Trabajo colaborativo Residuos solidos

27
TRABAJO COLABORATIVO MANEJO INTEGRADO DE RESIDUOS SÓLIDOS TEMA: Gestión especializada de residuos sólidos, soluciones sostenibles e innovadoras (WIKI 7) PRESENTADO POR LOS MAESTRANTES: ÁNGELA DAJHANA LÓPEZ MONCAYO GERARDO ELIUD LÓPEZ VARGAS APROVECHAMIENTO ENERGÉTICO DE RESIDUOS EN LA CADENA DE PRODUCCIÓN DEL CAFÉ Y EL POS - CONSUMO 1. RESUMEN La problemática frente a la generación de residuos en la cadena de producción del café, en especial en las etapas de beneficio y pos - consumo, implica esfuerzos en el desarrollo tecnológico para el manejo eficiente de los mismos, lo que representa un reto fundamental para el sector agropecuario. Este reto implica, reconocer las potencialidades de reúso de los materiales sobrantes en el beneficio del café (pulpa, mucilago, cisco) así como del material sobrante luego del consumo (borra de café); en este documento se han identificar los 1

Transcript of Trabajo colaborativo Residuos solidos

Page 1: Trabajo colaborativo Residuos solidos

TRABAJO COLABORATIVO MANEJO INTEGRADO DE RESIDUOS SÓLIDOS

TEMA: Gestión especializada de residuos sólidos, soluciones sostenibles e innovadoras

(WIKI 7)

PRESENTADO POR LOS MAESTRANTES:

ÁNGELA DAJHANA LÓPEZ MONCAYO

GERARDO ELIUD LÓPEZ VARGAS

APROVECHAMIENTO ENERGÉTICO DE RESIDUOS EN LA CADENA DE

PRODUCCIÓN DEL CAFÉ Y EL POS - CONSUMO

1. RESUMEN

La problemática frente a la generación de residuos en la cadena de producción del café, en

especial en las etapas de beneficio y pos - consumo, implica esfuerzos en el desarrollo

tecnológico para el manejo eficiente de los mismos, lo que representa un reto fundamental para

el sector agropecuario.

Este reto implica, reconocer las potencialidades de reúso de los materiales sobrantes en el

beneficio del café (pulpa, mucilago, cisco) así como del material sobrante luego del consumo

(borra de café); en este documento se han identificar los beneficios o márgenes de eficiencia

energética a través de diversos métodos de transformación para estos residuos.

Lo que nos lleva a la promoción de nuevos sub-productos, que se insertan en la

diversificación productiva de las fincas o la sustentación de nuevas fuentes de energía

consolidándose como el máximo aprovechamiento de los recursos fortaleciendo el uso

responsable.

.

1

Page 2: Trabajo colaborativo Residuos solidos

De esta manera ante la escasez, cobra sentido el análisis del reúso y aprovechamiento de los

recursos en la agricultura. El cual se presenta como alternativa para quienes se dedican a esta

actividad, decisión ésta; que se toma principalmente por criterios económicos y en tiempos más

cercanos por la responsabilidad ambiental que implica.

Entonces los avances tecnológicos en el manejo de los residuos de la actividad cafetera , se

observa que es detonada por las características nocivas de los mismos sobre el suelo y el agua;

pero además se explica que el avance tecnológico en este sector de la economía es de

importancia en los planes de diversificación y complementariedad productiva, así como para

establecer nuevos mercados de conciencia ambiental, al procurar certificar practicas productivas

sostenibles incluido el manejo de los residuos.

INTRODUCCIÓN

En la actualidad, los combustibles que más se utilizan son los derivados del petróleo, esto se

debe en gran medida a la facilidad de extracción y a las propiedades que tienen (Castro, Coello,

& Castillo, 2007). El uso de este tipo de combustibles ha causado un gran aumento de gases de

efecto invernadero (dióxido de carbono, metano, monóxido de carbono, óxidos de nitrógeno,

entre otros), generando una mayor concentración en el medio ambiente contribuyendo a un

aumento excesivo del calentamiento global (Maena, 2013). Por esta razón, en años recientes se

ha intentado implementar el uso de energías renovables para disminuir este problema. Dentro de

estas tecnologías encontramos el uso de los biocombustibles, los cuales se elaboran con materia

orgánica cuyo fin es la generación de energía. Para la obtención de estos biocombustibles se

pueden utilizar tanto especies de uso agrícola como forestal (Guerrero, Marrero, Martinez-Duart,

& Puch, 2010). Al utilizar este tipo de combustible se reduce considerablemente el CO2 que es

enviado a la atmósfera, ya que al generar la combustión se produce el dióxido de carbono que la

2

Page 3: Trabajo colaborativo Residuos solidos

planta absorbió a lo largo de su vida, logrando de esta manera un ciclo de absorción y generación

de CO2 (Maena, 2013). Los biocombustibles de primera generación se elaboran a partir de

especies agrícolas, las cuales pueden ser destinadas para consumo humano, razón por la cual esta

fuente de energía no ha tenido el auge esperado. Sin embargo, la segunda generación de

biocombustibles se elabora con residuos orgánicos (Guerrero, Marrero, Martinez-Duart, & Puch,

2010). Dentro de esta categoría encontramos el elaborado a partir del café, principalmente la

borra, que es el residuo que se genera en las cafeteras durante la preparación de la bebida.

2. JUSTIFICACION

Vivimos en uno de los principales países productores de café en el mundo, con una

producción anual 1,03 millones de sacos de 60 kilos,, lo que equivale a 65 mil toneladas de café

al año (El Tiempo, 2016).

Tomando estos datos en cuenta se puede observar que el aprovechamiento energético en nuestro

País a partir de dicha materia prima representa una alternativa prometedora. En los últimos años

la producción de bio-combustibles ha tenido un aumento significativo en el mundo. La

posibilidad de utilizar residuos para la elaboración de biocombustibles es muy importante para el

cuidado del medio ambiente, ya que nos permitirá generar un sustituto o complemento para los

combustibles fósiles sin causar problemas sociales en cuanto a la materia prima se refiere. La

generación de bi combustibles y/o el aprovechamiento energético a partir de los residuos del café

en una zona como La Sierra Cauca tiene gran potencial por la cantidad de este producto que se

genera al año, la cual puede ayudar a reducir la dependencia de combustibles fósiles.

En estudios recientes se ha creado biocombustible a partir de cada uno de los residuos del

café, unos con niveles de eficiencia mayores que otros, incluso la borra, el cual es el residuo

menos aprovechado y que se genera en gran cantidad es fuente de biodiesel.

El propósito de este trabajo es demostrar que es posible aprovechar la energía de los

diferentes residuos en la cadena productiva y del consumo del café insertando estos subproductos

como insumos al proceso, logrando de esta manera disminuir el uso de combustibles fósiles así

como proporcionar un valor agregado a este residuo.

3

Page 4: Trabajo colaborativo Residuos solidos

3. OBJETIVOS

Proponer una alternativa de producción para la elaboración de biodiesel utilizando residuos de

café como materia prima.

Reconocer las potencialidades en el aprovechamiento energético de los residuos producto del

beneficio del café.

Participar en la motivación de la cultura de la no contaminación a partir del uso de biodiesel.

4. HIPOTESIS

El aprovechamiento de los residuos de café en la producción de biodiesel resulta una alternativa

económicamente viable para los pequeños productores del municipio de la sierra.

5. ESTADO DEL ARTE

Se denomina energía renovable a la que se obtiene de fuentes que son capaces de regenerarse

por medios naturales y, por lo tanto, se consideran inagotables. Los residuos agrícolas

lignocelulósicos se pueden utilizar directamente como combustible o transformarse en bioetanol

o biogás, mediante procesos de fermentación o en biodiésel, y son considerados energías

renovables, dado que no se agotarán mientras puedan cultivarse los vegetales que los producen.

La formación de biomasa vegetal se lleva a cabo a través del proceso fotosintético, en donde

las plantas captan la energía solar y mediante un mecanismo electroquímico fijan y almacenan el

carbono contenido en el CO, del aire. Una de las principales características de la biomasa es su

carácter renovable, puesto que la energía utilizada y las materias primas consumidas (carbono,

hidrógeno, nitrógeno, potasio y fósforo) son renovables. Se estima que la fotosíntesis fija 220

4

Page 5: Trabajo colaborativo Residuos solidos

millones de toneladas de peso seco de biomasa al año, lo que supone unas diez veces la demanda

energética mundial.

Los biocombustibles son combustibles producidos a partir de biomasa y son utilizados en

gran medida en el sector transporte. Pueden ser producidos a partir de productos agrícolas o

forestales, así como de la porción biodegradable de los desperdicios industriales y municipales.

Los biocombustibles más utilizados y desarrollados son el biodiésel y bioetanol. (Dufey, 2006).

Se estima que la fotosíntesis fija 220 millones de toneladas de peso seco de biomasa, lo que

equivale diez veces la demanda energética mundial (Ballesteros, 1998). En la actualidad existe

un gran problema en cuanto a la elaboración de biodiésel a nivel mundial debido a que la materia

prima proviene de fuentes de alimento para las personas, por lo que hay un debate sobre la

utilización de estos insumos para la fabricación de este biocombustible en lugar de destinarlo

para consumo humano. Para solucionar este problema se han utilizado residuos agrícolas o

desechos para su elaboración. Los biocombustibles generados a partir de esta materia prima se

conocen como de Segunda Generación (2G).

Consumo actual de biocombustibles. Según los datos de la Federación Nacional de

Biocombustibles de Colombia, la producción de biodiésel, extraído de la palma de aceite, fue de

aproximadamente 490 mil toneladas durante 2012, que representa un aumento del 45% con

respecto a la registrada para el año 2010, cuando se alcanzó la cifra de 338miltoneladas.

Por su parte, la producción de alcohol carburante (etanol anhídrido) fue de aproximadamente 362

millones de litros en el año 2012. Comparado al año 2010, el aumento de producción llega a ser

del 24,3% de los 291millonesde litros reportados Sin embargo, las proyecciones de aumento de

producción de los biocombustibles en Colombia aumentarían con la construcción de nuevas

plantas hasta el 2015, posibilitando alcanzar una mezcla del 15% de etanol con gasolina y un

20% de biodiésel con diésel convencional, según Jorge Bendeck, presidente de la Federación

Nacional de Biocombustibles. (Federacion de Biocombustibles)

5

Page 6: Trabajo colaborativo Residuos solidos

La biomasa. Es cualquier materia orgánica de origen reciente que haya derivado de

animales y vegetales como resultado del proceso de conversión fotosintético. El valor energético

de la biomasa de origen vegetal proviene de la energía solar mediante el proceso conocido como

fotosíntesis. La energía química que se almacena en las plantas y animales se llama bioenergía.

La biomasa es la única fuente de energía renovable que puede competir contra los combustibles

fósiles, ya que a partir de esta se pueden obtener biocombustibles líquidos como el etanol y el

biodiésel.

Manejo de los residuos del café. En el proceso del café se estima que menos del 5% de la

biomasa generada se aprovecha en la elaboración de la bebida, el resto queda en forma residual

representado en materiales lignocelulósicos como hojas, ramas y tallos, generados en el proceso

de renovación de los cafetales; frutos verdes que se caen durante la recolección o que se retiran

de la masa de café recolectado; pulpa o exocarpio del fruto, que representa aproximadamente el

44% del fruto fresco; y la borra o ripio, que se genera en las fábricas de producción de café

soluble y cuando se prepara la bebida a partir del grano tostado y molido, que representa cerca

del 10% del peso del fruto fresco y con un contenido de aceite entre el 10% y el 15% en base

seca.

Adicionalmente, la pulpa tiene un contenido de azúcares reductores cercano al 17% en base seca

y durante el proceso de beneficio del fruto se genera el mucílago, rico en azúcares reductores,

aproximadamente el 64% en peso seco, el cual representa cerca del 15% del peso del fruto

fresco.

6. METODOLOGIA

En la actualidad, el beneficio ecológico, las centrales de beneficio, las altas producciones de

café por hectárea, aunado a una legislación ambiental más exigente y a los altos costos de los

combustibles y fertilizantes químicos, favorecen el aprovechamiento de los subproductos para la

6

Page 7: Trabajo colaborativo Residuos solidos

obtención de productos con valor agregado, entre los que figuran los biocombustibles. La

necesidad de los países de aumentar su matriz energética, ha impulsado la investigación y

producción de los biocombustibles. Sin embargo, se ha generado una gran polémica por la

utilización de materias primas que se emplean para alimentación humana y animal, como el caso

de la caña de azúcar, cereales y aceite de palma, y por el balance energético del proceso

productivo que, en algunos casos, es negativo.

Por lo tanto, se está investigando en la generación de biocombustibles de segunda generación,

provenientes de biomasa residual o de especies vegetales que no se utilizan para la alimentación.

De manera local se pretende que esta propuesta sea replicada en las fincas del área cafetera de la

vereda de Sapongo, Municipio de la Sierra en el Departamento del Cauca.

Figura 1. Mapa de ubicación vereda Sapongo.

Se presenta un análisis sobre los niveles de producción de la Vereda Sapongo del municipio

de la Sierra Cauca, con una producción de 2000@. Dejando residuos en pulpa de 87.000

kilogramos; con base en resultados publicados por Cenicafé acerca de los subproductos del café

como fuente de energía renovable en la revista de avances técnicos No 393 en Marzo de 2010.

PULPA DE CAFÉ

7

Page 8: Trabajo colaborativo Residuos solidos

Es el primer producto que se obtiene en el procesamiento del fruto de café (figura 2), y

representa, en base húmeda, alrededor del 43,58% del peso del fruto fresco.

Figura 2. Procesamiento del fruto de café.

El promedio de la producción de pulpa es de 2,25 t/ha-año. Por cada millón de sacos de 60 kg

de café almendra que Colombia exporta, se generan 162.900 t de pulpa fresca, que si no se

utilizan adecuadamente producirían una contaminación equivalente a la generada durante un año,

en excretas y orina, por una población de 868.736 habitantes.

Utilización como combustible directo. Porres et al., reportan un poder calorífico de 15,88

M)/kg de pulpa seca y un consumo en el secado mecánico de la misma de 36,92 MJ, con un

balance energético negativo en el proceso, debido a que por cada unidad de energía aplicada en

el secado de la pulpa sólo se generaron 0,43 unidades en la combustión del producto seco.

Producción de biogás. El biogás es una mezcla gaseosa constituida por metano, en una

proporción que oscila entre 50% y 80%, y gas carbónico, con pequeñas trazas de vapor de agua,

hidrógeno, sulfuro de hidrógeno, amoníaco, monóxido de carbono, nitrógeno, oxígeno y trazas

8

Page 9: Trabajo colaborativo Residuos solidos

de compuestos orgánicos; y se origina por la degradación de la materia orgánica en condiciones

anaeróbicas. Se puede utilizar como combustible directo en sistemas de combustión a gas o para

la producción de energía eléctrica, mediante turbinas o plantas generadoras a gas. En los estudios

realizados por Calle y Arcila, se reportan rendimientos de 25 L de biogás por 1 kg de pulpa

fresca alimentada a los digestores. El poder calorífico del biogás, con un contenido de metano de

60%, es de 21,46 KJ/L, con un valor para la pulpa fresca de 0,54 MJ/kg.

Producción de bioetanol. El bioetanol se obtiene por fermentación de medios azucarados

hasta lograr un grado alcohólico, después de fermentación, en torno al 10% - 15%,

concentrándose por destilación para la obtención del denominado "alcohol hidratado" (4-5% de

agua) o hasta llegar al alcohol absoluto (99,4% de pureza, como mínimo), tras un proceso

específico de deshidratación. Esta última calidad es la necesaria si se quiere utilizar el alcohol

en mezclas con gasolina, en vehículos convencionales.

Cenicafé, estudió las condiciones para la obtención de alcohol a partir de la pulpa y el

mucílago de café y encontró que "de 100 kg de café cereza se puede obtener un 6% de melaza,

por extracción y concentración del jugo de la pulpa y del mucílago, con un contenido del 35% de

azúcares totales y 6,19% de cenizas, y por fermentación alcohólica se pueden obtener, en

promedio, 1,2 L de alcohol etílico de 85°, equivalentes a 500 L de etanol por 1.000 arrobas de

café pergamino seco. La capacidad calorífica del etanol es de 21,08 MJ/L (30), por lo tanto, se

alcanzó un valor de 0,53 MJ/kg de pulpa fresca, similar al alcanzado en forma de biogás.

EL MUCÍLAGO

Se genera en la etapa del desmucilaginado, y en base húmeda, representa alrededor del

14,85% del peso del fruto fresco (figura 3). En términos de volumen, por cada kilogramo de café

cereza sin seleccionar se producen 91 ml de mucílago fermentado. Su producción media es de

768 kg/ ha-año. Por cada millón de sacos de 60 kg de café que Colombia exporta, se generan

aproximadamente 55.500 t de mucilago fresco, que si no se utilizan adecuadamente producirían

una contaminación equivalente a la generada en un año, en excretas y orina, por una población

de 310.000 habitantes.

9

Page 10: Trabajo colaborativo Residuos solidos

Figura 3. Mucilago obtenido del beneficio del fruto del café.

Rodriguez, N., & Zambrano, D. (2010).

Producción de biogás. Cenicafé reporta para la descomposición anaerobia del mucílago, una

producción de 287 L de metano por cada kilogramo de DQO aplicado en el proceso de

fermentación a 36°C (equivalente a 336 L de metano por 1 kg de DQO removido). El metano

tiene un poder calorífico de 35,78 KJ/L (31) y la densidad calculada del mucílago de 1,35 kg/L

por lo que se puede estimar que la energía contenida en el biogás generado a partir de la

descomposición de 1 kg de mucilago fresco es del orden de 2,00 MJ.

Producción de bioetanol. En estudios de fermentación alcohólica se encontró un valor

promedio de 58,37 ml de etanol obtenido a partir de 1 kg de mucílago fresco, equivalente, en

unidades de energía, a 1,23 MJ/kg de mucilago.

EL ENDOCARPIO DEL FRUTO

Constituido por la cascarilla (cisco) y la película plateada, es otro subproducto con excelentes

propiedades combustibles.

Utilización como combustible directo. El cisco representa en peso el 4,2% del fruto fresco.

Cenicafé para este subproducto, reportan una capacidad calórica de 17,90 MJ/kg.

10

Page 11: Trabajo colaborativo Residuos solidos

BORRA DE CAFÉ

Residuo que se genera en las fábricas de café soluble y corresponde a la fracción insoluble del

grano tostado (figura 4). Representa cerca del 10% del peso del fruto fresco.

Figura 4. Borra de Café.

Utilización como combustible directo. En las fábricas de café soluble, después del proceso

de prensado y secado hasta el rango del 8% al 15% de humedad, la borra se utiliza como

combustible en las calderas generadoras de vapor de agua. Su valor calorífico está entre 24,91

MJ/kg (32) y 29,01 MJ/kg de borra seca.

Producción de biogás. Cenicafe reporta una producción de biogás, con un contenido de

metano entre 52% y 62%, del orden de 250 a 300 L/kg de sólidos volátiles de la borra, los cuales

representan el 99,8% de la materia seca. Lo que equivale a un potencial calorífico como biogás

de 5,90 MJ/kg de borra seca.

Producción de bioetanol. Cenicafe comparte que se pueden obtener hasta 27,85 g de etanol

a partir de 56,98 g de celulosa proveniente de borra de café delignificada enzimáticamente,

utilizando procesos de sacarificación y fermentación simultánea. Así mismo, reporta un

promedio del contenido de celulosa en la borra del 33,62%, lo que permite estimar que se pueden

obtener hasta 207,61 ml de etanol por 1 kg de borra seca, equivalentes a un poder calorífico de

4,38 MJ/kg de borra seca.

11

Page 12: Trabajo colaborativo Residuos solidos

Producción de biodiésel. El biodiésel es un combustible que se elabora a partir del proceso

de esterificación de aceites de origen animal o vegetal, utilizando metanol o etanol, con el fin de

remplazar el combustible diésel, reduciendo la contaminación atmosférica al generarse menos

emisiones de gases en el proceso de combustión. Para el caso del aceite extraído de la borra,

presenta rendimientos entre 10% y 15% en peso, dependiendo de la especie, y una conversión

del 100% del aceite en biodiésel, el cual tiene una capacidad calórica de 38,4 MJ/kg (19), con lo

cual se obtendría un poder calorífico de 5,76 MJ/kg de borra seca.

TALLOS DE CAFÉ

Los tallos de café, provenientes de la práctica de zoqueo (figura 5), son utilizados por los

productores para la cocción de alimentos y el secado del grano, contribuyendo a la conservación

del bosque nativo, lo cual tiene una influencia directa en beneficio del ciclo hidrológico y en la

regulación del calentamiento global.

Figura 5. Tallos de café.

Rodriguez, N., & Zambrano, D. (2010).

La Federación de Cafeteros, para mantener una caficultura productiva, promueve ciclos de

renovación cada cinco años y reporta un promedio de densidad de 5.000 árboles/ha. Durante el

proceso de renovación se reporta una producción de madera seca de 16 t/ha, para 5.000

árboles/ha, lo que permite calcular un promedio de producción de 0,6 kg de tallos por 1 kg de

café cereza procesado.

12

Page 13: Trabajo colaborativo Residuos solidos

Utilización como combustible directo.Reporta una capacidad calórica para los tallos de

19,75 MJ/kg. En el secado mecánico del café, un consumo de 4,4 kg de cisco, considerando que

los tallos de café presentan una capacidad calórica mayor a la del cisco (19,75 vs. 17,90 MJ/kg),

se estima un consumo de 4,0 kg de tallos por 1 @ de c.p.s.

Producción de bioetanol. Es posible obtener bioetanol a partir de las fibras celulósicas de los

tallos de café. Los materiales leñosos presentan una composición básica de celulosa entre 40% y

60%, de hemicelulosa entre 20% y 40% y de lignina entre 10% y 25%.

RIPIOS Y CAFÉ DETERIORADO

Son residuos del proceso de trilla y están constituidos por granos imperfectos, almendras

partidas y frutos pequeños, y tienen la misma composición química del grano (figura 6). La

bebida preparada a partir de los ripios es de baja calidad.

Figura 6. Residuos de trilla, granos imperfectos.

Rodriguez, N., & Zambrano, D. (2010).

Utilización como combustible directo. Los ripios presentan un valor calorífico del orden de

15,60 MJ/kg cuando se utilizan como combustible sólido. Producción de biodiésel. reporta que

de café de calidad inferior se lograron obtener entre 70 y 150 kg de aceite por 1 t de café.

13

Page 14: Trabajo colaborativo Residuos solidos

Cenicafe refiere que en Brasil, registraron que de cada 100 kg de café defectuoso es posible

obtener 12 kg de aceite, de los cuales se obtienen 9 kg de biodiésel. Al considerar que el poder

calorífico del biodiésel del café es de 38,4 MJ/kg, se estima un poder calorífico de 3,46 M J/kg

de café deteriorado.

DISCUSION BALANCE ENERGETICO

Considerando que el poder calorífico de la gasolina es de 34 MJ/L (30), equivalente a 128,69

MJ/galts, se tendría que la energía disponible en los subproductos del café generados por 1

ha/año, es equivalente a la contenida en 513 galos de gasolina. Energía que por provenir del

campo es renovable y tiene un gran valor económico en la actualidad, dada la inestabilidad de los

precios de los combustibles provenientes de fuentes fósiles.

Debido a que el etanol se produce con fines energéticos, se acepta que el balance de energía

del proceso total es el que determinará su viabilidad económica. Se busca que la energía

generada por el producto sea mayor que la energía utilizada en su fabricación, sobre todo cuando

esta última es energía fósil, dado que es la que se busca reemplazar. El balance energético es

positivo cuando la relación energía de salida (la generada por el producto) sobre la energía de

entrada (la necesaria para obtener el producto) es mayor que 1.

Dentro del proceso de obtención del etanol, la etapa de recuperación del producto

(destilación), es la que exige mayor energía de todo el proceso, "energía gastada en la parte

industrial" Por ello, las mejoras en el proceso de destilación tendrán mayor influencia en el éxito

del proceso total que las mejoras en la propia fermentación. Para el caso de los subproductos del

café, el balance energético estimado es negativo para el mucilago obtenido utilizando agua en el

desmucilaginador (0,6 L/kg c.p.s.), dado que el volumen a destilar para obtener 1 L de etanol es

mayor.

En este sentido, para que el etanol contribuya perceptiblemente a las necesidades de

combustible para diversas actividades, necesitaría tener un balance energético neto positivo. Para

evaluar la energía neta del etanol hay que considerar cuatro variables: la cantidad de energía

14

Page 15: Trabajo colaborativo Residuos solidos

contenida en el producto final del etanol, la cantidad de energía consumida directamente para

hacer el etanol, la calidad del etanol resultante comparado con la calidad de la gasolina refinada

y la energía consumida indirectamente para hacer la planta de proceso de etanol.

Sin embargo, si las vinazas se utilizan para la producción de metano, el balance energético se

vuelve positivo, pasando de 0,80 a 1,21. Si el mucílago se obtiene sin agua el balance energético

es positivo, aun sin la utilización del metano proveniente de las vinazas (valor de 1,10) y con esta

energía se llega a una relación de 1,66.

Para la pulpa y los jugos de la misma se tuvo en cuenta la energía gastada en el proceso de

beneficio y de prensado. Para los jugos, el balance energético es positivo, si se tiene en cuenta la

energía generada en la digestión anaeróbica de las vinazas. La pulpa de café presenta el balance

energético más desfavorable, de 0,45, el cual es muy similar al encontrado en el secado mecánico

de la misma (0,43). Si al proceso se le adiciona la energía proveniente de la digestión anaeróbica

de las vinazas, alcanza el valor de 0,91, y si se adiciona la energía proveniente de la digestión

anaeróbica de la pulpa residual del proceso de fermentación alcohólica, se llega a un balance

energético positivo, de 1,26. La energía potencial de los tallos de café generados por hectárea,

siguiendo las recomendaciones de renovación de cafetales (1/5 del área), sería de 63.200 MJ. Si

se diseñan intercambiadores de calor que permitan una eficiencia calórica en el proceso de

combustión del 50%, se dispondría de 31.600 MJ, entre ocho y nueve veces la energía necesaria

en el proceso industrial de producción de etanol a partir de los subproductos del café. La energía

proveniente de los tallos de café generados en el proceso de zoqueo por hectárea es suficiente

para abastecer las necesidades energéticas del proceso de producción de etanol a partir de la

pulpa y el mucílago generados en esa misma área.

Lo anteriormente expuesto, permitirá definir el paso a seguir después de la transformación de

los subproductos del café, pues con la obtención de los alcoholes, se podría proponer un manejo

de los mismos para un posterior uso en el funcionamiento de elementos como cocinas (teniendo

en cuenta generar la llama apropiada para que dé buena temperatura), guadañas, motocicletas y

por supuesto, el nivel máximo a alcanzar en un futuro, será el funcionamiento de uno o varios

elementos del proceso para el beneficio del café, aplicado a grupos de familias cafeteras.

15

Page 16: Trabajo colaborativo Residuos solidos

7. RECOMENDACIONES Y RESULTADOS ESPERADOS

El concepto de Producción más Limpia, es ampliamente utilizado en la mejora de procesos de

producción industrial, cuyo objetivo es la minimización de los residuos y la mitigación de su

impacto con el entorno. Esta estrategia ambiental es una mejora continua en los procesos y su

beneficio radica en la realización de nuevas inversiones a través del mejoramiento de todo el

ciclo de vida de un proceso, lo cual se encuentra directamente relacionado con la optimización de

los recursos, donde se garantiza un mayor costo beneficio en las soluciones implementadas.

En el marco de producción limpia, el manejo de las aguas residuales parte de la prevención de

la contaminación, asociada a la reconversión de procesos (disminución o sustitución de materias

primas, recirculación de agua), fabricación de bienes y productos que minimicen los efectos

negativos sobre el medio ambiente y en particular sobre el recurso hídrico, reducción del

consumo y reúso del recurso.

En la cadena productiva del café, el adecuado manejo de los residuos genera valor agregado y

las prácticas son consideradas en procesos de certificación con sello verde o de sustentabilidad y

buenas prácticas.

Es importante generar una aceptación de nuevas formas de manejo de los residuos a través del

aprovechamiento energético por parte de la comunidad y los agricultores, ya que se generan

muchos paradigmas a lo largo de la aplicación de las mismas. Es importante para ello dar a

conocer investigaciones y proyectos a la comunidad en pro de generar conciencia y presentarlo

así como alternativa de valor agregado.

El aprovechamiento energético de los residuos en el proceso de beneficio del café son una

fuente alternativa para satisfacer diferentes demandas de uso Doméstico, Agrícola e Industrial,

16

Page 17: Trabajo colaborativo Residuos solidos

con lo cual se reduce la carga contaminante vertida en el suelo y las fuentes hídricas y se inserta

esta energía en nuevos procesos productivos de la finca o parcela.

Los residuos mismos de los procesos de aprovechamiento energético presenta beneficios

asociados al mejoramiento de la fertilidad de los suelos agrícolas permitiendo reducir, y en

algunos casos eliminar, la necesidad del uso de fertilizantes químicos y trayendo beneficios

económicos al sector, desde el punto de vista agrícola.

Se enfatiza en los múltiples beneficios ambientales, económicos, sociales y tecnológicos de

esta clase de iniciativas, entre ellos están el mejoramiento de la calidad de vida, la promoción del

desarrollo de empresas de tecnología agroindustrial, la reducción de los niveles de

contaminación ambiental y la definición de una realidad energética más sostenible, apropiada

para impulsar transformaciones sociales y económicas.

Bibliografía

Ballesteros, M. (1998). Uso Energético de la Biomasa. Manizales: Universidad Nacional.

Castro, P., Coello, J., & Castillo, L. (2007). Opciones para la Producción y Uso del. Lima:

Soluciones Practicas - ITDG.

Dufey, A. (2006). Producción y Comercio de Biocombustibles y Desarrollo Sustentable. IIED.

El Tiempo. (05 de 10 de 2016). En septiembre, producción de café bajó 2 %. El Tiempo, pág. 1.

Federacion de Biocombustibles. (s.f.). http://www.fedebiocombustibles.com. Recuperado el 25 de

02 de 2017, de http://www.fedebiocombustibles.com:

http://www.fedebiocombustibles.com/v3/nota-web-id-1413.htm

Guerrero, R., Marrero, G., Martinez-Duart, J. M., & Puch, L. A. (2010). Biocombustibles

Liquidos: Situación Actual y Oportunidades de Futuro para España. Obtenido de

17

Page 18: Trabajo colaborativo Residuos solidos

www.fundacionideas.es: http://books.google.com.mx/books?

id=A93evr4FPAAC&lpg=PA19&dq=biocombustible&pg=PA1#v=onepage&q&f=false

Maena, P. M. (2013). Estudio Técnico-Económico de una Planta de Produccion de Biodiesel.

Madrid: Escuela Técnica Superior de Ingenieros de Minas.

Rodriguez, N., & Zambrano, D. (2010). LOS SUBPRODUCTOS DEL CAFÉ: FUENTE DE

ENERGIA RENOVABLE. Avances Tecnicos 393 Cenicafé, 1-8.

18