QUe es el heat

2
2/25/2016 LIQUID STEEL: Steel Metallurgy in Continuous Casting Tundishes http://www.psc.edu/science/USS/USS.html 1/2 What Happens in a Tundish? Computer modeling combined with physical modeling has paid off in steel manufacturing. That's the message from Achilles Vassilicos, research consultant at U.S. Steel Technical Center in Pittsburgh. Since 1989 when the Technical Center, the research arm of U.S. Steel, became a corporate affiliate of the Pittsburgh Supercomputing Center, U.S. Steel researchers have used the highpowered computing of the CRAY YMP, and now the C90, to help understand the flow patterns of molten steel. The U.S. Steel research team wants to know what happens when a "heat" of steel a huge ladle containing more than 200 tons of molten metal at close to 3,000 degrees F. empties its fiery brew into a continuous casting "tundish." In particular, they want to know as precisely as possible what happens inside the tundish as the molten steel churns and swirls around. The tundish holds the white hot liquid and feeds it out the bottom into a continuous casting mold, where it forms a moving strand of steel that eventually cools from white to red hot and gets cut into slabs for further processing. Continuous casting is the most uptodate technology available for producing highquality steel at low cost, and good understanding of what goes on in the tundish is critical because it affects the purity and chemistry of the output steel. Impurities, such as oxides of aluminum, calcium and iron, tend to float to the top of the tundish bath. The steel flow must be controlled to enhance this flotation and to prevent turbulence from drawing impurities back down into the bath. Furthermore, you need to know how the chemistry of the mix feeding out the bottom of the tundish varies as a new heat pours in the top. "The objective is to have the caster running continuously," says Vassilicos, "and you usually aim for a string of several hundred heats. The chemistry often varies significantly from heat to heat. If you know exactly what is happening in the tundish in real time, you can precisely and intelligently disposition the output steel to meet the specifications of customer orders." Using a combination of computer and laboratory modeling of tundish flows, the U. S. Steel team developed an automated process control method for predicting the chemistry of output steel at its

description

colada heat colada heat colada heat colada heatcolada heat colada heatcolada heat colada heat

Transcript of QUe es el heat

Page 1: QUe es el heat

2/25/2016 LIQUID STEEL: Steel Metallurgy in Continuous Casting Tundishes

http://www.psc.edu/science/USS/USS.html 1/2

What Happens in a Tundish?

Computer modeling combined with physical modeling has paid off in steel manufacturing. That's themessage from Achilles Vassilicos, research consultant at U.S. Steel Technical Center in Pittsburgh.Since 1989 when the Technical Center, the research arm of U.S. Steel, became a corporate affiliate ofthe Pittsburgh Supercomputing Center, U.S. Steel researchers have used the high­powered computingof the CRAY Y­MP, and now the C90, to help understand the flow patterns of molten steel.

The U.S. Steel research team wants to know what happens when a "heat" of steel ­­ a huge ladlecontaining more than 200 tons of molten metal at close to 3,000 degrees F. ­­ empties its fiery brewinto a continuous casting "tundish." In particular, they want to know as precisely as possible whathappens inside the tundish as the molten steel churns and swirls around. The tundish holds the white­hot liquid and feeds it out the bottom into a continuous casting mold, where it forms a moving strandof steel that eventually cools from white to red hot and gets cut into slabs for further processing.

Continuous casting is the most up­to­date technology available for producing high­quality steel at lowcost, and good understanding of what goes on in the tundish is critical because it affects the purity andchemistry of the output steel. Impurities, such as oxides of aluminum, calcium and iron, tend to floatto the top of the tundish bath. The steel flow must be controlled to enhance this flotation and toprevent turbulence from drawing impurities back down into the bath. Furthermore, you need to knowhow the chemistry of the mix feeding out the bottom of the tundish varies as a new heat pours in thetop.

"The objective is to have the caster running continuously," says Vassilicos, "and you usually aim for astring of several hundred heats. The chemistry often varies significantly from heat to heat. If youknow exactly what is happening in the tundish in real time, you can precisely and intelligentlydisposition the output steel to meet the specifications of customer orders."

Using a combination of computer and laboratory modeling of tundish flows, the U. S. Steel teamdeveloped an automated process control method for predicting the chemistry of output steel at its

Page 2: QUe es el heat

2/25/2016 LIQUID STEEL: Steel Metallurgy in Continuous Casting Tundishes

http://www.psc.edu/science/USS/USS.html 2/2

Gary, Ind. plant. Another research effort led to a "turbulence suppressor pad," a patented device thatcontrols the quality of the very high quality steel used in thin­wall beverage cans.

Computed and Measured Tracer Effects

In recent calculations at the Pittsburgh Supercomputing Center, A. K. Sinha and Achilles Vassilicoscompared physical measurements of tracer response in scale model and real tundishes to results fromcomputer modeling. Tracers such as a pulse of copper are added to a tundish mix to give a reading ofresidence time ­­ how long it takes for the tracer to exit the bath ­­ and tracer density over time at theexit. This information gives a valuable index of the flow characteristics of a tundish.

The study shows that commonly used numerical techniques are not sufficiently accurate. Theresearchers developed FORTRAN code that adapts a more accurate algorithm, known as QUICK(quadratic upstream interpolation), for efficient use on the CRAY.

The fast response of the CRAY as compared to in­house workstations ­­ a day turnaround versus asmuch as a week ­­ is important to the U. S. Steel researchers. "These computations sometimes requirea lot of tweaking and adjustments to parameters," notes Vassilicos, "sometimes with several restarts.With the CRAY, we can see right away what we're getting, and if something needs to be changed, wecan do it."

Researchers: Achilles Vassilicos & A. K. Sinha, U.S. Steel Technical CenterHardware: CRAY Y­MP C­90Software: QUICK (quadratic upstream interpolation)Keywords: tundish, steel manufacturing, flow patterns, molten metal, continuous casting, metallurgy,turbulence, transition slabs, tracer effects, process design, drawn and iron (D&I) steel, technologytransfer, U.S. Steel, USX.

Related Material on the Web:Projects in Scientific Computing, PSC's annual research report.

References, Acknowledgements & Credits