TRANSM_FM

12
Micrófono Espía por FM alimentado con 220v Mas y mas transmisores espías por FM (o FM Bugs como se los llama habitualmente), pero este es diferente a los demás en un tema radical, la alimentación. Otros micrófonos requieren ser alimentados por pilas o baterías las cuales se agotan con el transcurso del tiempo. En su lugar este dispositivo emplea la línea eléctrica de 220v para obtener sus 6v pero sin el uso de transformador. Pudiendo ser escondido entonces en el gabinete de la TV, en el interior del a vídeo, en el interior de una lámpara o velador o en cualquier otra parte que se alimente de 220v. Como se ve en el diagrama el circuito es bastante simple de entender. De un lado está la sección fuente y de el otro el transmisor en si. El transmisor provee una potencia de salida del orden del cuarto de vatio, suficiente para llegar de un apartamento a otro o para cubrir 25 metros amoblados y con algunas paredes. La bobina esta formada por 4 o 5 espiras de alambre esmaltado, el capacitor variable es de 3 a 30pF y el micrófono es de electret. Recuerde que este sistema no está aislado de la red eléctrica, por lo que es necesario tomar algunas precauciones. 1. No deje nada expuesto a la posibilidad de contacto. El micrófono, la antena y el trimmer usualmente son semi accesibles. En el caso de este circuito deberán ser debidamente aislados para evitar shocks eléctricos. 2. No lo coloque en lugares húmedos como el interior del refrigerador o el compartimiento trasero de los compresores. Estos dispersan agua cuando actúa el sistema de descongelado automático periódico dispersando agua y vapor de hielo sobre los motores, pudiendo poner en corto el transmisor. 3. No coloque el transmisor en el horno de micro ondas. Las señales irradiadas por el transmisor a muy corta distancia de los

description

Transmisores de FM

Transcript of TRANSM_FM

Page 1: TRANSM_FM

Micrófono Espía por FM alimentado con 220vMas y mas transmisores espías por FM (o FM Bugs como se los llama habitualmente), pero este es diferente a los demás en un tema radical, la alimentación. Otros micrófonos requieren ser alimentados por pilas o baterías las cuales se agotan con el transcurso del tiempo. En su lugar este dispositivo emplea la línea eléctrica de 220v para obtener sus 6v pero sin el uso de transformador. Pudiendo ser escondido entonces en el gabinete de la TV, en el interior del a vídeo, en el interior de una lámpara o velador o en cualquier otra parte que se alimente de 220v.

Como se ve en el diagrama el circuito es bastante simple de entender. De un lado está la sección fuente y de el otro el transmisor en si. El transmisor provee una potencia de salida del orden del cuarto de vatio, suficiente para llegar de un apartamento a otro o para cubrir 25 metros amoblados y con algunas paredes.La bobina esta formada por 4 o 5 espiras de alambre esmaltado, el capacitor variable es de 3 a 30pF y el micrófono es de electret.Recuerde que este sistema no está aislado de la red eléctrica, por lo que es necesario tomar algunas precauciones.

1. No deje nada expuesto a la posibilidad de contacto. El micrófono, la antena y el trimmer usualmente son semi accesibles. En el caso de este circuito deberán ser debidamente aislados para evitar shocks eléctricos.

2. No lo coloque en lugares húmedos como el interior del refrigerador o el compartimiento trasero de los compresores. Estos dispersan agua cuando actúa el sistema de descongelado automático periódico dispersando agua y vapor de hielo sobre los motores, pudiendo poner en corto el transmisor.

3. No coloque el transmisor en el horno de micro ondas. Las señales irradiadas por el transmisor a muy corta distancia de los circuitos de control del horno pueden hacer que este último funcione erráticamente o que se accione sólo.

4. No instale el transmisor dentro de un horno eléctrico por resistencias o lámparas halógenas. Estos electrodomésticos generan excesivo calor, el cual puede afectar a los componentes del mismo.

5. Veladores sensibles al tacto (o con interruptor touch) generalmente producen emisiones de ruido y RF que si bien no son perceptibles al oído humano los circuitos transmisores y receptores se ven afectados por su presencia.

También es aconsejable detenerse a pensar que puede pasar con el objeto donde desea instalar al transmisor. Por ej: Si instala el micrófono en el interior de una lámpara de sala asegúrese que al mismo le llegue corriente en todo momento. Colocarlo luego de la llave de encendido de la luz hará que el dispositivo emita sólo cuando la misma esté encendida. Cada quien sabrá donde mejor ubicar su transmisor, dado que esto varía notablemente para cada caso.

Page 2: TRANSM_FM

EMISORA EXPERIMENTAL DE FM

El módulo emisor de FM cuya descripción se hace a continuación, constituye el punto de partida para la creación de una pequeña emisora personal sin pretensiones, pero capaz de sostener la comparación desde el punto de vista de la calidad de emisión con otras emisoras de mayor envergadura.Características y análisis funcionalEn efecto, según la elección de la tensión de alimentación (9 a 12 V) se puede disponer de una potencia comprendida entre algunos centenares de milivatios a 3 vatios, entre 88 y 108 MHz. De medidas efectuadas se comprueba que con potencias de emisión del orden citado, con una antena convenientemente elegida, se puede cubrir en buenas condiciones la totalidad de una población de dimensiones reducidas. Normalmente se precisa excitar al emisor a través de una consola de mezcla que permita crear los efectos sonoros deseados, estando también previsto que pueda realizarse la conexión directa de un micrófono. El esquema de la figura 1 permite distinguir las dos partes del montaje: la sección de BF utiliza un clásico 741 montado como preamplificador con preacentuación; el condensador C3 actúa sobre los agudos según una curva standard a 50 µseg, de forma que se compense la desacentuación incorporada en todos los receptores FM comerciales. Puede esperarse que la calidad de la B.F. alcance un nivel próximo al de Hi-Fi, aunque si se presentaran problemas de nivel de ruido de fondo excesivo, podría sustituirse el 741 por otros amplificadores operacionales de bajo ruido.La entrada Ext. (Extensión) permite aplicar al emisor, a través de una resistencia variable de 47 KW en serie con un condensador de 2,5 µF, prácticamente cualquier tipo de equipo de mezcla. La señal de B. F. amplificada se aplica al diodo de capacidad variable Dl, cuya misión es la de modular en frecuencia el oscilador de salida, que es un multivibrador compuesto por TR1 y TR2. La señal rectangular generada por el multivibrador se convierte en senoidal al paso por el circuito sintonizado L1/C10. La antena podrá ser una simple varilla vertical de unos 90 cm de longitud situada junto al circuito emisor. Se ha comprobado que incluso cuando la antena está situada en el interior de una habitación, se obtiene un alcance de emisión de 2 a 3 km. Las pérdidas debidas al empleo de un cable de bajada de antena superan a menudo la ganancia obtenida disponiendo la antena sobre un tejado. Es importante que la alimentación del emisor se halle bien filtrada ya que, de lo contrario, se podrían producir realimentaciones indeseables en UHF. En caso de duda el mejor sistema de alimentación es una batería de automóvil.El circuito impreso de la figura 2, mostrado a tamaño natural, y la disposición de los componentes sobre el mismo de la figura 3, reproducen el conjunto del emisor.Realización prácticaLa realización del bobinado Ll se efectúa empleando hilo de cobre esmaltado o desnudo de diámetro 1 mm, devanando cinco espiras separadas entre sí sobre una forma de l0 mm de diámetro. La separación exacta de las espiras se obtendrá cuando se inserte el bobinado en los agujeros del circuito impreso previstos para ello, en los cuales se introducirá la bobina a fondo hasta que la base de las espiras se apoye sobre el circuito impreso. La toma intermedia se obtendrá soldando un hilo desnudo, como por ejemplo terminales de resistencias en desuso, en la tercera espira, de forma que queden dos espiras por ambos lados de la bobina. Esta toma se insertará en el agujero previsto del circuito impreso entre R8, R9 (figura 3). Del cuidado puesto en estas operaciones depende la bondad del funcionamiento del emisor. Los ajustes necesarios se inician aplicando la alimentación al emisor con un valor de 9 V a 12 V, también 14 V si los transistores van provistos de aletas refrigeradoras. Se ajustará un receptor de FM entre 88 y 108 MHz y a continuación se regulará el trimmer C10 hasta obtener la desaparición del soplido existente entre emisoras, lo que indicará que se está recibiendo la señal del emisor. En este momento, R5 se podrá regular de forma que se obtenga la mejor sonoridad teniendo en cuenta las condiciones de utilización del micrófono. Hay que tener en cuenta sin embargo, que existen en general varias posiciones de C10 correspondientes a una recepción en el mismo

Page 3: TRANSM_FM

punto del cuadrante del receptor. Esto es debido al fenómeno de la frecuencia imagen y sólo una de las posiciones de C10 es la correcta.FinalmenteLos transistores TR1 y TR2 habrán alcanzado durante un cierto tiempo de funcionamiento una temperatura elevada que es por otra parte normal; si se juzga excesiva, la colocación de refrigeradores de aletas de pequeño tamaño resolverá el problema. Después de unos diez minutos de estabilización térmica, la deriva en frecuencia del emisor alcanza un valor mínimo, siempre que el montaje se haya realizado siguiendo las instrucciones dadas; es decir, la bobina apoyada sobre el circuito impreso en forma rígida, la alimentación y antena descritas y finalmente la introducción del junto en una caja metálica que servirá de blindaje eléctrico. Conexiones de alimentación y de entrada B.F. se mantendrán lo cortas posibles.

Figura 1 (Esquema Teórico)

Figura 2 (Pistas del circuito impreso)

Figura 3 (Disposición de los componentes)

Page 4: TRANSM_FM

LISTA DE COMPONENTES R1 = 27 KW 1/4 W R2 = 27 KW 1/4 W R3 = 1 MW 1/4 W R4 = 1 MW 1/4 W R5 = 47 KW Potenciómetro R6 = 15 KW 1/4 W R7 = 270 KW 1/4 W R8 = 10 KW 1/4 W R9 = 15 KW 1/4 W R10 = 4,7 KW 1/4 W R11 = 4,7 KW 1/4 W C1 = 270 nF Poliester C2 = 5 µF Electrolítico C3 = 100 pF Cerámico C4 = 10 nF Cerámico C5 = 270 nF Poliester C6 = 10 pF Cerámico C7 = 22 pF Cerámico C8 = 22 pF Cerámico C9 = 18 pF Cerámico C10 = Trimmer de 4/20 pF IC1 = Circuito integrado 741 (DIL) TR1 = Transistor NPN 2N4427 o Equivalente.(2N3886) con aleta refrigeradora. TR2 = Transistor NPN 2N4427 o Equivalente.(2N3886) con aleta refrigeradora. D1 = Diodo "varicap" BB105G L1 = Bobina de sintonía: 5 espiras de hilo de cobre esmaltado de 1 mmØ, devanadas separadas con diámetro 10 mm Y longitud bobina aprox. 20 mm, con toma media, ver texto. VARIOS: 1 Micrófono dinámico o de cristal 1 circuito impreso de 43 x 74 mm, ver figura 2 1 caja metálica; 4 bornes para banana, 2 rojos, 1 verde y 1 negro; hilo de conexión. Alimentación: De 9 a 12 V C.C.DATOS TÉCNICOS:ALIMENTACIÓN: DE 9 A 12 V ALCANCE: 3 KM (EN OPTIMAS CONDICIONES) CONSUMO: 300-400 mA POTENCIA: 3W FRECUENCIA: FM; 88-108 MHz

Page 5: TRANSM_FM

Transmisor de FMEste sencillo circuito transmisor de frecuencia modulada (FM) le permitirá transmitir señales de audio en un área de aproximadamente 100mts de radio.

La señal emitida puede ser sintonizada en cualquier punto del Dial de su radio de FM comercial, pues su frecuencia de transmisión puede ser fácilmente localizada entre los 88 y los 108Mhz.

Sus usos son ilimitados, puede ser utilizado como monitor para bebes, como micrófono inalámbrico para conferencias, transmitir el audio del PC hacia algún otro punto de la casa.

Una de las aplicaciones más fascinantes de la electrónica, son las comunicaciones inalámbricas. Este proyecto permitirá iniciarse en dicho campo.

Este tipo de comunicaciones, están regidas por las normas de cada país, por lo cuál no se deben exceder ciertos límites, la omisión de dichos límites, es castigada con multas y sanciones.

El transmisor de FM en miniatura, ha sido diseñado de tal forma que no exceda dichos límites de su frecuencia de oscilación que esta comprendida entre los 88 y los 130Mhz y el campo generado por las irradiaciones, no supera los 50mV por metro, a una distancia de 15cm del circuito.

Si usted ensambla su circuito siguiendo las especificaciones que a continuación le daremos, no excederá dichos límites, pues cualquier modificación que se haga al circuito incluyendo pro ejemplo una variación en el voltaje de alimentación, cambiará el alcance de la señal emitida.

Page 6: TRANSM_FM

Lista de Materiales2 Transistores 2N2222 (También pueden usar los 2N3904, BC547, BC548)1 Micrófono Electret2 Condensadores Electrolíticos 10uF/25v1 Condensador Electrolítico de 2.2uF/25v2 Condensadores Cerámicos de .1uF/50v2 Condensadores Cerámicos de 2.7pF/50v (También pueden usar de 2.5pF)1 Condensador ajustable de 5-60pF (trimmer)2 Resistencias 1k1 Resistencia 15K1 Resistencia 6.8k2 Resistencias 10K2 Resistencias 4.7K1 Resistencia 2.2K1 Resistencia 220 Ohm50 cm. Alambre para puentes de 0.51mm de diámetro (24 AWG)Tornillos1 Conector + Soporte para Batería5 Espadines o Pines (ver imagen)1 Baquelita1 Batería 9VCautínTaladroSoldaduraEstaño

A continuación agrego una imagen con una descripción de cada parte del circuito:

Construcción de La BobinaPara fabricar la bobina, tome el alambre para puentes y córtelo por mitad, tome los 2 trozos resultantes y enróllelos en un lapicero común dando 6 vueltas alrededor del mismo.Aunque es más fácil conseguir el alambre para puentes, también se puede usar alambre de cobre

Page 7: TRANSM_FM

esmaltado, eso si, calibre #24.

Una vez hecho esto, retire el lapicero y separe las bobinas teniendo especial cuidado en no deformarlas,

tome aquel que sea más uniforme y colóquela en su circuito.

La otra, desenróllela y utilícela como antena, se preguntará por que se sigue este procedimiento que parece ilógico, la razón es que de esta forma se asegura que la separación entre las espiras es la necesaria y que es igual entre ellas así el transmisor funcionará correctamente. Pasos Para El Ensamblaje

Paso 1.

Soldar los componentes de menor altura como las resistencias.

Paso 2.

Luego instale los condensadores cerámicos, el condensador variable (trimmer), los 5 espadines y los transistores.

Page 8: TRANSM_FM

Paso 3.

Posteriormente, suelde los condensadores electrolíticos y la Bobina. Recuerde que en la Placa del circuito impreso el terminal identificado con el signo (-) en los condensadores debe quedar ubicado del lado

opuesto del identificado con el signo (+).

Paso 4.

Finalmente suelde el micrófono, teniendo en cuenta su polaridad, la antena y el conector para la batería de 9v a los espadines respectivos y asegure el soporte para la batería mediante los tornillos.

Funcionamiento

El transistor Q2 es el oscilador, Q1 es el amplificador para modular la señal.La señal moduladora se aplica a la base de Q2 mediante C2, R6.Los capacitores C6 y C7 son parte del oscilador.

Q2, L1, C5 conforman un circuito oscilador controlado por voltaje, el cual es modulado por el voltaje de audio que es amplificado por Q1.

C5 es usado para sintonizar el circuito oscilador estableciendo la frecuencia de oscilación.

C8 actúa como condensador de filtro.

Prueba y Calibración del Circuito

Una vez que este seguro de que todos los componentes han sido ensamblados puede proceder a la prueba y calibración del circuito. Para ello, ubique una radio de FM cerca del circuito, busque en el dial un punto en silencio (sin emisoras) y suba el volumen del receptor hasta un punto en el que puede usted oír las interferencias.

Conecte una Batería de 9v al circuito y escuche atentamente la radio. Lentamente y con la ayuda de un destornillador pequeño, ajuste el condensador (trimmer C5) hasta que en el receptor se escuche un silbido o sonido similar, lo cuál quiere decir que en dicho punto se ha sintonizado en el transmisor la frecuencia dial.

En ese momento puede hablar en el micrófono y se debe escuchar en la radio lo que se habla.

Page 9: TRANSM_FM

Si en la frecuencia seleccionada, no se logra una buena recepción, repita este procedimiento en otro punto de la banda de FM.

Si lo prefiere, en vez de variar el capacitor, sintonice la radio hasta hallar el punto donde encuentre mejor recepción (silencio).

Si después de hacer esto, no consigue sintonizar el transmisor, puede ajustar la bobina que conforma el circuito oscilador juntando sus espiras para elevar la frecuencia, o separando las mismas si lo que desea es reducirla un poco.

Este circuito Funciona mejor cuando es alimentado por una batería pero si lo desea puede hacerlo con una fuente de alimentación regulada.

Sugerencias:Si usted desea mejorar la calidad de la transmisión de su circuito, en vez de soldar la antena directamente al circuito impreso, hágalo sobre la segunda espira de la bobina, partiendo del punto donde se une con el colector del transistor Q2.

Adicionalmente, si desea tener la posibilidad de controlar el volumen del transmisor, cambie la resistencia R6 por un potenciómetro, el cuál puede ser aproximadamente de 10K.Para alargar la vida de la Batería, desconéctela cuando no se esté usando el transmisor.

Si se quiere aplicar una señal de audio externa como por ejemplo de un IPOD, se debe suprimir el micrófono y su resistencia de polarización R1, dejando como entrada de audio el capacitor de desacople C1.

La radiofrecuencia y los protoboard no se la van, por lo que es muy probable que si arman este circuito en un protoboard no funcione, es mejor ir a la fija y montarlo en una placa. Esto le puede servir de orientación:

Fabricación de circuitos impresos (PCB)

La fuente de alimentación o la batería se conecta en paralelo al condensador C8.