( )

⎩⎨⎧

=−+

=−++−+

0)2(2

3611411922

t  z

t  yt  x.

Eliminando el parámetro entre ambas se obtiene:( )

362

1214

2

)1(219

2

2 =⎟ ⎠

 ⎞⎜⎝ 

⎛ 

−++⎟

 ⎠

 ⎞⎜⎝ 

⎛ 

−+

 z

 y

 z

 x.

La expresión del primer miembro no está definida en (1, 1, 2) que son las coordenadas del vértice.

La ecuación ( ) ( )( ) ( ) ( )( ) ( ) z y z x z −=−+−+−+− 2361224122922

, se satisface también para x = 1,

y = 1, z = 2 , y constituye la ecuación de la superficie pedida.

(Por la razón dada anteriormente, la gráfica no muestra el vértice del cono. No se visualiza ese punto que tambiénpertenece a la superficie)

> implicitplot3d(9*(1+2*((x-1)/(2-z)))^2+4*(1+2*((y-1)/(2-z)))^2=36,x=-10..6,y=-8..8,z=-1..5,numpoints=5000);  

d) Directriz constituida por todos los puntos P(x, y) cuya distancia al punto Q (1, 2) es igual a la mitad dela distancia de P(x, y) a la recta de ecuación y = 8. Vértice V (1, 0, 4).

Con estas condiciones buscamos la ecuación de la directriz:

)),(2

1),( r Pd QPd  = )),(

4

1),(

22r Pd QPd  =⇔  

7

Page 8: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 8/26

 

( ) ( ) ( ) ⇔=−+−+−+−⇔−=−+− 01644

14418

4

121

222222 y y y y x y y x  

( )1

1612

1 22

=+− y x

, que

representa a una elipse con centro en (1, 0) y focos sobre la recta x =1.

La superficie cónica esta formada por los puntos de las rectas que contienen al vértice V (1, 0, 4) y a un

punto de la directriz ( )

⎪⎩

⎪⎨⎧

=

=+−Γ

0

11612

122

 z

 y x .

Las ecuaciones de dichas rectas se pueden expresar a través de: 0

)4(1

4

1

)1(1

1

)

0

0

0

⎪⎪⎪

⎪⎪⎪

−+=

=

−+=

 zt 

 z

 yt 

 y

 xt 

 x

g , con

variando en Γ .( 000 ,, z y x )

Luego (15).

⎪⎩

⎪⎨

−+=

=

−+=

t  z z

t  y y

t  x x

)4(4

)1(1

0

0

0

( ) ⇔Γ∈000 ,, z y x( )

⎪⎩

⎪⎨

=

=+−

Γ

0

11612

1

0

2

0

2

0

 z

 y x(16).

Reemplazando (15) en (16) resulta:( )

⎪⎩

⎪⎨

=−+

=+−−+

0)4(4

116

)(

12

1)1(1 22

t  z

t  yt  x. Eliminando el parámetro entre ambas se

obtiene la ecuación: ( )

( ) ( )1

44

1

3

42

2

2

2

=−

+−

 z

 y

 z

 x . El primer miembro no está definido en (1, 0, 4) que son las

coordenadas del vértice.

La ecuación ( ) ( )22243314 −=+− z y x , se satisface también para x = 1, y = 0, z = 4  y constituye la

ecuación de la superficie pedida.

> implicitplot3d((3/4)*((x-1)^2/(z-4)^2)+y^2/(z-4)^2=1,x=-10..10,y=-10..10,z=-2..10,numpoints=5000);  

Ejercicio 4: Hallar la ecuación de la superficie de revolución engendrada al rotar las curvas siguientesalrededor del eje indicado. Identificar y representar gráficamente, si es posible, la superficie obtenida:

a) Parábola de vértice en el origen de coordenadas y foco F (3,0), alrededor del eje X.

8

Page 9: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 9/26

 

La Generatriz es la parábola de ecuaciones: . Si consideramos

, la ecuación de la superficie que se pide es:

0;0122 ==− z x y

 x y y xF  12),( 2 −= 0)zy,x(F22 =+± .

Operando se obtiene la ecuación: 01222 =−+ x z y , que corresponde a un paraboloide de revolución.

> implicitplot3d(y^2+z^2=12*x,x=0..6,y=-10..10,z=-10..10,numpoints=5000);

b) Hipérbola de focos (0,10) y (0, -10) que pasa por el punto P(2,3), alrededor del eje Y.

Las ecuaciones de la hipérbola son de la forma 1100

2

2

2

2

=−

−a

 x

a

 y, con z = 0 .

La ecuación de la superficie de revolución que resulta de rotar dicha hipérbola alrededor del eje Y es:

1100100 2

2

2

2

2

2

=−

−−

−a

 z

a

 x

a

 y 

El valor de a 2  se obtiene teniendo en cuenta que P (2, 3, 0) pretende a la superficie. 

Esta superficie de revolución recibe el nombre de hiperboloide de dos hojas.

> implicitplot3d(y^2/8.63-x^2/25.6-z^2/25.6,x=-5..5,y=-3..3,z=-5..5,numpoints=5000,labels=[y,x,z]);  

c) eje Y.,2

ℜ∈

⎩⎨⎧

=

=Γ t 

t  y

t  x

Son ecuaciones paramétricas de la parábola contenida en el plano XY.

Pasando a la forma cartesiana y considerando a la curva en el espacio, sus ecuaciones son:

.0;2 == z x y

La superficie de revolución que se genera tiene por ecuación:222

 z x y += y su gráfica presenta el

siguiente aspecto:

9

Page 10: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 10/26

 

 > implicitplot3d(y^2=sqrt(x^2+z^2),x=-5..5,y=-3..3,z=-3..3,numpoints=5000,labels=[z,x,y] ); 

d) eje X,0cos2

π  ≤≤⎩⎨⎧

=

=Γ t 

sen y

t  x

 

Son ecuaciones paramétricas de un arco de elipse, cuya ecuación cartesiana es de la forma: 14

22

=+ y x

 

con .10 ≤≤ y

Considerando a la generatriz como una curva en el espacio, sus ecuaciones son: 0;14

2

2

==+ z y x .

Al girar esta curva alrededor del eje X, se obtiene un elipsoide de revolución de ecuación:

14

222

=++ z y x

 

> implicitplot3d(x^2/4+y^2+z^2=1,x=-3..3,y=-2..2,z=-2..2,numpoints=10000);  

Ejercicio 5: Dados los puntos A(3,2,0) y B(2,1,-5) verificar que el lugar geométrico de los puntos P(x,y,z)

tal que  BP AP⊥ es una esfera. Encontrar las coordenadas del centro y su radio.

( )

( ) ( ) ( ) ( ) ( )

032365

0312230

)5,1,2(,2,3

222 =+++−++−⇔

=++−−+−−⇔=

+−−=−−=

 z z y y x x

 z z y y x x BP x AP

 z y x BP z y x AP

 

4

27

2

5

2

3

2

5

04

25

2

52

4

9

2

36

4

25

2

5

222

222

=⎟ ⎠

 ⎞⎜⎝ 

⎛ ++⎟

 ⎠

 ⎞⎜⎝ 

⎛ −+⎟

 ⎠

 ⎞⎜⎝ 

⎛ −⇔

=−⎟ ⎠

 ⎞⎜⎝ 

⎛ +++−⎟

 ⎠

 ⎞⎜⎝ 

⎛ −++−⎟

 ⎠

 ⎞⎜⎝ 

⎛ −

 z y x

 z y x

 

Se trata de la ecuación de una esfera con centro ⎟ ⎠ ⎞⎜

⎝ ⎛  −=

25,

23,

25C  y radio 3

23=r  .

10

Page 11: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 11/26

 

 > with(plottools):c := sphere([5/2,3/2,-5/2], sqrt(27/4)):plots[display](c, scaling=constrained);

Ejercicio 6: Hallar la ecuación de la esfera con centro en el punto C(2,3,-1) y que además se intersecta

con la recta determinado un segmento de longitud 16.

⎩⎨⎧

=−+−

=++−

0843

020345

 z y x

 z y x

Unas ecuaciones paramétricas de la recta dada son: r)ℜ∈

⎪⎪

⎪⎪⎪

−=

+−=

+−=

t z 

t y 

t x 

2

2

25

24

1

.

Para encontrar el radio miremos el siguiente dibujo:

16

Sea d  la distancia del centro a la recta, sabemos que: ,),(0

u

uC P

r C d 

= donde es un punto de la

recta y

0P

u es un vector dirección de la misma. Haciendo los cálculos se obtiene que 15),( =r C d  .

Aplicando el teorema de Pitágoras, el radio de la esfera es: 289815 22 =+=r  .

La ecuación de la esfera es: ( ) ( ) ( ) 289132222=++−+− z y x . Su gráfica tiene el siguiente aspecto:

> with(plottools):c := sphere([2,3,-1], sqrt(289)):plots[display](c, scaling=constrained); 

11

Page 12: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 12/26

 

7) Identificar y graficar las superficies cuyas ecuaciones son las siguientes:

a) 191625

222

=++z  y x

b) c) x z  y 422 =+ 14916

222

=−−z  y x

 

d) 11649

222

=−+z  y x

e)94

22 x y

 z  −= f) 1494

222

=+−z  y x

 

g) h)04 222 =+− z  y x 022 =− z  y

 

a) 191625

222

=++z  y x

. Es la ecuación de una superficie cuádrica, llamada elipsoide. Realizamos a

continuación un estudio de la misma para llegar a obtener su representación gráfica:

i) Simetrías con respecto a los ejes coordenados

•  eje X: Si el punto ( ) z  y x pertenece a la superficie, el punto  P  ,, ( ) z  y x P  −− ,,´ simétrico de P  con

respecto al eje X, también pertenece a la superficie (y recíprocamente), en razón de que:

19

)(

16

)(

251

91625

222222

=−

+−

+⇔=++z  y x z  y x

 

La gráfica de la superficie es simétrica con respecto al eje X.

•  eje Y: Por la misma razón, si el punto ),,( z  y xQ pertenece a la superficie, el

punto ),, simétrico de Q con respecto al eje Y, también pertenece.(´ z  y xQ −−  La gráfica de la superficie es simétrica con respecto al eje Y.

•  eje Z: Si ),,( z  y x pertenece a la superficie, ),, R (´ z  y x R −− simétrico de R  con respecto al eje Z

también pertenece.La gráfica de la superficie es simétrica con respecto al eje Z. 

En síntesis se trata de una superficie cuya gráfica es simétrica con respecto a los tres ejes coordenados,llamados ejes de simetría. Por lo tanto el origen de coordenadas es el centro de simetría.

Simetrías con respecto a los planos coordenados

•  plano XY: Si el punto ( ) z  y x pertenece a la superficie, el punto P  ,, ( ) z  y x P  −,,´ simétrico de  P con 

respecto al plano XY también pertenece (y recíprocamente), en razón de que:

19

)(

16251

91625

222222

=−

++⇔=++z  y x z  y x

 

La gráfica de la superficie es simétrica con respecto al plano XY. 

•  plano YZ: Si el punto ),,( z  y xQ pertenece a la superficie, el punto ),, simétrico de Q con

respecto al plano YZ, también pertenece.

(´ z  y xQ −

La gráfica de la superficie es simétrica con respecto al plano YZ. 

•  plano XZ: Si ),,( z  y x pertenece a la superficie, ),, R (´ z  y x R −− simétrico de R  con respecto al plano

XZ, también pertenece.

La gráfica de la superficie es simétrica con respecto al plano XZ.

En síntesis, la gráfica es simétrica respecto a los planos coordenados. 

12

ii) Intersecciones con los ejes coordenados (vértices):

Page 13: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 13/26

 

 

•  eje X: 

⎪⎪

⎪⎪⎪

=

=

=++

0

0

191625

222

 z 

 y

 z  y x

⎪⎪

⎪⎪⎪

=

=

=

0

0

125

2

 z 

 y

 x

.

⎪⎩

⎪⎨

=

=

±=

0

0

5

 z 

 y

 x

A (-5, 0, 0) y A´ (5, 0, 0) son los puntos en que la superficie intercepta al eje X.

•  eje Y: B (0, -4, 0) y B´ (0, 4, 0) son los puntos de intersección con el eje Y.

•  eje Z: C (0, 0, -3) y C´ (0, 0, 3) son los puntos de intersección con el eje Z.

iii) Intersecciones con los planos coordenados (trazas o secciones principales):

•  plano XY: 

⎪⎩

⎪⎨

=

=++

0

191625

222

 z 

 z  y x

⇔⎪⎩

⎪⎨

=

=+

0

11625

22

 z 

 y x

.

Se trata de una elipse con semieje mayor de longitud 5 sobre el eje X y semieje menor de longitud 4

sobre el eje Y.

•  plano XZ: 

⎪⎩

⎪⎨

=

=++

0

191625

222

 y

 z  y x

⇔⎪⎩

⎪⎨

=

=+

0

1925

22

 y

 z  x

.

Se trata de una elipse con semieje mayor de longitud 5 sobre el eje X y semieje menor de longitud 3sobre el eje Z.

•  plano YZ: 

⎪⎩

⎪⎨

=

=++

0

191625

222

 x

 z  y x

⎪⎩

⎪⎨

=

=+

0

1916

22

 x

 z  y

.

Se trata de una elipse con semieje mayor de longitud 4 sobre el eje Y, y semieje menor de longitud 3sobre el eje Z.

iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ: 

⎪⎩

⎪⎨

=

−=+⇔

⎪⎩

⎪⎨

=

=++

k  x

k  z  y

k  x

 z  y x

251

9161

91625

222222

 

Si 5<k  , se obtienen elipses con eje focal paralelo al eje Y, sobre el plano X = k. 

Si 5>k  , no hay intersección.

Si 5=k  , se obtienen los puntos A (-5, 0, 0) y A´(5, 0, 0).

•  plano paralelo al plano coordenado XZ: 

⎪⎩

⎪⎨

=

−=+⇔

⎪⎩

⎪⎨

=

=++

k  y

k  z  x

k  y

 z  y x

161

9251

91625

222222

 

Si 4<k  , se obtienen elipses con eje focal paralelo al eje X, sobre el plano Y = k. 

Si 4>k  , no hay intersección.

Si 4=k  , se obtienen los puntos B (0, -4, 0) y B´ (0, 4, 0).

13

Page 14: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 14/26

 

•  plano paralelo al plano coordenado XY:

⎪⎩

⎪⎨

=

−=+⇔

⎪⎩

⎪⎨

=

=++

k  z 

k  y x

k  z 

 z  y x

91

16251

91625

222222

 

Si3<k 

, se obtienen elipses con eje focal paralelo al eje X, sobre el plano Z = k.

Si 3

>k  , no hay intersección.

Si 3=k  , se obtienen los puntos C (0, 0, -3) y C´(0, 0, 3).

Se trata de una superficie acotada.La figura muestra el elipsoide junto con algunas trazas que resultan de las intersecciones del mismo conplanos paralelos al plano coordenado XY.

> implicitplot3d(x^2/25+y^2/16+z^2/9=1,x=-5..5,y=-4..4,z=-3..3,labels=[y,x,z]);

b) . Es la ecuación de una superficie cuádrica, llamada Paraboloide circular o de revolución.

Realizamos a continuación un estudio de la misma para llegar a obtener su representación gráfica:

 x z  y 422 =+

 i) Simetrías con respecto a los ejes coordenados

•  eje X: Si el punto ( ) z  y x pertenece a la superficie, el punto  P  ,, ( ) z  y x P  −− ,,´ simétrico de P  con

respecto al eje X, también pertenece a la superficie (y recíprocamente), en razón de que:

 x z  y x z  y 4)()(4 2222=−+−⇔=+  

La gráfica de la superficie es simétrica con respecto al eje X.

• La gráfica no es simétrica con respecto a los ejes Y y Z.

Esta superficie carece de centro de simetría. 

Simetrías con respecto a los planos coordenados

•  plano XY: Si el punto ( ) z  y x pertenece a la superficie, el punto P  ,, ( ) z  y x P  −,,´ simétrico de  P con 

respecto al plano XY también pertenece (y recíprocamente), en razón de que:

x  z y x z y  4)(4 2222 =−+⇔=+

La gráfica de la superficie es simétrica con respecto al plano XY. 

•  plano YZ: Si el punto ),,( z  y xQ pertenece a la superficie, el punto ),, simétrico de Q con

respecto al plano YZ, también pertenece.

(´ z  y xQ −

La gráfica de la superficie es simétrica con respecto al plano XZ. 

• El paraboloide circular no es simétrico con respecto al plano YZ. 

ii) Intersecciones con los ejes coordenados: en todos los casos resulta el origen de coordenadas.

14

iii) Intersecciones con los planos coordenados:

Page 15: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 15/26

 

•  plano XY: .

⎩⎨⎧

=

=+

0

422

 z 

 x z  y⇔

⎩⎨⎧

=

=

0

42

 z 

 x y

Se trata de una parábola contenida en el plano XY, con vértice en el origen y foco sobre el eje X, en elpunto (1, 0, 0).

•  plano XZ: .

⎨⎧

=

=+

0

422

 z 

 x z  y⇔

⎨⎧

=

=

0

42

 y

 x z 

Se trata de una parábola contenida en el plano XZ, con vértice en el origen y foco sobre el eje X, en elpunto (1, 0, 0).

•  plano YZ: , resulta el origen de coordenadas (0, 0, 0)

⎩⎨⎧

=

=+

0

422

 z 

 x z  y⇔

⎩⎨⎧

=

=+

0

022

 x

 z  y

 iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ:

⎩⎨⎧

=

=+

k  x

 x z  y 422

⇔⎩⎨⎧

=

=+

k  x

k  z  y 422

 

Si 0<k  , no se obtiene ningún punto.

Si 0>k  , se obtienen circunferencias con centro en (k , 0, 0) y radio k 2 , que aumenta a

medida que k crece.

Si 0=k  , se obtiene el origen de condenadas.

•  plano paralelo al plano coordenado XZ:

⎩⎨⎧

=

=+

k  y

 x z  y 422

⇔⎪⎩

⎪⎨

=

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=

k  y

k  x z 

44

22

 

Para cada valor de k se obtiene una parábola contenida en el plano Y = k, con vértice en el

punto

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 0,,

4

2

k k 

y foco en

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ + 0,,1

4

2

k k 

. Estas parábolas “se alejan” del eje X a medida que

k aumenta.

•  plano paralelo al plano coordenado XY:

⎩⎨⎧

=

=+

k  z 

 x z  y 422

⇔⎪⎩

⎪⎨

=

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=

k  y

k  x y

44

22

 

Para cada valor de k se obtiene una parábola contenida en el plano Z = k , con vértices en el

punto ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ k 

k ,0,

4

2

y foco en ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ + k 

k ,0,1

4

2

. Estas parábolas “se alejan” del eje X a medida que

k aumenta

El Paraboloide circular es una superficie no acotada.

En la figura se muestran algunas trazas que resultan de las intersecciones del Paraboloide con planosparalelos al plano coordenado XY. Las intersecciones de la superficie con planos paralelos al plano YZ soncircunferencias, por lo tanto se trata de un Paraboloide de revolución.

15

> implicitplot3d(y^2+z^2=4*x,x=-1..5,y=-5..5,z=-5..5,numpoints=5000,labels=[x,z,y]);  

Page 16: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 16/26

 

 

c) 14916

222

=−−z  y x

. Es la ecuación de una superficie cuádrica, llamada Hiperboloide de dos hojas. 

Realizamos a continuación un estudio de la misma para llegar a obtener su representación gráfica:

i) Simetrías

Siguiendo los pasos realizados en los ejercicios anteriores, podemos concluir que la superficie es simétricacon respecto a:

•  Los tres ejes coordenados 

•  Los tres planos coordenados.

•  El origen de coordenadas.

ii) Intersecciones con los ejes coordenados:

•  eje X: (-4, 0, 0) y (4, 0, 0)

• no existe intersección con el eje Y

• no existe intersección con el eje Z

iii) Intersecciones con los planos coordenados:

•  plano XY: 

⎪⎩

⎪⎨

=

=−

0

1916

22

 z 

 y x

, se trata de una hipérbola contenida en el plano XY con focos sobre el

eje X.

•  plano XZ: 

⎪⎩

⎪⎨

=

=−

0

1416

22

 y

 z  x

, se trata de una hipérbola contenida en el plano XZ con focos sobre el

eje X.

•  plano YZ: 

⎪⎩

⎪⎨

=

−=+

0

149

22

 x

 z  y

, no existe ningún punto cuyas coordenadas verifiquen las ecuaciones

del sistema. Por lo tanto no hay intersección con el plano YZ.

iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ: X = k , 11649

222

−=+k  z  y

 

Si 4>k  , se obtienen elipses con eje focal paralelo al eje Y, sobre el plano X = k. A medida

que k aumenta, las elipses “se agrandan” indefinidamente.

Si 4<k  , no hay intersección.

Si 4=k  , se obtienen los puntos (-4, 0, 0) y (4, 0, 0).

•  plano paralelo al plano coordenado XZ: Y = k ,9

1416

222k  z  x

+=−  

Cualquiera sea el valor de k, resultan hipérbolas con eje focal paralelo al eje X, sobre el planoY = k. A medida que k aumenta en valor absoluto los planos respectivos se alejan del planoXZ y los semiejes de las hipérbolas crecen indefinidamente.

•  plano paralelo al plano coordenado XY: Z = k ,4

1916

222

k  y x +=−  

16

Page 17: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 17/26

 

Cualquiera sea el valor de k, resultan hipérbolas con eje focal paralelo al eje X, sobre el planoZ = k. A medida que k aumenta en valor absoluto los planos respectivos se alejan del planoXY y los semiejes de las hipérbolas crecen indefinidamente.

Se trata de una superficie no acotada.

En la figura se muestran algunas trazas que resultan de las intersecciones del Hiperboloide de dos hojas 

con planos paralelos al plano coordenado XY.

> implicitplot3d(x^2/16-y^2/9-z^2/4=1,x=-15..15,y=-15..15,z=-10..10,numpoints=5000, labels=[y,x,z]); 

d) 11649

222

=−+ z  y x . Es la ecuación de una superficie cuádrica, llamada Hiperboloide de una hoja. 

Realizamos a continuación un estudio de la misma para llegar a obtener su representación gráfica:

i) Simetrías

Siguiendo los pasos realizados en los ejercicios anteriores podemos concluir que la misma presenta simetríascon respecto a:

•  Los tres ejes coordenados 

•  Los tres planos coordenados.

•  El origen de coordenadas.

ii) Intersecciones con los ejes coordenados:

•  eje X: (-3, 0, 0) y (3, 0, 0)

•  eje Y: (0, -2, 0) y (0, 2, 0)

• no existe intersección con el eje Z

iii) Intersecciones con los planos coordenados:

•  plano XY: 

⎪⎩

⎪⎨

=

=+

0

149

22

 z 

 y x

, se trata de una elipse contenida en el plano XY con focos sobre el

eje X.

•  plano XZ: 

⎪⎩

⎪⎨

=

=−

0

1169

22

 y

 z  x

, se trata de una hipérbola contenida en el plano XZ con focos sobre el

eje X.

•  plano YZ: 

⎪⎩

⎪⎨

=

=−

0

1164

22

 x

 z  y

, se trata de una hipérbola contenida en el plano YZ con focos sobre el

eje Y.

17

Page 18: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 18/26

 

iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ: X = k ,9

1164

222k  z  y

−=−  

Si 3<k  , se obtienen hipérbolas con eje focal paralelo al eje Y, sobre el plano X = k. 

Si 3>k  , se obtienen hipérbolas con eje focal paralelo al eje Z, sobre el plano X = k. 

Si 3=k  , se obtienen dos rectas de ecuaciones:  z  y21±= sobre los planos X= ± 3.

•  plano paralelo al plano coordenado XZ: Y = k ,4

1169

222k  z  x

−=−  

Si 2<k  , se obtienen hipérbolas con eje focal paralelo al eje X, sobre el plano Y = k. 

Si 2>k  , se obtienen hipérbolas con eje focal paralelo al eje Z, sobre el plano Y = k. 

Si 2=k  , se obtienen dos rectas de ecuaciones:  z  x4

3±= sobre los planos Y= ± 2.

•  plano paralelo al plano coordenado XY: Z = k ,4

149

222

k  y x +=+  

Cualquiera sea el valor de k, resultan elipses con eje focal paralelo al eje X, sobre el plano Z= k. A medida que k  aumenta en valor absoluto los semiejes de las elipses aumentanindefinidamente.

Se trata de una superficie no acotada.

En la figura se muestra algunas trazas que resultan de las intersecciones del Hiperboloide de una hoja conplanos paralelos al plano coordenado XY.

> implicitplot3d(x^2/9+y^2/4-z^2/16=1,x=-6..6,y=-6..6,z=-5..5,numpoints=5000,labels=[z,x,y]);  

e)94

22 x y

 z  −= . Es la ecuación de una superficie cuádrica llamada Paraboloide hiperbólico.

i) Simetrías

Es simétrica con respecto a:

•  eje Z 

•  planos coordenados YZ y ZX.

ii) Intersecciones con los ejes coordenados: el origen de coordenadas (0, 0, 0)

iii) Intersecciones con los planos coordenados:

18

Page 19: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 19/26

 

•  plano XY: 

⎪⎩

⎪⎨

=

=−

0

049

22

 z 

 y x

, se trata de un par de rectas, contenidas en el plano XY que contienen al

de coordenadas, de ecuaciones:  x y3

2±= , z =0 .

•  plano XZ: , se trata de una parábola contenida en el plano XZ con foco sobre el eje Z

en el punto

⎩⎨⎧

=−=0

92

 y

 z  x

⎟ ⎠

 ⎞⎜⎝ 

⎛ 

4

9,0,0 y ramas hacia el sentido negativo del eje z .

•  plano YZ: , se trata de una parábola contenida en el plano YZ con foco sobre el eje Z,

en el punto (0, 0, 1) y ramas hacia el sentido positivo del eje z ..

⎩⎨⎧

=

=

0

42

 x

 z  y

 

iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ: X = k ,94

22k 

 z  y

+= , o ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +=

94

22 k 

 z  y . Se obtienen

parábolas cuyos vértices se alejan del plano YZ cuando k aumenta en valor absoluto. Las ramas delas parábolas son ascendentes en el sentido positivo del eje Z .

•  plano paralelo al plano coordenado XZ: Y = k ,49

22k 

 z  x

+−= , o ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −−=

49

22 k 

 z  x . Se trata de

parábolas cuyos vértices se alejan del plano XZ cuando k aumenta en valor absoluto.

Si 2<k  , las ramas “se abren” en el sentido negativo del eje Z.

Si 2>k  , las ramas “se abren” en el sentido positivo del eje Z

•  plano paralelo al plano coordenado XY: Z = k , k  x y

=−94

22

. Estas ecuaciones representan

hipérbolas para distintos valores de k .

Si k > 0, el eje focal es paralelo al eje Y.

Si k < 0, el eje focal es paralelo al eje X.

Si k crece en valor absoluto, los planos respectivos se alejan del plano XY y los semiejes de lashipérbolas crecen indefinidamente.

Es una superficie no acotada.En la figura se muestra algunas trazas que resultan de las intersecciones del Paraboloide hiperbólico conplanos paralelos al plano coordenado XY. MEJORAR LA SUP

> implicitplot3d(z=y^2/4-x^2/9,x=-10..10,y=-10..10,z=-3..3,numpoints=5000,labels=[y,x,z]);  

19

Page 20: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 20/26

 

f) 1494

222

=+−z  y x

. Es la ecuación de un Hiperboloide de una hoja. La superficie no se intercepta con el

eje coordenado Y. Se muestran dos gráficas de la misma superficie.

> implicitplot3d(x^2/4-y^2/9+z^2/4=1,x=-6..6,y=-6..6,z=-5..5,numpoints=5000,labels=[z,x,y]);

g) . Es la ecuación de una superficie cónica. Realizamos su estudio para representarla

luego gráficamente.

04 222 =+− z  y x

 i) Simetrías

La superficie presenta simetrías con respecto a:

•  Los tres ejes coordenados 

•  Los tres planos coordenados.

•  El origen de coordenadas.

ii) Intersecciones con los ejes coordenados: el origen de coordenadas

iii) Intersecciones con los planos coordenados:

•  plano XY: , se obtienen un par de rectas por el origen contenidas en el plano XY.

Sus ecuaciones son: 0,

⎩⎨⎧

==−

0

4 22

 z 

o y x

2 =±= z  y x .

•  plano XZ: , se obtiene el origen de coordenadas.

⎩⎨⎧

=

=+

0

022

 y

 z  x

•  plano YZ: , se obtienen un par de rectas por el origen contenidas en el plano YZ.

Sus ecuaciones son: 0,

⎩⎨⎧

=

=+−

0

0422

 x

 z  y

2 =±= x y z   

iv) Intersecciones con planos paralelos a los coordenados:

•  plano paralelo al plano coordenado YZ: X = k ,22, o

24 k  z  y =− 1

4

2

2

2

2

=−k 

 z 

 y. Para

distintos valores de k , se obtienen hipérbolas con eje focal paralelo al eje Y. Si k crece en valorabsoluto, los planos “se alejan” del plano YZ y los semiejes de las hipérbolas crecenindefinidamente.

•  plano paralelo al plano coordenado XZ: Y = k ,22.Cualquiera sea el valor de k,

resultan circunferencias con centro en (0, k , 0) sobre el plano Y = k. A medida que k aumenta las

circunferencias “se alejan” del plano XZ y su radio crece indefinidamente.

2 4k  z  x =+

20

Page 21: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 21/26

 

•  plano paralelo al plano coordenado XY: Z = k ,22

o su equivalente24 k  x y =−

1

4

2

2

2

2

=−k 

 x

 y. Para distintos valores de k , se obtienen hipérbolas con eje focal paralelo al eje Y.

Si k crece en valor absoluto, los planos “se alejan” del plano XY y los semiejes de las hipérbolascrecen indefinidamente.

Podemos concluir que se trata de una superficie no acotada.Esta superficie recibe el nombre particular de cono circular recto ya que las intersecciones con los planosY = k  son circunferencias con centros sobre el eje Y.

> implicitplot3d(x^2+z^2=4*y^2,x=-15..15,y=-6..6,z=-15..15,labels=[y,x,z]);  

h) . Esta ecuación es equivalente a:022 =− z  y ( ) ( ) 0=+− z  y z  y , que representa a un par de planos

proyectantes, que contienen al eje X, de ecuaciones:  x z  y x z  y ∀=+∀=− 0;0 . En la gráfica que sigue

se muestran ambos planos.

> implicitplot3d([y=z,y=-z],x=-10..10,y=-5..5,z=-5..5,labels=[y,x,z]);  

8) Hallar e identificar las ecuaciones de las proyecciones sobre los planos coordenados de las siguientescurvas:

a)

⎩⎨⎧

=−+

=+

)18(02

)17()

22

 z  y x

 x z  yγ 

 La ecuación (17) es un paraboloide de revolución que tiene al eje X como eje de rotación. La ecuación (18)representa a un plano que contiene al origen de coordenadas. Si observamos las gráficas de ambassuperficies, tal como se muestran en las figuras que siguen, vemos que la intersección entre ambas aparentaser una circunferencia o una elipse.

• Si despejamos x en (18) y reemplazamos en (17) obtenemos la ecuación:

 x z  y z  y ∀=−++ 0222(19).

Todo punto cuyas coordenadas satisface el sistema también satisface la ecuación (19) que

es consecuencia del sistema.

⎩⎨⎧

=−+

=+

02

22

 z  y x

 x z  y

21

Page 22: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 22/26

 

No vale la recíproca, es decir, existen puntos cuyas coordenadas satisfacen (19) pero no el sistema.

Completando cuadrados en (19) se obtiene: ( ) x z  y ∀=⎟ ⎠

 ⎞⎜⎝ 

⎛ −++

4

5

2

11

2

2, que representa una superficie

cilíndrica (que contiene a la curva γ  ) con generatrices paralelas al eje Z. La misma es un cilindro

proyectante sobre el plano YZ. 

La proyección de )γ  sobre el plano YZ, resulta de la intersección del cilindro proyectante con el plano YZ. Se

trata de la circunferencia de ecuaciones:( )

⎪⎩

⎪⎨

=

=⎟ ⎠

 ⎞⎜⎝ 

⎛ −++

0

4

5

2

11

2

2

 x

 z  y. Su centro es (0, -1,

2

1) y su radio

2

5.

Las dos primeras gráficas muestran diferentes vistas de las superficies (17) y (18). La tercera y cuarta incluyenal cilindro proyectante cuyas ecuaciones están dadas en (19). La quinta muestra la circunferencia (proyección

de )γ  sobre el plano YZ).

> implicitplot3d([y^2+z^2-x=0,x+2*y-z=0],x=-1..6,y=-3..3,z=-4..4,numpoints=2000,labels=[x,z,y]);

> implicitplot3d([y^2+z^2-x=0,x+2*y-z=0,(y+1)^2+(z-1/2)^2=5/4],x=-1..6,y=-3..3,z=-4..4,numpoints=2000,labels=[x,z,y]);> implicitplot((y-1)^2+(z-1/2)^2=5/4,y=-5..5,z=-5..5,numpoints=3000);  

• Procediendo de la misma forma, para obtener la ecuación de la curva proyectada sobre el plano XZ

despejamos la variable y de (18) y la reemplazamos en la (17), resultando:

 y x z  z  x

∀=−+⎟ ⎠

 ⎞⎜⎝ 

⎛  +−0

2

2

2

, que representa una superficie cilíndrica (que contiene a la curva γ  ) con

generatrices paralelas al eje Y (cilindro proyectante sobre el plano XZ).

La curva )γ  proyectada sobre el plano XZ es el lugar geométrico de los puntos cuyas coordenadas verifican

las ecuaciones:

⎪⎩

⎪⎨

=

=−+⎟ ⎠

 ⎞⎜⎝ 

⎛  +−

0

02

2

2

 y

 x z  z  x

o

⎨⎧

=

=−+−

0

045222

 y

 x z  xz  x

Como en la primera de ellas aparece el término x z será necesario efectuar una rotación de ejes para obtenersu forma reducida. Se deja como ejercicio comprobar que se trata de una elipse.

22

Page 23: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 23/26

 

 > implicitplot3d([y^2+z^2-x=0,x+2*y-z=0,x^2-2*x*z+5*z^2-4*x=0],x=-1..6,y=-3..3,z=-4..4,numpoints=2000,labels=[x,z,y]);> implicitplot(x^2-2*x*z+5*z^2-4*x=0,x=-5..5,z=-5..5,numpoints=5000);  

• Por último, despejamos la variable z de (18) y la reemplazamos en (17), para obtener:

 z  x y xy x ∀0=5+4+ 22, que representa una superficie cilíndrica (que contiene a la curva γ  ) con

generatrices paralelas al eje Z (cilindro proyectante sobre el plano XY).

La proyección de )γ  sobre el plano XY es la curva de ecuaciones: . Es necesario

efectuar una rotación para obtener la forma reducida. Verifique que se trata de una elipse.

⎩⎨⎧

==−++

0

054 22

 z 

 x y xy x

 

> implicitplot3d([y^2+z^2-x=0,x+2*y-z=0,x^2+4*x*y+5*y^2-x=0],x=-1..6,y=-3..3,z=-4..4,numpoints=2000,labels=[x,z,y]);> implicitplot(x^2+4*x*y+5*y^2-x=0,x=-5..5,y=-5..5,numpoints=5000);  

b)

⎪⎩

⎪⎨

=+−

=−

)21(022

)20(234)

22

 y x

 z  y x

γ   

La primera de las ecuaciones corresponde a un paraboloide hiperbólico y la segunda a un plano proyectantesobre el XY.

• Si despejamos 22 −= y x  en (21) y reemplazamos en (20) obtenemos la ecuación:

( ) x z 

 y y∀=−

−2

34

2222

, Trabajando algebraicamente se obtiene:  x z  y ∀⎟ ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ −

4

13

2

32

, ecuación

que representa una superficie cilíndrica (que contiene a la curva γ  ) con generatrices paralelas al eje X.

La proyección de )γ  sobre el plano YZ resulta de la intersección del cilindro proyectante con ese plano.

23

Page 24: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 24/26

 

Es una parábola de ecuaciones:

⎪⎩

⎪⎨

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ −

0

4

13

2

32

 x

 z  y. En las figuras que siguen se muestran las

superficies y la curva.

> implicitplot3d([x^2/4-y^2/3=2*z,x-2*y-2=0,(y-3/4)^2=3/2*(z+1)],x=-8..8,y=-8..8,z=-4..4,numpoints=2000,labels=[y,x,z]);> implicitplot3d((y-3/4)^2=3/2*(z+1),x=-5..5,y=-5..5,z=-5..5,numpoints=2000, labels=[y,x,z]); 

• Para obtener la ecuación del cilindro proyectante sobre el plano XZ , despejamos 12+=

x y de la

ecuación (21) y lo reemplazamos en la (20), obteniendo: ( ) y z  x ∀⎟ ⎠

 ⎞⎜⎝ 

⎛ +=−4

1121

2. La proyección del

cilindro parabólico sobre el plano XY es la parábola de ecuaciones:( )

⎪⎩

⎪⎨

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ +=−

0

4

1121

2

 y

 z  x. En las figuras

que siguen se pueden ver las superficies y la curva proyectada.

> implicitplot3d([x^2/4-y^2/3=2*z,x-2*y-2=0,(x-1)^2=12*(z+1/4)],x=-8..8,y=-8..8,z=-4..4,numpoints=2000,

labels=[y,x,z]);> implicitplot3d((x-1)^2=12*(z+1/4),x=-5..5,y=-5..5,z=-5..5,numpoints=2000, labels=[y,x,z]); 

•  La curva

0=2+2

2=34)

22

 y x

 z  y x

 λ está contenida en el plano proyectante: z  y x ∀=+− 022 .

La proyección de )λ  sobre el plano XY son los puntos de la recta: (traza del plano

proyectante sobre el sobre XY). ⎩⎨⎧

=

=+−

0

022

 z 

 y x

 

24

Page 25: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 25/26

 

c)⎪⎩

⎪⎨⎧

=+

=++

)23(

)22(16)

22

222

 z  y x

 z  y xγ 

 La ecuación (22) corresponde a una esfera y la (23) a un parabolide de revolución.

• Para encontrar la ecuación de la curva proyectada sobre el plano XY, reemplazamos en (22) 22  y x + por

z, resultando:  y x . Esta ecuación se verifica para z  z  ∀∧∀=−+ 0162  y x ∀∧∀ z +

−=2

651y

 y x z  ∀∧∀+−

=2

651(representan un par de planos paralelos al XY).

La curva λ ) está contenida en el plano  y x z  ∀∧∀+−

=2

651. Podemos representar a la misma a través

de los sistemas:

⎪⎩

⎪⎨

+−=

=+

2

651)

22

 z 

 z  y x

γ  o equivalentemente

⎪⎪⎩

⎪⎪⎨

−=

−=+

2

651

2

65122

 z 

 y x

. En el primer sistema la curva

se expresa como intersección del paraboloide de revolución con el plano, en el segundo sistema la curva se

expresa como intersección del cilindro con el plano. La curva )γ  es una circunferencia con centro en el punto

(0, 0,2

651+−y radio

2

651+−.

X

Y

Z

 

La proyección de )γ  sobre el plano YZ son los puntos del segmento que verifican:

⎪⎪⎪

⎪⎪⎪

+−=

+−≤

=

2

6512

651

0

 z 

 y

 x

.

• La proyección sobre el plano XZ son los puntos del segmento que verifican:

⎪⎪⎪

⎪⎪⎪

+−=

=

+−≤

2

651

0

2

651

 z 

 y

 x

.

25

Page 26: Practica Superficies Con MAPLE

5/13/2018 Practica Superficies Con MAPLE - slidepdf.com

http://slidepdf.com/reader/full/practica-superficies-con-maple 26/26

 

• La proyección sobre el plano XY es la circunferencia de ecuaciones

⎪⎩

⎪⎨

=

+−=+

0

2

65122

 z 

 y x. ver 

Se muestran las gráficas de las superficies que determinan )γ  y su proyección sobre el plano XY.

> implicitplot3d([x^2+y^2+z^2=16,x^2+y^2=z],x=-5..5,y=-5..5,z=-4..8,numpoints=2000,labels=[y,x,z]);> implicitplot3d(x^2+y^2+(x^2+y^2)^2=16,x=-3..3,y=-3..3,z=-5..5,numpoints=5000);  

26