Variaciones dimensionales en piezas plásticas de inyección ...

124
Trabajo Final de Carrera Variaciones dimensionales en piezas plásticas de inyección y análisis de los medios de control Rebeca Barra García Ingeniería en Organización Industrial Director: Xavier Armengol Vila Vic, junio de 2014

Transcript of Variaciones dimensionales en piezas plásticas de inyección ...

Page 1: Variaciones dimensionales en piezas plásticas de inyección ...

Trabajo Final de Carrera

Variaciones dimensionales en piezas plásticas de inyección y análisis de los

medios de control

Rebeca Barra García

Ingeniería en Organización Industrial Director: Xavier Armengol Vila

Vic, junio de 2014

Page 2: Variaciones dimensionales en piezas plásticas de inyección ...

2

Resumen del Trabajo Final de Carrera

Ingeniería en Organización Industrial

Título: Variaciones dimensionales en piezas plásticas de inyección y análisis de los

medios de control

Palabras clave: Variación dimensional, piezas plásticas, inyección, medios de control.

Autor: Rebeca Barra García

Dirección: Xavier Armengol Vila

Data: Junio de 2014

Resumen

En la industria de la automoción, así como en todas las que se dedican a fabricar

piezas, ya sean plásticas o de otros materiales, es tan importante la Producción como la

Calidad. No sirve de nada fabricar mucho si no son piezas de una calidad adecuada, y del

mismo modo no es rentable fabricar muy poco volumen por mucho que tenga una calidad

excelente. Por ello hay que buscar siempre el equilibrio entre ambos conceptos. La

finalidad es tener procesos lo más robustos posibles que nos permitan fabricar cantidad

con una buena calidad.

La finalidad de este trabajo es buscar los parámetros que más afectan en un

proceso de inyección, es decir, saber cuáles son los que debemos tener bajo control para

lograr una calidad de piezas buena y un proceso estable y controlado. Para ver si el

proceso es capaz de lograr ese objetivo utilizamos gráficos basados en la teoría de 6-

sigma que nos calculan el coeficiente de capacidad del proceso (Cpk). A su vez

analizaremos los sistemas de medida que utilizamos en cada una de las piezas

analizadas para evaluar si son los correctos y nos permiten discriminar piezas buenas de

malas en el proceso productivo.

La conclusión del trabajo es que hay que prestar especial atención en controlar

aquellos aspectos de un proceso que nos aportan variación, y no invertir tiempo ni dinero

en aquellos otros que no nos aportan valor añadido y que no afectan sustancialmente al

proceso. Este análisis por supuesto lleva su coste, que he analizado y plasmado en las

conclusiones para saber lo que le cuesta aproximadamente a una empresa realizarlo.

Page 3: Variaciones dimensionales en piezas plásticas de inyección ...

3

Final Project Degree Summary

Organization Industrial Engineering

Title: Dimensional changes in injection plastic parts and analysis measurement system

Key words: Dimensional change, plastic parts, inyection, control equipment.

Author: Rebeca Barra García

Direction: Xavier Armengol Vila

Date: June 2014

Summary

In automotive industry, as in others which manufacture parts (plastic parts or any

material ones), it is as important the Manufacturing as the Quality. It is useless to

manufacture a lot of parts without the correct Quality, but in the same way, it is not

profitable to manufacture little part volume with an excellence quality. Consequently, we

have to find the balance between both concepts. The purpose is making very robust

processes which allow us to manufacture a lot of parts with good Quality.

The objective of this work is finding the more influential parameters in an injection

process, so, we have to know which of these parameters we have to control to get correct

quality parts and to have a stable process and under control. To know if the process is

capable, we use some control charts based in six sigma theory, which allow us to calculate

the capability process coefficient (Cpk or Ppk). In addition, we are going to analyze the

measurements system using in the control of each part to check if they are correct for

these parts and allow us distinguish the right parts from the bad ones.

The conclusion of this work is that we have to pay special attention in those

aspects in a manufacturing process which produce some variation in that process. It is

useless to invert time and money in those others which not give us any information and not

affect substantially in our process. Unavoidably, this analysis costs money. This cost is in

the conclusions of the work, I have calculated the time and the money we have to invest in

a company for doing this kind of study.

Page 4: Variaciones dimensionales en piezas plásticas de inyección ...

4

INDICE

1. Introducción

2. Objetivos y metodología

3. Desarrollo

3.1. Los plásticos y sus propiedades

3.2. Plásticos reforzados

3.3. Materiales concretos a estudiar

3.3.1. PP+EPDM

• Medición del diámetro

• Parámetros más influyentes en la inyección

• Comportamiento en función de diferentes parámetros

3.3.2. PP+GF30

• Medición del diámetro

• Comportamiento en función de diferentes parámetros

3.3.3. PA6+GF30

• Medición del diámetro

• Comportamiento en función de diferentes parámetros

4. Medios de control adecuados en producción

5. MSA (Análisis de los sistemas de medida)

6. Conclusiones

7. Bibliografía

Page 5: Variaciones dimensionales en piezas plásticas de inyección ...

5

1. INTRODUCCIÓN

Hoy en día, la precisión y la calidad son palabras claves en el mundo del

automóvil: todos los grandes constructores tienden cada vez a ser más exigentes para

acercarse lo más posible a la calidad perfecta (perfección que, por la propia definición del

término no se alcanza nunca). De este modo, asistimos a un descenso continuo de las

tolerancias de construcción.

Para ello se necesitan útiles de control para verificar cualquier punto de cada

pieza: interiores, exteriores, motor… absolutamente todo está controlado a décimas o

centésimas.

La naturaleza de la pieza debe diferenciar el diseño de los medios de control. No

se necesita la misma precisión para piezas estampadas de chapa, que para piezas

inyectadas en plástico o para piezas sopladas. Cada tecnología tiene sus limitaciones.

Tampoco podemos quitar calidad o prestaciones a los medios de control o de fabricación,

simplemente para abaratar costes. Debemos actuar con criterio y con sentido común. La

precisión no hace toda la calidad: es necesaria pero la calidad incluye muchos más

factores. Más que buscar una perfección casi imposible, que genera costes enormes, hay

que saber encontrar el equilibrio y no olvidar que lo importante es la calidad entendida

como la satisfacción del cliente y sus necesidades.

Page 6: Variaciones dimensionales en piezas plásticas de inyección ...

2. OBJETIVOS Y METODOLOGÍA

El objetivo de este estudio es analizar los diferentes comportamientos de

diversos materiales utilizados en la fabricación de piezas plásticas, estudiando las

contracciones que se producen en función de diferentes parámetros de inyección o

soplado, como pueden ser la temperatura del material, el tiempo de inyección, el

tiempo de compactación… La mayoría de estos parámetros influyen en la manera de

comportarse de los diferentes materiales y por consiguiente en las dimensiones finales

de las piezas.

Es necesario conocer las características y propiedades de los diferentes

materiales para saber cómo se van a comportar en cada una de las situaciones y

poder avanzar los parámetros que más van a afectar en la fabricación de las piezas.

Para ello analizaremos las propiedades de tres materiales bastante utilizados

en la fabricación de piezas de plástico, pertenecientes a la familia de los

termoplásticos, y que son PP+EPDM, PP+GF30 y PA6+GF30.

Fabricaremos piezas en cada uno de los materiales con diferentes parámetros de

máquina y mediremos una característica dimensional que nos aporte información,

como puede ser diámetro de una boca, que suele ser una dimensión que varía

fácilmente con los diferentes parámetros, para analizar la relación entre material-

parámetros-dimensiones.

Una vez tengamos las piezas medidas realizaremos el estudio R&R del medio de

control que vayamos a utilizar para controlar dicha característica en producción y

saber así si dicho medio de control (generalmente calibre pasa-no pasa) es adecuado

o no para el control de la dimensión.

Un estudio R&R es un análisis de la influencia de varios factores en un proceso de

medida o de control dimensional para saber si el equipo utilizado es lo suficientemente

robusto como para no dejarse influenciar por dichos factores (operario que lo utiliza,

incertidumbre del equipo de medida, la dimensión a controlar,…)

Page 7: Variaciones dimensionales en piezas plásticas de inyección ...

3. DESARROLLO

3.1. LOS PLASTICOS Y SUS PROPIEDADES

Vamos a hablar continuamente de materiales pertenecientes a la familia de los

termoplásticos .

Un termoplástico es un plástico que, a temperaturas relativamente altas se

vuelve deformable o flexible, se derrite cuando se calienta y se endurece en un estado

de transición vítrea cuando se enfría lo suficiente. La mayor parte de los

termoplásticos son polímeros, es decir, macromoléculas formadas por la unión de

moléculas más pequeñas llamadas monómeros. Los polímeros termoplásticos difieren

de los polímeros termoestables en que después de calentarse y moldearse pueden

recalentarse y formar otros objetos. Esto es muy útil para poder reciclar y reutilizar

estos materiales.

Lo único que hay que tener en cuenta es que sus propiedades físicas cambian

gradualmente si se funden y se moldean varias veces (historial térmico), generalmente

disminuyendo estas propiedades al debilitar los enlaces.

Los más usados son: el polietileno (PE), el polipropileno (PP), el polibutileno

(PB), el poliestireno (PS), el polimetilmetacrilato (PMMA), el policloruro de vinilo (PVC),

el politereftalato de etileno (PET), el teflón (o politetrafluoretileno, PTFE) y el nylon,

que es un tipo de poliamida (PA).

Se diferencian de los termoestables o termofijos (baquelita, goma vulcanizada)

en que éstos últimos no funden al elevarlos a altas temperaturas, sino que se queman,

siendo imposible volver a moldearlos.

Muchos de los termoplásticos conocidos pueden ser resultado de la suma de

varios polímeros, como es el caso del vinilo, que es una mezcla de polietileno y

polipropileno. De hecho, los termoplásticos se mezclan a menudo con otros materiales

para darles propiedades que ellos por si mismos no tienen, o mejorar algunas otras

que nos beneficiarán a la hora de fabricar nuestras piezas finales.

Page 8: Variaciones dimensionales en piezas plásticas de inyección ...

Los tres termoplásticos más utilizados en mi empresa a la hora de fabricar

piezas son: PA (poliamida), PE (polietileno) y PP (polipropileno). Este último es sin

duda en material estrella, ya que se utiliza en gran cantidad de aplicaciones y

combinado con otros materiales para mejorar sus propiedades.

En el Anexo 1 tenemos una breve descripción de cada uno de estos tres

materiales, y en el Anexo 2 una descripción más detallada del principal material que

utilizamos en las piezas fabricadas por nosotros, el PP.

La mayoría de los materiales que utilizamos en automoción se complementan

con refuerzos que les confieren nuevas propiedades que no tienen por ellos mismos, o

refuerzan algunas de las que ya tienen.

3.2. PLASTICOS REFORZADOS

En el diseño de los plásticos reforzados intervienen cuatro tipos distintos de

materias primas: matrices, las fibras de refuerzo, las cargas y los aditivos. Estos

constituyentes se combinan libremente en las proporciones deseadas para formar el

producto final.

- Las matrices : son termoplásticos (polipropileno, poliamida, …)

- Las fibras de refuerzo : se integran en el plástico durante el proceso de

fabricación y contribuyen a elevar las propiedades mecánicas del compuesto

final, fundamentalmente la resistencia a la tracción. Las fibras pueden ser de

origen mineral como la fibra de vidrio, de carbono, de boro, cerámica o metálica

o de origen orgánico como son las fibras de aramida.

- Las cargas : son materias primas opcionales y se emplean generalmente para

abaratar los costes de fabricación sin que aporten, por lo general, ninguna

característica reseñable. Destacan el carbonato de calcio, la dolomía

(carbonato doble de calcio y magnesio), el talco, el caolín, el feldespato, la

wollastonita y sílice.

- Los aditivos : Son productos químicos que varían algunas características del

plástico. Algunos aditivos son imprescindibles como aceleradores y

catalizadores necesarios para conseguir el endurecimiento de las resinas

Page 9: Variaciones dimensionales en piezas plásticas de inyección ...

termoestables, y los agentes de desmoldeo. Otros en cambio son opcionales,

destacan los pigmentos y colorantes que dan al plástico final el color deseado

mediante la coloración masiva de todo el plástico evitando el pintado posterior

y la persistencia del color en el producto final al sufrir pequeños arañazos o

raspaduras superficiales. También se añaden aditivos anti-ultravioleta al

plástico reforzado para evitar el envejecimiento prematuro en plásticos

destinados a exteriores.

Los principales materiales que utilizamos añadidos a los termoplásticos para mejorar

sus propiedades son la fibra de vidrio y el talco:

- Talco Industrial.

Este es un mineral de Silicato de Magnesio, se presenta en forma de polvo con

tamaño pequeño de partícula para usarlo como refuerzo. Se encuentra disponible en

diferentes grados. Genera un módulo de flexión y resistencia a la tensión mayor que el

carbonato de calcio. Se utiliza principalmente para abaratar el material.

- Fibra de Vidrio.

Debido a su naturaleza fibrosa el vidrio proporciona el mejor refuerzo. La fibra de vidrio

produce la más alta resistencia a la tensión, módulo de flexión, temperatura de

distorsión al calor e impacto Izod. El módulo de encogimiento es el menor de

cualquiera de los otros refuerzos.

En el Anexo 3 tenemos desarrolladas las principales características que se

mejoran en el PP cuando se les añade estos dos principales refuerzos.

Page 10: Variaciones dimensionales en piezas plásticas de inyección ...

3.3. MATERIALES CONCRETOS A ESTUDIAR

3.3.1. PP+EPDM

El primer material que vamos a estudiar y analizar es el PP (polipropileno) con

un añadido: EPDM

¿Qué es el EPDM?

Su nombre completo es caucho de etileno propileno dieno y es

un termopolímero elastómero que tiene buena resistencia a la abrasión y al desgaste.

La composición de este material contiene entre un 45% y un 75% de etileno, siendo en

general más resistente cuanto mayor sea este porcentaje.

Tiene buenas propiedades como aislamiento eléctrico, una resistencia muy

buena a los agentes atmosféricos, ácidos y álcalis, y a los productos químicos en

general, siendo susceptible a ataque por aceites y petróleos. La temperatura de

trabajo oscila entre los -40 y los 140 °C.

PP – EPDM (ETILENO PROPILENO CAUCHO POLIPROPILENO)

Tipo del plástico: Termoplástico.

Información: Estructura elástica, con buena recuperación de la deformación por

impacto.

Su aspecto y tacto es ceroso.

Se suelda con facilidad.

Resistente a la mayoría de los disolventes.

Se daña fácilmente al cizallamiento.

A partir de 90° tiende a deformarse.

En el desbarbado de la soldadura tiende a embotarse con facilidad.

Éste plástico presenta una mayor elasticidad y resistencia al impacto que el PP puro.

Temperatura de soldadura: 275º 300º.

Arde: Bien.

Humo: Ligero.

Color de la llama: Amarillo y azul.

Page 11: Variaciones dimensionales en piezas plásticas de inyección ...

La pieza que vamos a inyectar con dos parámetros diferentes y a analizar

después su comportamiento va a ser un fuelle (Fig.3.3.1.1 ). Trabajamos bastante con

fuelles de inyección de PP+EPDM o fuelles de caucho que compramos a otros

proveedores ya que nosotros no trabajamos con ese material ni tecnología.

Fig.3.3.1.1 Fuelle en 3D

La característica dimensional que vamos a medir para encontrar diferencias y

poder evaluar la influencia de los parámetros y del material en las características de la

pieza va a ser el diámetro de una de las bocas de este fuelle, la boca A (Fig.3.3.1.2 ).

Estos diámetros son una de las características más importantes de nuestras piezas y

las cuáles tenemos que asegurar su calidad.

Fig.3.3.1.2 Boca a estudiar (Punto A)

Page 12: Variaciones dimensionales en piezas plásticas de inyección ...

El nominal y la tolerancia de este diámetro es: Ø 75.6 ± 0.5 (Fig.3.3.1.3 )

Fig.3.3.1.3 Dimensión de la boca a estudiar

El PP+EPDM que utilizamos nosotros para la fabricación de estos fuelles tiene

el nombre comercial de Santoprene 101-73 , y el fabricante es Exxon Mobil.

En la especificación del propio fabricante (Anexo 4 ), nos dice que es un

termoplástico vulcanizado (TPV) blando, negro y versátil de la familia de los

termoplásticos elastómeros (TPE). Este material combina las buenas propiedades

físicas con la buena resistencia química para poder ser utilizado en un gran rango de

aplicaciones. Puede ser procesado como los termoplásticos convencionales por

métodos como la inyección, extrusión, soplado, termoformado o embutición. Tiene una

base de poliolefina y es completamente reciclable.

Los termoplásticos vulcanizados se utilizan en una gran cantidad de

aplicaciones internas de vehículos (como es nuestro caso), para conferir fuerza,

resistencia y flexibilidad. Resiste temperaturas extremas, exposiciones químicas y

severas condiciones ambientales. Su utilización hace que se reduzca el peso y el

coste total pero sin reducir el rendimiento. Es ideal para conductos de aire, tubos,

juntas moldeadas, arandelas, fuelles de suspensión, revestimiento de cables,

enchufes, parachoques y otras muchas piezas.

En nuestra especificación de compra le exigimos las siguientes características,

que comprobamos en cada lote que recibimos del fabricante, bien mediante el

Page 13: Variaciones dimensionales en piezas plásticas de inyección ...

certificado que nos envía o bien mediante ensayos que nosotros realizamos en

nuestro Laboratorio. Ver Tabla 3.3.1.1 :

Tabla 3.3.1.1: Especificación de compra del Santopr ene 101-73

• Medición del diámetro con ambos parámetros

Hemos fabricado 30 piezas con los parámetros que se adjuntan en el Anexo 5 ,

y entre los que caben destacar los siguientes:

- Temperatura de cámara caliente

- Tiempo de inyección

- Tiempo y presión de compactación

- Tiempo de refrigeracion

Además del diámetro también he apuntado el peso porque es una

característica que resulta muy útil a la hora de analizar algún cambio sustancial en el

proceso de fabricación de una pieza de plástico.

Nº Test Norma Standard Unidad Exigido

1 DUREZA ISO 868/ ASTM D-2240

Shore A (5s) 69 - 79(1)

2 DUREZA DIN 53505 Shore A (15s) 76 – 82(2)

3 DENSIDAD DIN ISO 1183 g/cm3 0,97 ± 0,05

4 CONTENIDO EN CARGAS

ISO 3451/1 % ---

5 CONTENIDO EN HUMEDAD

AQUATRAC (ISO15512)

% < 0,1

6 ÍNDICE DE FLUIDEZ MFR 230/5

DIN ISO 1133 g/10min ---

7 ÍNDICE DE FLUIDEZ MVR 230/5

DIN ISO 1133 cm3/10min ---

8 PUNTO DE FUSIÓN DIN 53736 °C

Page 14: Variaciones dimensionales en piezas plásticas de inyección ...

PIEZAS Nº

PARÁMETROS 1 PARÁMETROS 2

DIÁMETRO (mm)

PESO (gramos)

DIÁMETRO (mm)

PESO (gramos)

1 75,67 230,1 75,42 232,2

2 75,62 230,5 75,36 232,3

3 75,72 230,3 75,42 232,2

4 75,62 230,6 75,40 232,3

5 75,53 230,8 75,44 232,3

6 75,65 230,7 75,40 232,3

7 75,67 230,2 75,40 232,2

8 75,62 230,3 75,43 232,3

9 75,57 230,5 75,35 232,1

10 75,65 230,2 75,38 232,3

11 75,50 230,9 75,31 232,3

12 75,69 230,4 75,25 232,3

13 75,58 230,7 75,26 232,2

14 75,61 230,6 75,41 232,3

15 75,55 230,2 75,43 232,2

16 75,64 230,2 75,44 232,3

17 75,70 230,1 75,38 232,3

18 75,61 230,3 75,39 232,4

19 75,57 230,4 75,39 232,2

20 75,61 230,3 75,37 232,3

21 75,71 230,1 75,43 232,2

22 75,67 230,0 75,38 232,1

23 75,67 230,1 75,44 232,0

24 75,66 230,2 75,40 232,3

25 75,61 230,4 75,42 232,1

26 75,52 230,5 75,42 232,0

27 75,63 230,1 75,44 232,1

28 75,61 230,5 75,43 232,3

29 75,64 230,3 75,45 232,3

30 75,63 230,1 75,47 232,2

MEDIA 75,62 230,3 75,40 232,2

Tabla 3.3.1.2: Resultado de la medición de los diám etros del fuelle

Page 15: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.1.1: Gráfico de diámetros con Parámetr os 1

Diagrama 3.3.1.2: Gráfico de diámetros con Parámetr os 2

75

75,1

75,2

75,3

75,4

75,5

75,6

75,7

75,8

75,9

76

76,1

76,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 1

75

75,1

75,2

75,3

75,4

75,5

75,6

75,7

75,8

75,9

76

76,1

76,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 2

Page 16: Variaciones dimensionales en piezas plásticas de inyección ...

• Parámetros más influyentes en la inyección

Hay un sinfín de parámetros que influyen en la inyección de los materiales,

pero los más importantes y los principales que debemos tener en cuenta en estos

procesos son los siguientes:

- Temperatura de la cámara caliente : es la temperatura a la que se calienta el

material para introducirlo en el interior del molde. La temperatura del material

aumenta gradualmente desde que entra en la tolva hasta que está preparado

para ser inyectado. Esta temperatura es función del tipo de material y no debe

ser superior a la temperatura a la que empieza a descomponerse, pero debe

ser lo suficientemente elevada para que el material fluya correctamente.

En la imagen siguiente (Fig.3.3.1.4) podemos observar las partes de las que consta

principalmente un molde de inyección.

Fig.3.3.1.4 Partes principales de una inyectora

- Tiempo de inyección: en este paso se inyecta el 90% del material, con lo que

cuanto más tiempo de inyección tengamos más material podremos inyectar en

este paso. El tiempo y velocidad de inyección depende de otros factores como

son la presión de inyección, la temperatura de la cámara caliente, las

Page 17: Variaciones dimensionales en piezas plásticas de inyección ...

características del material utilizado y el camino que debe recorrer el material

hasta llenar el molde. El tiempo de inyección es el tiempo necesario para que el

tornillo realice el recorrido hacia delante obligando al material a introducirse

dentro del molde. Normalmente este tiempo no es mayor de 2 segundos, y

raramente sobrepasa los 3 segundos.

- Tiempo y presión de compactación o segunda presión: en este momento el

material del interior del molde ha empezado ya a enfriarse y por lo tanto a

contraer, por lo que se inyecta un poco más de material para contrarrestar esa

contracción. Es uno de los parámetros más importantes, el peso final de la

pieza, su estabilidad dimensional, y las tensiones internas que pudieran

aparecer dependen de cómo se realice esta etapa, que finaliza en el momento

en que el material que ocupa la entrada del molde se solidifica.

- Refrigeración o tiempo de enfriamiento : se considera el tiempo desde que

termina la fase de compactación hasta que se abre el molde, pero en realidad

la pieza comienza ya a enfriarse en el momento en el que el material toca las

paredes frías del molde.

- Apertura de molde : este tiempo está relacionado con el desmoldeo de la

pieza, se elimina la presión, el molde se abre y se expulsa la pieza.

A priori, sin entrar a analizar todavía los datos de nuestro caso particular

podemos adelantar cómo afecta cada uno de estos parámetros en el diámetro final de

la boca que estamos estudiando:

- La temperatura utilizada finalmente para inyectar , afectará la calidad de la

pieza porque influirá en el grado de contracción de la misma. Así, a mayor

temperatura de inyección, mayor será el cambio volu métrico entre el

plástico fundido y sólido, por tanto, existirá una mayor contracción . A

pesar de ello, utilizar una temperatura de inyección mayor, supondrá que la

viscosidad del material sea menor permitirá entonces una mejor compactación,

en el interior de la cavidad del molde, con lo que la contracción disminuirá. El

grado de contracción final dependerá del equilibrio entre estos dos factores.

Page 18: Variaciones dimensionales en piezas plásticas de inyección ...

- El tiempo de inyección se relaciona con la velocidad de inyección de

manera inversa. Así, tiempos de inyección pequeños implican velocidades muy

elevadas. Además, la velocidad de inyección también está relacionada

directamente con la presión de inyección. A velocidades muy altas la presión

de inyección crece muy rápidamente, a causa de la resistencia al flujo en la

boquilla y en la entrada de la cavidad. Con velocidades menores, en cambio, el

plástico se va solidificando a medida que se inyecta el material, aumentando la

viscosidad y disminuyendo la sección de paso.

- Si el tiempo de compactación es demasiado corto el plástico puede salir de la

cavidad hacia el sistema de alimentación y la unidad de inyección con los

consiguientes cambios de orientación y disminución de la tenacidad de la

pieza, fluctuaciones en el peso, falta de reproducibilidad y una gran variedad de

defectos.

- A mayor tiempo de refrigeración , más estable está la pieza en el momento

de desmoldear y menos sufre con este proceso, por lo tanto también menor

diámetro . Pero en este caso es debido a la manera en que desmoldea la

pieza: se sopla aire interiormente, la pieza se hincha y así podemos sacar el

macho interior. En este proceso es inevitable que el diámetro interior se haga

más grande de la cuenta.

- A mayor tiempo de desmoldeo , más tiempo estamos deformando la pieza y

más grande será el diámetro cuando la pieza vuelva a su ser.

En la imagen siguiente (Fig.3.3.1.5) podemos ver una la distribución que

siguen cada uno de los pasos de los que consta un ciclo normal de inyección.

Page 19: Variaciones dimensionales en piezas plásticas de inyección ...

Fig.3.3.1.5 Ciclo de inyección

Page 20: Variaciones dimensionales en piezas plásticas de inyección ...

• Comportamiento en función de diferentes parámetro s

Podemos observar que con los segundos parámetros el diámetro nos sale más

pequeño, alrededor de dos décimas. Podría parecer que no es mucho, en este caso

tenemos una tolerancia de ± 0.5 (1 mm) que asume completamente esta variación,

pero si tuviéramos una tolerancia más ajustada esta diferencia podría hacer que nos

saliéramos fuera de especificación.

Esto es útil para el caso en que tengamos que cumplir Capacidad del

Proceso , es decir, tuviéramos que demostrar que nuestro proceso es estable y capaz,

y que todos los valores los tenemos dentro de la curva de distribución normal. La

Capacidad del proceso es una propiedad medible de un proceso que puede calcularse

por medio del índice de capacidad del proceso (Cpk) o del índice de prestación del

proceso (Ppk). El resultado de esta medición suele representarse con un histograma

que permite calcular cuántos componentes serán producidos fuera de los límites

establecidos en la especificación.

Para ambos casos tenemos una distribución como las que se ven en las Fig.

3.3.1.6 y 3.3.1.7. El documento completo está en el Anexo 6 .

Fig. 3.3.1.6: Ppk y curva de distribución con parám etros 1

Page 21: Variaciones dimensionales en piezas plásticas de inyección ...

Fig. 3.3.1.7: Ppk y curva de distribución con parám etros 2

Los principales fabricantes de automoción consideran que un proceso es capaz

cuando tienes un Ppk (índice de capacidad) mayor que 1,67 para una muestra de 50

piezas. En este caso la muestra es menor, tenemos 30 piezas medidas, por lo que el

Ppk a cumplir debería ser de 2. Según el resultado se observa que los parámetros 1

dan una mayor estabilidad al proceso:

P1: Ppk = 2.903

P2: Ppk = 1.946 (este proceso no llegaría a ser capaz)

No significa que unos parámetros sean mejores que otros, simplemente

cumplen mejor con las especificaciones que tenemos para nuestra pieza.

Lo que está claro es que para tener un proceso capaz y estable debemos

mantener los parámetros lo más fijos posibles dentro de los márgenes admisibles, ya

que las variaciones sin un cierto control de los mismos pueden hacer que tengamos un

problema de calidad.

En la fase de industrialización de un producto es dónde tenemos que hacer

todas las pruebas necesarias para fijar los parámetros óptimos que más adelante

utilizaremos en la fabricación de cada pieza.

Page 22: Variaciones dimensionales en piezas plásticas de inyección ...

En el caso particular que nos ocupa tenemos la siguiente distribución de

tiempos, como podemos observar en las hojas de parámetros de ambas inyecciones

del anexo 5 . En la Tabla 3.3.1.3 tenemos un resumen de los principales parámetros:

Parámetros Parámetros 1 Parámetros 2

Temperatura cámara

caliente 190 ºC 220ºC

Tiempo inyección 2 segundos 3,1 segundos

Tiempo compactación 6 segundos 10,9 segundos

Refrigeración 65 segundos 55 segundos

Apertura molde 3,5 segundos 8 segundos

Tabla 3.3.1.3: Comparativa de ambos parámetros

Más visualmente podemos comparar la distribución de tiempos en ambos ciclos

en los siguientes gráficos:

Diagrama 3.3.1.3: Gráfico de los tiempos de ciclo c on Parámetros 1

Tiempos del ciclo P1

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Recogida

Page 23: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.1.4: Gráfico de los tiempos de ciclo c on Parámetros 1

Observando estos datos y sabiendo después de la medición que las piezas con

el diámetro menor son las inyectadas con los parámetros 2 vamos a analizar si se

cumplen los supuestos anteriores:

- Temperatura de la cámara caliente

Según las características y recomendaciones que nos marca el fabricante de

Santoprene (Anexo 4 y Fig. 3.3.1.8 ), la temperatura de inyección debería estar entre

199 y 232 ºC. Nosotros estamos en 190ºC en el primer caso, es decir, fuera de las

recomendaciones, y en 220 ºC en el segundo caso. Esto significa que la temperatura

óptima para trabajar se acerca más a la del segundo caso que a la del primero y en

función de esta temperatura van a definirse el resto de parámetros, ya que están todos

muy estrechamente relacionados. Observamos que realmente a mayor temperatura

del material se produce un diámetro menor.

Este parámetro por sí mismo no produce cambios sustanciales en el resultado

de la pieza, el resultado final es un conjunto de todos los parámetros, ya que unos

parámetros se pueden contrarrestar con otros y suplir los problemas que generan unos

con los otros.

Tiempos del ciclo P2

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Recogida

Page 24: Variaciones dimensionales en piezas plásticas de inyección ...

Fig. 3.3.1.8: Propiedades para la inyección del San toprene 101-73

- Tiempo de inyección

El fabricante también nos recomienda que la inyección debe ser rápida, y en el

primer caso se invierte menor tiempo en la inyección (2s) que en el segundo caso

(3,1s). Pero esto no quiere decir que en el primer caso sea más rápida que en el

segundo, ya que la velocidad a la que se ha inyectado en ambos casos no es igual, se

ha variado la velocidad en cada segundo de inyección. (Fig. 3.3.1.9 y Fig. 3.3.1.10 )

Parámetros 1

Fig. 3.3.1.9 Velocidad de inyección en Parámetros 1

Parámetros 2

Fig. 3.3.1.10 Velocidad de inyección en Parámetros 2

Page 25: Variaciones dimensionales en piezas plásticas de inyección ...

En el segundo caso el tiempo invertido es mayor, lo que contrarrestaría con la

mayor temperatura del material (cámara caliente), pero por otro lado como las

velocidades cambian en cada caso no se puede analizar correctamente la influencia

de este diferente tiempo en cada caso.

- Tiempo de compactación

Hay un mayor tiempo de compactación en el segundo caso (10,9s), y esto unido a un

mayor tiempo de inyección y sobre todo a una mayor temperatura del material hace

que la pieza salga con más material (pesa más) y con tendencia a contraer más una

vez fuera del molde, razón por la cual el diámetro interno es más pequeño que con

menor tiempo de inyección y compactación.

- Refrigeración

El tiempo de enfriamiento es otro de los parámetros más importante en el resultado

final de una pieza de inyección. El tiempo de enfriamiento dentro del molde es lo que

le confiere a la pieza una mayor estabilidad y definición antes del desmoldeo. Por eso,

a mayor tiempo de refrigeración debería darse un menor diámetro (menos deformación

a la hora de desmoldear). En este caso no es así seguramente debido a que la mayor

diferencia en el resto de parámetros importantes (temperatura y compactación) hacen

que este no sea tan relevante.

- Apertura de molde

En este momento es en el que se produce el desmoldeo, que como he dicho antes en

este caso se produce hinchando la pieza para poder extraer el macho interior. En este

caso particular de desmoldeo, cuanto más tiempo esté sometida la pieza a este

hinchado mayores serán las deformaciones que se producirán y mayor el diámetro

interior de la boca. Tampoco resulta ser así, por el mismo motivo que antes, tanto la

temperatura de la cámara caliente como el tiempo de compactación afectan mucho

más al resultado final de la pieza que este parámetro.

En las recomendaciones del fabricante podemos observar también el tiempo y

temperatura de secado (3h a 82.2ºC). La mayoría de los plásticos necesitan un

proceso previo de secado antes de su utilización. En el anexo 7 tenemos una breve

explicación de en qué consiste este proceso de secado.

Page 26: Variaciones dimensionales en piezas plásticas de inyección ...

Acabamos de ver cómo afectan estos principales parámetros a nivel

dimensional en la inyección de una pieza. Pero estos y otros parámetros también

afectan mucho al acabado superficial y al aspecto de las piezas. Como curiosidad voy

a exponer los problemas que nos encontramos en las primeras inyecciones de estas

piezas. Vimos que aparecían unas grietas en algunos convolutes* de las piezas (Fig.

3.3.1.11)

Fig. 3.3.1.11 Grieta producida en un valle del fuel le

Intentamos reproducir el modo de fallo y vimos que se debía al atemperado del

macho y a la presión de desmoldeo.

A mayor temperatura del macho y mayor presión de inflado las grietas

desaparecían, ya que la pieza dejaba de agarrarse a las paredes del molde al

desmoldear que era el motivo por el que aparecían dichas grietas.

*Convolute: cada uno de los pliegues del fuelle se denomina técnicamente convolute.

Page 27: Variaciones dimensionales en piezas plásticas de inyección ...

Vamos a ver estos dos parámetros en el caso que nos ocupa:

Parámetros 1 Parámetros 2

Observamos que en el primer caso tenemos el macho atemperado con una

mayor temperatura (70ºC frente a los 65ºC del segundo caso) y que la presión del aire

utilizado para desmoldear la pieza es también mayor en el primer caso.

Por lo tanto podríamos concluir con que los primeros parámetros en este

caso puntual son más óptimos para conseguir el fin que buscábamos:

- Cota centrada al nominal

- Cpk > 2, proceso capaz y estable

- Aspecto superficial bueno y sin defectos relevantes

- Menor tiempo de ciclo

- Menor peso

Page 28: Variaciones dimensionales en piezas plásticas de inyección ...

3.3.2. PP+GF30

Este material, como hemos visto anteriormente tiene como base PP reforzado

con fibra de vidrio, lo que le confiere una mayor resistencia mecánica, maquinabilidad,

estabilidad dimensional y resistencia a temperaturas de hasta 100ºC.

Posee un 30% de fibra de vidrio, de ahí su denominación de GF30.

Fig. 3.3.2.1: Imagen de la fibra de vidrio

Fibra de vidrio

Esta es la fibra más empleada en los PRF, especialmente en aplicaciones

industriales, debido a su gran disponibilidad, sus buenas características mecánicas y a

su bajo coste. Existe una gran variedad de fibras de vidrio (Fig. 3.3.2.1 ) disponibles

en el mercado, en las que priman distintas características, entre las que destacan:

• aislamiento eléctrico

• resistencia química

• alta resistencia mecánica

• elevado módulo de elasticidad

• propiedades dieléctricas

• transparencia a los rayos X

Page 29: Variaciones dimensionales en piezas plásticas de inyección ...

Y, por supuesto, también encontramos vidrios que aúnan dos o más de estas

características. Las diferencias radican básicamente en los silicatos presentes en el

vidrio, normalmente un silicato alcalino y uno alcalinotérreo.

Las principales características de la fibra de vidr io son:

• Alta adherencia fibra-matriz

• Resistencia mecánica, con una resistencia específica (tracción/densidad)

superior a la del acero.

• Características eléctricas: aislante eléctrico, buena permeabilidad. dieléctrica,

permeable a las ondas electromagnéticas.

• Incombustibilidad. No propaga la llama ni origina humos o toxicidad.

• Estabilidad dimensional (bajo coeficiente de dilatación).

• Compatibilidad con las materias orgánicas.

• Imputrescibilidad, insensible a roedores e insectos.

• Débil conductividad térmica (ahorro de calefacción).

• Excesiva flexibilidad.

• Bajo coste.

El proceso de fabricación consiste en el estiramiento a muy alta temperatura,

por tracción mecánica o por acción de fluidos en movimiento, de una veta de vidrio

fundido y su inmediata solidificación.

El PP+GF30 que utilizamos nosotros para la fabricación de estos codos tiene el

nombre comercial de Hostacom X G3 U10 100001 , y el fabricante es Lyon de Basell.

En la especificación del propio fabricante (Anexo 8 ), nos describe el producto

como la unión de un 30% de vidrio con PP homopolímero con elevada fluidez, alta

rigidez, baja deformación por fatiga a elevadas temperaturas.

En nuestra especificación de compra le exigimos las siguientes características

(Tabla 3.3.2.1 ), que, como en el caso del Santoprene que vimos es el apartado

anterior, comprobamos en cada lote que recibimos del fabricante:

Page 30: Variaciones dimensionales en piezas plásticas de inyección ...

Nº Test Norma Standard Unidad Exigido

1 DENSIDAD DIN ISO 1183 g/cm3 ---

2 CONTENIDO EN CARGAS

ISO 3451/1 % 31 ± 1,5

3 CONTENIDO EN HUMEDAD

AQUATRAC (ISO15512)

% < 0,1

4 ÍNDICE DE FLUIDEZ MFR 230/2,16

DIN ISO 1133 g/10min 14 ± 3,2

5 ÍNDICE DE FLUIDEZ MVR 230/2,16

DIN ISO 1133 cm3/10min 15 ± 3,3

6 PUNTO DE FUSIÓN DIN 53736 °C ---

Tabla 3.3.2.1: Especificación de compra del Hostaco m X G3 U10 100001

En este caso, la pieza que vamos a inyectar con dos parámetros diferentes y a

analizar después su comportamiento va a ser un codo (Fig. 3.3.2.2 ). También

fabricamos bastantes codos de base PP, que forman parte de los tubos de aire limpio

que distribuimos a los principales fabricantes de automoción.

Fig. 3.3.2.2: Codo de PP+GF30 (Hostacom)

Page 31: Variaciones dimensionales en piezas plásticas de inyección ...

La característica a controlar en este caso va a ser también un diámetro, que es

lo que más visualmente nos demuestra la influencia de los diferentes parámetros en

las dimensiones. Pero en este caso el diámetro va a ser exterior y no interior como en

el caso anterior.

Fig. 3.3.2.3: Dimensión a controlar en el codo de H ostacom

• Medición del diámetro con ambos parámetros

La medición tanto de éstos como de los diámetros de la pieza anterior (fuelle)

se realiza con máquina de tres coordenadas (tridimensional). La incertidumbre que nos

da este método de medida es mucho menos que si utilizamos por ejemplo un pie de

rey. A la mejor resolución del equipo de medida tenemos que sumarle la eliminación

del factor “operario” que influye en el resultado final de la medición.

En la siguiente tabla (Tabla 3.3.2.2) tenemos los resultados obtenidos de las 30

piezas con unos y otros parámetros (parámetros en el Anexo 9 ). Como en el caso

anterior tenemos una variación de dos décimas (0.2 mm) entre unos y otros. Más

adelante analizaremos el por qué.

Page 32: Variaciones dimensionales en piezas plásticas de inyección ...

PIEZAS Nº

PARÁMETROS 1 PARÁMETROS 2

DIÁMETRO (mm)

PESO (gramos)

DIÁMETRO (mm)

PESO (gramos)

1 70,31 117,8 70,16 112,2

2 70,31 117,2 70,17 112,5

3 70,31 117,7 70,15 111,9

4 70,30 117,3 70,17 112,6

5 70,31 117,8 70,14 112,0

6 70,30 117,5 70,15 112,2

7 70,31 117,8 70,15 112,2

8 70,31 117,8 70,15 112,0

9 70,31 117,6 70,16 112,3

10 70,31 117,3 70,16 112,4

11 70,31 117,4 70,16 112,2

12 70,31 117,8 70,14 112,2

13 70,31 117,5 70,17 112,5

14 70,31 117,4 70,14 112,0

15 70,31 117,4 70,15 112,4

16 70,31 117,8 70,14 112,1

17 70,31 117,8 70,15 112,0

18 70,31 117,4 70,16 112,4

19 70,31 117,5 70,15 112,2

20 70,31 117,6 70,14 111,8

21 70,31 117,8 70,16 112,5

22 70,32 117,8 70,15 112,1

23 70,31 117,4 70,15 112,1

24 70,31 117,4 70,15 112,4

25 70,30 117,3 70,15 112,5

26 70,31 117,4 70,16 112,5

27 70,31 117,8 70,15 112,3

28 70,30 117,4 70,16 112,5

29 70,31 117,8 70,14 112,3

30 70,31 117,4 70,14 112,1

MEDIA 70,31 117,56 70,15 112,25

Tabla 3.3.2.2: Resultado de la medición de los diám etros del codo de PP+GF30

Page 33: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.2.1: Gráfico de diámetros con Parámetr os 1

Diagrama 3.3.2.2: Gráfico de diámetros con Parámetr os 2

69,90

70,00

70,10

70,20

70,30

70,40

70,50

70,60

70,70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 1

69,90

70,00

70,10

70,20

70,30

70,40

70,50

70,60

70,70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 2

Page 34: Variaciones dimensionales en piezas plásticas de inyección ...

Los valores obtenidos en este caso son muy estables, hay muy poca dispersión

entre los diámetros de las piezas fabricadas con los mismos parámetros, tan poca que

en el gráfico casi no se aprecia la variación.

Esto se debe al material y a la manera de inyectarlo. En el caso del

Santoprene, al ser un material más elástico y tener un desmoldeo tan forzado, implica

que los resultados dimensionales varíen entre una pieza y otra y haya más dispersión

entre las medidas que en el caso del Hostacom. Este segundo material tiene una

mayor rigidez (debida a la fibra de carbono) y el desmoldeo es más delicado, la pieza

no sufre en el proceso como en el caso del fuelle, por lo que obtenemos estos valores

tan estables.

Esta estabilidad en los valores se va a ver muy gráficamente en el cálculo de

capacidades cómo hicimos con los datos obtenidos del Santoprene. En este caso ya a

priori podemos adivinar que el valor del Ppk nos va a salir más alto que en el caso del

PP+EPDM.

Los gráficos del cálculo del índice de capacidad (Ppk) para ambos casos

(Fig.3.3.2.4 y Fig.3.3.2.5 ), con ambos parámetros son los siguientes. El documento

completo podemos encontrarlo en el Anexo 10 .

Fig.3.3.2.4: Estudio de capacidad Ø 70.3 con paráme tros 1

Page 35: Variaciones dimensionales en piezas plásticas de inyección ...

Fig.3.3.2.5: Estudio de capacidad Ø 70.3 con paráme tros 2

La diferencia entre ambos casos es bastante elevada, de un Ppk de 24 en el

primer caso, que es un muy buen resultado, pasamos a un Ppk de 5.4, que siendo un

buen resultado también, dista bastante del primero. Esto se debe a que en el primer

caso tenemos las medidas muy centradas al nominal y con una dispersión muy baja

(el menor valor es 70.30 y el mayor 70.32), y en el segundo caso, aunque la dispersión

es también muy baja no tenemos el valor centrado al nominal, de ahí que no sea tan

espectacular el resultado.

También son valores más elevados como ya hemos adelantado antes que en el

caso del Santoprene, debido a la menor dispersión de los valores. Las campanas de

Gauss en este caso están muy concentradas en un punto, ya que los valores son muy

estables.

Page 36: Variaciones dimensionales en piezas plásticas de inyección ...

• Comportamiento en función de diferentes parámetro s

Vamos a analizar en este caso la diferencia de diámetros con los diferentes

parámetros aplicados en cada caso. Las diferencias de parámetros las tenemos en el

Anexo 9 , pero vamos a poner aquí las más importantes en ambos casos para analizar

los resultados (Tabla 3.3.2.3).

Parámetros Parámetros 1 Parámetros 2

Temperatura cámara

caliente 240 ºC 240ºC

Tiempo inyección 2,2 segundos 2,1 segundos

Tiempo compactación 6,8 segundos 1 segundos

Refrigeración 18 segundos 14 segundos

Apertura molde 5,7 segundos 3 segundos

Presión inyección 65 % 55 %

Presión compactación 35 bar 25 bar

Tabla 3.3.2.3: Comparativa de ambos parámetros

Visualmente podemos comparar la distribución de tiempos en ambos ciclos en

los siguientes gráficos (Diagrama 3.3.2.3 y Diagrama 3.3.2.4 ):

Page 37: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.2.3: Gráfico de los tiempos de ciclo c on Parámetros 1

Diagrama 3.3.2.4: Gráfico de los tiempos de ciclo c on Parámetros 2

Visualmente apreciamos que las principales variaciones entre ambos casos

son la compactación y la refrigeración. En cuanto al resto de parámetros podemos

observar que la temperatura de la cámara caliente es la misma y más que suficiente

Tiempos del ciclo P1

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Tiempos del ciclo P2

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Page 38: Variaciones dimensionales en piezas plásticas de inyección ...

en ambos casos para fundir el material, ya que el punto de fusión del PP+GF30 es de

150ºC aproximadamente.

En tiempo de inyección también es muy parecido, al tratarse de una pieza

pequeña, y por lo tanto un molde pequeño, e introducir el material muy caliente en el

molde, el tiempo no puede ser muy elevado ni puede variar mucho en ambos casos.

Lo que si varía es la presión de inyección . En el primer caso es mayor que en

el segundo, de ahí que se introduzca más material al molde y la pieza pese más que

en el segundo caso.

- Tiempo de compactación

Hay una gran diferencia en el tiempo de compactación entre el primer caso y el

segundo. En el caso 1 tenemos 6,8 s de compactación a una presión de 35 bares,

mientras que en el caso 2 tenemos 1 segundo de compactación a 25 bares. Esto

supone que en el primer caso se introduce más material que en el segundo, tal como

ocurre con la presión de inyección. Recordemos que en la fase de inyección se

introduce aproximadamente el 90 % del material, y en la fase de compactación o

segunda presión, se introduce un 10% más.

Seguramente en el segundo caso no entra prácticamente nada de material

extra en este punto y ese es el motivo por el que el diámetro es más pequeño.

Esta teoría se corrobora con el peso de las piezas. En el segundo caso pesan

5 gramos menos que en el primero, de ahí que al haber menos material el diámetro

sea menor.

- Refrigeración

Ya habíamos dicho que el tiempo de enfriamiento dentro del molde es lo que le

confiere a la pieza una mayor estabilidad y definición antes del desmoldeo. No es

mucha la diferencia entre ambos casos, pero los cuatro segundos menos de

enfriamiento en el segundo caso unidos a la prácticamente nula compactación, hacen

que las piezas del segundo caso sean bastante más inestables.

Con los datos aportados hasta ahora no podríamos saberlo, pero al medir las

piezas observé que las segundas tienen una ovalidad mayor que las primeras piezas.

La ovalidad es la diferencia entre el diámetro mayor y el diámetro menor medido. Las

piezas no son exactas, y al medir los diámetros con varios puntos, se calcula el

Page 39: Variaciones dimensionales en piezas plásticas de inyección ...

diámetro medio que se obtiene con esos puntos. Hay un punto más alejado

exteriormente del nominal y otro interiormente. Esa diferencia es lo que conocemos

como ovalidad.

Vamos a ver un ejemplo de un gráfico de forma de un diámetro en el que se ve

la ovalidad que presenta el mismo (Fig.3.3.2.6 ).

Los diámetros más exteriores tanto por fuera como por dentro, los rojos, son

los que definen los límites de la tolerancia. Ningún punto debería estar por encima ni

por debajo de dichos círculos.

El diámetro verde corresponde al nominal y el blanco es el real, es decir, el que

se genera con los puntos reales tocados sobre la pieza.

La ovalidad o error de forma en este caso sería el valor de 0.3319, que es la

suma de la distancia del punto más alejado por arriba (0.1850) y el punto más alejado

por abajo (-0.1469).

Fig.3.3.2.6 Gráfico de forma de un diámetro

Page 40: Variaciones dimensionales en piezas plásticas de inyección ...

- Apertura de molde

En este caso el desmoldeo es más simple que en el caso de los fuelles de

Santoprene. Las dos mitades del molde se abren y la pieza cae con la ayuda de unos

expulsores, que son unos pequeños cilindres que empujan a la pieza para que se

despegue de las pareces del molde y caiga.

Cuanto mayor sea el tiempo de desmoldeo más suave será este proceso y mejor

aspecto y condiciones tendrán las piezas.

Esta diferencia de tiempo de extracción entre los dos parámetros podría afectar más a

la ovalidad de la que hemos hablado que a la diferencia de diámetro.

La causa de la diferencia de diámetros en este caso es claramente

consecuencia de la compactación.

Page 41: Variaciones dimensionales en piezas plásticas de inyección ...

3.3.3. PA6+GF30

En este tercer caso nos vamos a olvidar del polipropileno y nos vamos a

centrar en una poliamida, pero también con refuerzos de fibra de vidrio.

PA6+GF30 es poliamida 6 reforzada con el 30% de fibra de vidrio. La carga de

vidrio hace que el material sea mucho más resistente a la abrasión, a la compresión y

a la flexión. Es especialmente adecuado para piezas en las que se requiere una

excelente resistencia al deterioro.

Las principales características de este compuesto son:

- Elevada resistencia al deterioro: es una característica inherente de las

poliamidas que se incrementa ulteriormente por los cristales.

- Elevada resistencia a la tensión y a la compresión: la resistencia al esfuerzo es

excelente, al igual que las características mecánicas generales.

- Resistencia al envejecimiento: resistencia a los agentes atmosféricos y buena

resistencia a las bajas temperaturas.

- Color: negro.

Un defecto que tiene es que en caso de acoplamiento con partes sujetas a rozamiento,

el elemento de cristal causará la abrasión de las partes de acero que estén en

contacto con el plástico.

Los principales campos de aplicación para este material son los siguientes:

- Mecánico: resistencia a la compresión elevada y elevadísima resistencia al

deterioro; de hecho, es uno de los mejores plásticos de ingeniería. Este

material, es especialmente apto para la producción de engranajes y de

componentes de alto rendimiento mecánico que necesitan trabajar en

ambientes críticos, como en equipos de construcción o máquinas de

movimiento tierra sin sufrir un excesivo deterioro.

- Eléctrico: aunque las características eléctricas cambien dependiendo del

contenido de humedad, este nylon se usa incluso donde se requieren buenas

características mecánicas y resistencia a las condiciones climáticas.

- Químico: resistente a los álcalis, a los compuestos inorgánicos y a los

disolventes.

Page 42: Variaciones dimensionales en piezas plásticas de inyección ...

La pieza que vamos a fabricar y medir con dos parámetros diferentes es la siguiente

(Fig.3.3.3.1):

Fig.3.3.3.1: Codo de PA6+GF30 en 3D

En este caso el diámetro a medir no es tan sencillo como en los casos

anteriores. Es un diámetro interior pero no de muy fácil acceso.

Fig.3.3.3.2: Diámetro a medir en el estudio (rojo)

Page 43: Variaciones dimensionales en piezas plásticas de inyección ...

El diámetro es de nominal 62 y tolerancia ± 0,3 (Fig.3.3.3.3 )

Fig.3.3.3.3 Dimensión a controlar (nominal y tolera ncia del diámetro)

El material es un DURETHAN BKV 30 H 2.0 901510 de la casa LANXESS, y el

certificado de Laboratorio para este caso es el siguiente (Tabla 3.3.3.1 )

Nº Test Norma Standard Unidad Exigido

1 DENSIDAD DIN ISO 1183 g/cm3 ---

2 CONTENIDO EN CARGAS ISO 3451/1 % 30 ± 3

3 CONTENIDO EN HUMEDAD

AQUATRAC (ISO15512)

% < 0,2

4 ÍNDICE DE FLUIDEZ MFR 230/5

DIN ISO 1133 g/10min ---

5 ÍNDICE DE FLUIDEZ MVR 230/5

DIN ISO 1133 cm3/10min

---

6 PUNTO DE FUSIÓN DIN 53736 °C 220 ± 8

Tabla 3.3.3.1: Especificación de compra del Duretha n

Las propiedades de este material concreto se encuentran en el Anexo 11 , y los

parámetros de inyección de ambas piezas se encuentran en el Anexo 12 y las

mediciones realizadas con ambos son las siguientes (Tabla 3.3.3.2):

Page 44: Variaciones dimensionales en piezas plásticas de inyección ...

PIEZAS Nº

PARÁMETROS 1 PARÁMETROS 2

DIÁMETRO (mm)

PESO (gramos)

DIÁMETRO (mm)

PESO (gramos)

1 62,180 225,9 62,245 232,9

2 62,192 225,5 62,254 232,5

3 62,181 225,8 62,253 231,9

4 62,178 225,8 62,244 232,7

5 62,191 226,0 62,225 233,0

6 62,177 226,1 62,239 233,1

7 62,180 226,2 62,244 233,1

8 62,172 225,7 62,247 233,4

9 62,186 225,8 62,245 232,4

10 62,198 225,6 62,249 233,4

11 62,185 225,8 62,247 232,8

12 62,190 225,8 62,251 233,1

13 62,175 225,9 62,242 232,9

14 62,183 225,8 62,254 232,7

15 62,187 226,0 62,248 233,2

16 62,196 225,8 62,247 232,7

17 62,176 225,6 62,251 232,9

18 62,182 225,9 62,249 233,3

19 62,191 225,5 62,253 232,1

20 62,179 225,8 62,238 233,0

21 62,192 225,8 62,248 232,7

22 62,194 225,7 62,247 232,6

23 62,179 226,0 62,247 232,0

24 62,184 225,8 62,252 233,2

25 62,188 225,6 62,249 232,8

26 62,179 225,9 62,255 232,7

27 62,193 225,8 62,255 233,1

28 62,185 225,8 62,247 232,7

29 62,187 225,9 62,249 232,9

30 62,179 225,7 62,256 233,3

MEDIA 62,185 225,8 62,248 232,8

Tabla 3.3.3.2: Resultado de la medición de los diám etros de PA6+GF30

Page 45: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.3.1: Gráfico de diámetros con Parámetr os 1

Diagrama 3.3.3.2: Gráfico de diámetros con Parámetr os 2

61,600

61,700

61,800

61,900

62,000

62,100

62,200

62,300

62,400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 1

61,600

61,700

61,800

61,900

62,000

62,100

62,200

62,300

62,400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diámetro con Parámetros 2

Page 46: Variaciones dimensionales en piezas plásticas de inyección ...

En este caso, como en el anterior, la dispersión de los valores es baja. Se debe

principalmente al tipo de material. Este material, el PA6+GF30 es de los materiales de

inyección más estables. A la estabilidad del PA6 se le une la robustez que le aporta un

30% de fibra de vidrio, y eso hace que la variación entre unos parámetros y otros no

sea muy grande.

De hecho en este caso la variación de dimensiones es incluso menor de una

décima. Esto nos beneficia a la hora de la fabricación, porque podemos tener una

tolerancia en los parámetros mayor y podemos jugar con los parámetros de manera

conveniente para bajar el tiempo de ciclo y la temperatura de trabajo.

Variación PP+EPDM: 0,22 mm

Variación PP+GF30: 0,16 mm

Variación PA6+ GF30: 0,063 mm

La fibra de vidrio le aporta estabilidad al material, y el EPDM le aporta mayor

elasticidad pero le resta mucha estabilidad al compuesto.

También tiene que ver en los resultados el llamado Coeficiente de expansión

térmica , que es diferente para cada material y es el que mide el grado en que se va a

contraer la pieza. De acuerdo con la DIN EN ISO 53752, este coeficiente especifica el

cambio de longitud del material con el incremento o descenso de la temperatura.

Debido a su estructura térmica, los plásticos generalmente presentan un

coeficiente de expansión térmico lineal mayor que otros materiales. Este es un aspecto

a tener en cuenta en el momento del diseño de la pieza, sobre todo en aquellos

componentes en los que se requiere unas tolerancias muy ajustadas, están sometidos

a fluctuaciones de temperaturas o está en contacto con metales. Sin embargo, el

coeficiente de expansión de los plásticos se puede reducir con la adición de fibras de

refuerzo. De esta manera, se puede llegar a conseguir valores parecidos al del

aluminio.

Apuntar que el coeficiente de expansión térmica de este material (ver hoja

de propiedades del mismo en la Fig.3.3.3.4 que es un extracto sacado de la hoja de

propiedades de este material, Anexo 11) es 1.0.

Page 47: Variaciones dimensionales en piezas plásticas de inyección ...

Fig.3.3.3.4 Coeficiente de expansión térmica del Du rethan

Así, que el coeficiente de expansión térmica del PA6+GF30 tenga un valor de

1, quiere decir que es muy estable al cambio de temperatura, y que prácticamente no

hay que tener en cuenta los cambios de volumen para la construcción del molde. Los

moldes de inyección, en su construcción se diseñan teniendo en cuenta estos cambios

de volumen del material que se va a utilizar. Por este motivo no se debe utilizar para

una pieza un material que no es con el que se ha diseñado el molde, a no ser que su

coeficiente de expansión sea muy similar.

Los gráficos del cálculo del índice de capacidad (Ppk) para ambos casos, con

ambos parámetros son los que tenemos en las Fig.3.3.3.4 y Fig.3.3.3.5 . El documento

completo podemos encontrarlo en el Anexo 13 .

Fig.3.3.3.4 Estudio de capacidad Ø 62.0 con parámet ros 1

Page 48: Variaciones dimensionales en piezas plásticas de inyección ...

Fig.3.3.3.5 Estudio de capacidad Ø 62.0 con parámet ros 2

En el primer caso tenemos un Ppk bueno, de 5,29 debido a la poca desviación

entre los valores de las mediciones de las piezas. Y en el segundo caso es un poco

menor porque los valores se encuentran muy próximos al límite de la tolerancia

superior, son también muy estables y con poca desviación entre ellos pero son más

elevados.

Los parámetros aplicados en este caso los tenemos en el Anexo 12, pero los

importantes y los que varían en este caso son los que aparecen en la Tabla 3.3.3.3 :

Parámetros Parámetros 1 Parámetros 2

Temperatura cámara

caliente 320 ºC 320ºC

Tiempo inyección 1,7 segundos 1,7 segundos

Tiempo compactación 1,3 segundos 11,3 segundos

Refrigeración 16 segundos 60 segundos

Page 49: Variaciones dimensionales en piezas plásticas de inyección ...

Apertura molde 4,7 segundos 4,7 segundos

Extracción de la pieza 2,8 segundos 1,8 segundos

Tiempo de ciclo 30 segundos 83 segundos

Tabla 3.3.3.3 Comparativa de ambos parámetros

Visualmente la distribución de tiempos quedaría como se muestran en los

diagramas siguientes (Diagrama 3.3.2.3 y Diagrama 3.3.2.4 ).

Diagrama 3.3.2.3: Gráfico de los tiempos de ciclo c on Parámetros 1

Tiempos del ciclo P1

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Page 50: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 3.3.2.4: Gráfico de los tiempos de ciclo c on Parámetros 2

Las principales diferencias en este caso están de nuevo en la compactación y

la refrigeración. Son los parámetros que en principio más afectan a las variaciones, o

posibles variaciones en las piezas. De ahí que cuando se quieren conseguir

diferencias en el resultado, como es este caso, se recurra a esos dos parámetros, y a

la presión de compactación, para intentar fabricar piezas diferentes.

Aun así en este caso, como hemos visto antes, no se ha conseguido tanta

variación como se pretendía, aun aumentando considerablemente el tiempo de

compactación y refrigeración, debido a la estabilidad de este material. Esto nos

indicaría que cuando tenemos una desviación dimensional en una pieza fabricada con

PA6+GF30 no sería posible corregirla variando parámetros, habría que ir directamente

a una corrección en el molde.

En cuanto al resto de parámetros podemos observar que la temperatura de la

cámara caliente está en un valor al inicio de 320 ºC, aunque en las siguientes zonas

del molde baja a 280ºC. En las propiedades del material se aconseja que la

temperatura de trabajo esté entre 270 y 290 ºC (Fig.3.3.3.6 ).

Tiempos del ciclo P2

Cierre molde

Inyección

Compactación

Refrigeración

Abrir molde

Expulsión

Page 51: Variaciones dimensionales en piezas plásticas de inyección ...

Fig.3.3.3.6 Temperatura recomendada de trabajo del Durethan

El tiempo de inyección es también el mismo para ambos casos, así como la

presión de inyección , que es del 28 % en ambos casos.

- Tiempo de compactación

En el caso 1 tenemos 1,3 segundos de compactación, mientras que en el caso 2

tenemos 11,3 segundos, diez veces más que en primer caso. Esto supone que en el

segundo caso se introduce más material que en el segundo, y así se puede comprobar

con el peso de las mismas. No es mucha la variación, pero en el segundo caso las

piezas pesan alrededor de 8 gramos más que en el primero.

- Refrigeración

También es bastante elevada la diferencia entre ambos casos. De 16 segundos de

refrigeración en el primer caso pasamos a 60 segundos en el segundo. Este mayor

tiempo de enfriamiento dentro del molde es le confiere a la pieza una mayor

estabilidad y definición antes del desmoldeo, aunque en este caso no se aprecie

demasiado. Debido a las características del material no se aprecian demasiado las

variaciones debido a los cambios de parámetros, aunque estos sean bastante

significativos.

En el primer caso tenemos un tiempo de ciclo de 30 segundos , y el segundo

caso es de 83 segundos . Podemos concluir que no es necesario un tiempo de ciclo

tan elevado para inyectar las piezas. Con menor tiempo de compactación y

enfriamiento y por consiguiente, menor tiempo de ciclo, tenemos piezas igual de

buenas.

Page 52: Variaciones dimensionales en piezas plásticas de inyección ...

4. Medios de control adecuados en producción

En este estudio solamente hemos analizado diámetros. En el control de

diámetros se suelen emplear tres medios de control:

- Pie de rey : principalmente para diámetros exteriores de piezas rígidas y en las

que la posición del mismo no afecte a la medición dependiendo del operario.

Fig. 4.1 Pie de rey digital

- Pasa-no pasa : es una galga de control que consta de dos partes, una

construida a la tolerancia inferior, en la que la pieza debe entrar (pasa), y otra

construida un poco por encima de la tolerancia superior, en la que la pieza no

debe entrar (no pasa). Se utiliza en los casos en que el pie de rey no nos dé un

resultado estable ni fiable, o sea un diámetro difícil de medir con otro método.

Por ejemplo en piezas blandas como las de Santoprene.

Fig. 4.2 Calibre pasa-no pasa

Page 53: Variaciones dimensionales en piezas plásticas de inyección ...

- Micrómetro : puede ser de exteriores (Fig. 4.3 ) o de interiores (Fig. 4.4) según

sea el diámetro a medir. Este equipo se utiliza cuando necesitamos una mayor

precisión de la que nos da el pie de rey, ya que los micrómetros suelen tener

una resolución de centésimas (0,001 mm) frente a las décimas del pie de rey

(0,01 mm), o bien es un diámetro interior profundo en el que no nos cabe el pie

de rey.

Fig. 4.3 Micrómetro de exteriores

Fig. 4.4 Micrómetro de interiores de tres contactos

Page 54: Variaciones dimensionales en piezas plásticas de inyección ...

En el caso que nos ocupa, cada una de las piezas de las que hemos realizado

el estudio se controla con un tipo diferente de equipo de medida. Veamos con qué

equipo controlamos cada una de las piezas:

- Fuelle de Santoprene (PP+EPDM): Al tratarse de una pieza blanda no

podemos medir con pie de rey ya que corremos el riesgo de deformar la pieza

al medir y falsear el resultado. Para estos casos construimos un calibre pasa-

no pasa . (como el de la Fig. 4.2)

Las medidas de construcción de este calibre se obtienen en función del

nominal y de la tolerancia que se aplique en cada caso. Utilizamos un

programa para el cálculo de las tolerancias normalizadas para tampones lisos y

roscados que trabaja según las normas UNE 17704-2002, UNE 17-707-78,

UNE 17-710-78, UNE - ENISO 286-2:2011 y DIN 7150-2:2007.

En este caso concreto, tenemos un diámetro de 75,6 y la tolerancia de

±0,35, por lo tanto las medidas del calibre serán:

Calibre para Ø Interior de 75.6 ± 0.35

Lado Pasa Ø 75.298 ± 0.015

Lado No Pasa Ø 76.950 ± 0.015

Límite de desgaste Ø 75.25

- Codo de Hostacom (PP+GF30): en este caso la pieza es rígida y el diámetro

exterior y fácil de medir, por lo que en este caso el control se realiza con pie de

rey (como el de la Fig. 4.1). Para eliminar los posibles errores de medición

debidos a la ovalidad de la pieza se suele realizar la medida de cuatro

diagonales del diámetro y el resultado final es la media de dichas cuatro

diagonales.

- Codo de Durethan (PA6+GF30): como ya vimos anteriormente este diámetro

es un poco difícil de medir. Es interior, pero además en la parte de arriba hay

tres salientes que impiden su medición con pie de rey o micrómetro de

interiores. Para ello se ha construido un pasa-no pasa especial (Fig. 4.5, 4.6 y

4.7)que pretende evitar los tres salientes de la pieza:

Page 55: Variaciones dimensionales en piezas plásticas de inyección ...

Fig. 4.5 Pasa-no pasa triangular para salvar los sa lientes de la pieza

Fig. 4.5 Vista superior del lado pasa

Fig. 4.5 Vista frontal del lado pasa

Page 56: Variaciones dimensionales en piezas plásticas de inyección ...

5. MSA (Análisis de los sistemas de medida)

Siempre que hay un control dimensional de un producto hay que realizar un

análisis de la eficacia o no del equipo que se utiliza para medir.

Esto se conoce como Análisis de los Sistemas de Medida, MSA en inglés,

Measurements System Analysis, y es una herramienta fundamental de la ISO/TS

16949 (norma de automoción) y Seis Sixma (metodología de mejora de procesos,

centrada en la reducción de la variabilidad de los mismos, consiguiendo reducir o

eliminar los defectos o fallas en la entrega de un producto o servicio al cliente).

El manual de MSA ha sido desarrollado por el grupo de trabajo de Requisitos

de Calidad para Proveedores constituido por fabricantes del sector del automóvil

DaimlerChrysler, Ford y General Motors, bajo los auspicios de Asociación Americana

para la Calidad (ASQ) y el Grupo de Acción de la Industria del Automóvil (AIAG).

El Análisis del Sistema de Medida evalúa el método de control, los

instrumentos que miden, y el proceso entero de medición, para asegurar la integridad

de los datos usados para el análisis de la calidad y para entender las implicaciones del

error de medida en las decisiones tomadas sobre un producto o un proceso. El

propósito del Análisis del Sistema de Medición es establecer los procedimientos para

valorar la calidad de los sistemas de medición.

A menudo se asume que las mediciones son exactas, y frecuentemente el

análisis y las conclusiones se basan en ese supuesto. Un individuo puede fallar al

darse cuenta de que existe variación en el sistema de medición, lo que afecta a las

mediciones individuales y como consecuencia, a las decisiones basadas en los datos.

El error del sistema puede ser clasificado en cinco categorías: sesgo, repetibilidad,

reproducibilidad, estabilidad y linealidad.

Uno de los objetivos del sistema de medición es obtener información sobre la

cantidad y tipos de variación de medición asociada con el sistema de medición cuando

interactúa con su entorno. Esta información es valorable, puesto que para la media de

los procesos de producción, es más práctico conocer la repetibilidad y el sesgo de

calibración y establecer unos límites razonables para ellos, que conseguir equipos de

exactitud extrema con muy elevada repetibilidad.

Page 57: Variaciones dimensionales en piezas plásticas de inyección ...

Fundamentos

Como en todo proceso, la variación del sistema de medición puede caracterizarse por:

1 – Variación de la posición

Sesgo

El sesgo es la diferencia entre la media de las mediciones observadas y el

valor de referencia, y es un valor que sirve como referencia aceptada para los valores

medidos. Un valor de referencia puede ser determinado como la media de las varias

mediciones hechas con un equipo de medición de mayor nivel.

Estabilidad

Es la variación total de las medidas obtenidas con un sistema de medición

sobre el mismo patrón o piezas cuando se mide la misma característica o a lo largo de

un periodo de tiempo.

Page 58: Variaciones dimensionales en piezas plásticas de inyección ...

Linealidad

Es la diferencia en los valores del sesgo a través del rango operativo esperado

del equipo de medida.

2 – Anchura o dispersión

Repetibilidad

Es la variación en las mediciones obtenidas con un instrumento de medición

cuando es usado varias veces por un operario para medir la misma característica de la

misma pieza.

Reproducibilidad

Es la variación en la media de las mediciones realizadas por diferentes

operarios usando el mismo equipo de medición y midiendo la misma característica de

la misma pieza.

Page 59: Variaciones dimensionales en piezas plásticas de inyección ...

GRR

Repetibilidad y reproducibilidad. Es la estimación combinada de la repetibilidad

y reproducibilidad del sistema de medida.

Es una medida de la capacidad del sistema, y dependiendo del método usado,

puede incluir o no el efecto del tiempo.

El análisis GRR puede considerarse un método general de evaluación

experimental de la dispersión de un sistema de medida, ya que es aplicable a la mayor

parte de los sistemas de medición por variables.

El índice GRR es una cuantificación de la desviación típica de los valores que

proporciona el sistema de medida teniendo en cuenta la influencia del equipo

(repetibilidad) y del inspector (reproducibilidad).

Se establece la siguiente “guía general” para la aceptación de los sistemas de

medida:

- GRR < 10%: es considerado un sistema de medida aceptable . Caso

recomendado, especialmente útil cuando se intenta ordenar o clasificar piezas,

o cuando se requiere un control de proceso exigente.

- 10% < GRR < 30%: puede ser aceptable para algunas a plicaciones . La

decisión debería estar fundada sobre, por ejemplo, la importancia de la

aplicación de la medida, el coste de los dispositivos de medida, el coste de

reprocesos o reparaciones. Debería ser aprobado por el cliente.

- GRR > 30%: considerado inaceptable . Deben hacerse esfuerzos para

mejorar el sistema de medida.

Page 60: Variaciones dimensionales en piezas plásticas de inyección ...

La aceptación final de un sistema de medida no debería reducirse a un simple

conjunto de índices, también debería ser revisada la ejecución del sistema de medida

en el largo plazo usando el análisis gráfico. Un poco más adelante veremos en qué

consisten estos gráficos.

Calculo de la repetibilidad y reproducibilidad

Hay varios métodos, pero el más utilizado y el que usamos nosotros es el

método de la media y el recorrido .

Este método (X / R) es un enfoque matemático que proporciona una estimación

de la repetibilidad y reproducibilidad del sistema de medición. Este método

descompone la variabilidad en repetibilidad y reproducibilidad, y nos proporciona

información sobre las causas del error del sistema de medición o del equipo:

Si la repetibilidad es grande en comparación con la reproducibilidad, las causas

pueden ser:

1. El instrumental necesita mantenimiento

2. Se debe rediseñar el equipo para que sea más rígido

3. Se necesita mejorar la manera de sujeción o posición del equipo a la pieza

4. Existe una excesiva variación intrínseca en la pieza.

Si la reproducibilidad es grande en comparación con la repetibilidad, las causas

pueden ser:

1. El inspector necesita más entrenamiento sobre el funcionamiento del

equipo

2. El dial del calibre no es claro

3. Se puede necesitar algún elemento que ayude al inspector a usar el equipo

más consistentemente.

Realización del estudio

Vamos a realizar el estudio R&R del pie de rey que utilizamos en producción

para controlar el codo de PP+GF30 de nuestro segundo estudio. Se trata de un pie de

rey de 0 a 200 mm de rango, y 0,01 mm de dispersión .

Page 61: Variaciones dimensionales en piezas plásticas de inyección ...

1. Se coge una muestra de 10 piezas que representen todo el rango real o

esperado de la variación del proceso.

2. Se realiza el estudio con tres inspectores , de manera que se les denomina A,

B y C, y se numeran las piezas del 1 al 10.

3. Se calibra o ajusta el pie de rey a cero. El inspector A mide las piezas en orden

aleatorio y una persona apunta los resultados (fila 1).

4. Los inspectores B y C miden también las mismas piezas sin que puedan ver los

resultados de los otros. Los resultados se apuntan en las filas 6 y 11

respectivamente.

5. Repetir el ciclo utilizando un orden aleatorio diferente de medición. Anotar los datos en la finas 2, 7 y 12. Y en las columnas adecuadas. (Ver Tabla 5.1)

Tabla 5.1 Anotaciones de los resultados de los tres inspectores

EQUIPO: PIEZA: Nº PIEZAS: 10

REF. EQUIPO: REF. PIEZA: Nº INSPECTORES: 3

ESCALA: CARACTERÍSTICA: Nº ENSAYOS: 3

RESOLUCIÓN: 0,01 mm TOLERANCIA: 0,6 mm PIEZAS X INSPECT.: 30

(División de escala) (Intervalo completol) Entrada datos correcta SI

Pieza Nº: 1 2 3 4 5 6 7 8 9 10

1 Ensayo 1 70,31 70,160 70,31 70,31 70,16 70,16 70,15 70,16 70,15 70,32

2 Ensayo 2 70,31 70,15 70,3 70,3 70,16 70,15 70,16 70,17 70,15 70,31

3 Ensayo 3 70,32 70,15 70,3 70,3 70,15 70,15 70,15 70,17 70,16 70,31

4 Medias 70,313 70,153 70,303 70,303 70,157 70,153 70,153 70,167 70,153 70,313

5 Recorridos 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

6 Ensayo 1 70,31 70,160 70,31 70,31 70,15 70,15 70,16 70,17 70,16 70,32

7 Ensayo 2 70,32 70,15 70,31 70,3 70,16 70,16 70,16 70,16 70,15 70,32

8 Ensayo 3 70,31 70,15 70,3 70,3 70,15 70,15 70,15 70,17 70,15 70,31

9 Medias 70,313 70,153 70,307 70,303 70,153 70,153 70,157 70,167 70,153 70,317

10 Recorridos 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

11 Ensayo 1 70,31 70,160 70,31 70,31 70,16 70,16 70,15 70,16 70,15 70,31

12 Ensayo 2 70,31 70,15 70,31 70,31 70,15 70,15 70,16 70,16 70,15 70,31

13 Ensayo 3 70,32 70,16 70,3 70,3 70,15 70,16 70,15 70,17 70,16 70,31

14 Medias 70,313 70,157 70,307 70,307 70,153 70,157 70,153 70,163 70,153 70,310

15 Recorridos 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0

16 70,313 70,154 70,306 70,304 70,154 70,154 70,154 70,166 70,153 70,313

17

18

19

20

21

22 OK

23

24

25 OK

26 OK

% de medidas fuera de límites de Medias Tiene que ser > del 50% 100%

0,0097

70,2272

0,02494

0,0000

Promedios

70,2190

70,2190

100%

HOJA DE DATOS PARA ANÁLISIS GRR BASADO EN PROCESO Ó TOLERANCIA

70,2160

70,2173

70,2200

0,0100

70,2160

0,1600

70,2140

70,2177

70,2170

CodoPie de rey

8-1315

0-150 mm

70,2160

70,2180

0,0090

70,2180

0,0100

70,2173

0,00%

0,0007

Límite de Control Inferior de Recorridos

1129436S01

INS

PE

CT

OR

B

Diámetro

INS

PE

CT

OR

CIN

SP

EC

TO

R A

Recorrido de las medias de inspectores

Límite de Control Superior de Recorridos

70,2074

% de medias fuera de límites de Medias

% de medidas fuera de límites de Recorridos

Tiene que ser > del 50%

Límite de Control Superior de Medias

Recorrido de las piezas

Media Piezas

Promedio de todos los recorridos

Tiene que ser 0%

Límite de Control Inferior de Medias

=BX

=AX

=AR

=BR

=CR

=CX

=X

=PR

mínXmáxXXDIF −=

4R DRUCL ×=

3R DRLCL ×=

RAXUCLx 2×+=

RAXLCLx 2×−=

sInspectore/Nº)CRBRAR(R ++= =R

Page 62: Variaciones dimensionales en piezas plásticas de inyección ...

A continuación podemos ver estos resultados expresados en gráficos. Gráficos

de Medias y de Recorridos, de todos los inspectores juntos o separados:

Diagrama 5.1 Gráfico de medias de los inspectores p or pieza

Diagrama 5.2 Gráfico de medias por inspector

Diagrama 5.3 Gráfico de recorridos por inspector

70

70

70

70

70

70

70

70

70

70

70

1 2 3 4 5 6 7 8 9 10 PIEZAS

INSPECTOR A

INSPECTOR B

INSPECTOR C

LSC

LIC

LINEA CENTRAL

GRÁFICOS DE MEDIAS DE LOS INSPECTORES POR PIEZA

VALORES MEDIOS

70

70

70

70

70

70

70

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

GRÁFICOS DE MEDIAS POR INSPECTOR

INSPECTOR A INSPECTOR B INSPECTOR C

RECORRIDOS

0

0,005

0,01

0,015

0,02

0,025

0,03

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

GRÁFICOS DE RECORRIDOS POR INSPECTOR

INSPECTOR A INSPECTOR B INSPECTOR C

Page 63: Variaciones dimensionales en piezas plásticas de inyección ...

Diagrama 5.4 Gráfico de medias individual de cada i nspector

Diagrama 5.5 Gráfico de todas las medias por pieza

VALORES INDIVIDUALES

70,05

70,1

70,15

70,2

70,25

70,3

70,35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GRÁFICO DE MEDIDAS INPECTOR A

70,05

70,1

70,15

70,2

70,25

70,3

70,35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GRÁFICO DE MEDIDAS INPECTOR B

70,05

70,1

70,15

70,2

70,25

70,3

70,35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GRÁFICO DE MEDIDAS INPECTOR C

70

70

70

70

70

70

70

1 2 3 4 5 6 7 8 9 10

GRÁFICOS DE TODAS LAS MEDIDAS POR IPIEZA

Page 64: Variaciones dimensionales en piezas plásticas de inyección ...

En la Excel se realizan automáticamente todos los cálculos necesarios para

obtener los datos de repetibilidad y reproducibilidad. Los resultados de estos cálculos

son los que aparecen en la Tabla 5.2.

Tabla 5.2 Cálculos para determinar el valor de GRR

Vemos que el valor de GRR sobre la tolerancia es 5,71 y el valor de GRR

sobre el proceso es 11,27 . Esto significa que estamos en el caso de GRR < 10%

para la tolerancia, por lo que el sistema de medida es considerado un sistema de

medida aceptable , pero para el proceso estamos en un 10% < GRR < 30%: puede

ser aceptable para algunas aplicaciones , ya que los valores no están centrados,

hay dispersión entre ellos. Si para hacer el estudio R&R hubiera cogido sólo piezas de

ESTUDIO: FECHA: PÁGINA: 4 de 4

Repetibilidad. Variación del equipo (EV) %EV = 100x[EV/(TOL/6)] %EV = 100x[EV/TV]

EV = % EV = % EV =

Reproducibilidad. Variación del inspector (AV) %AV = 100x[AV/(TOL/6)] %AV = 100x[AV/TV]

AV = % AV = % AV =

n = Numero de piezasr = Número de ensayos

Repetibilidad y Reproducibilidad (GRR) %GRR = 100x[GRR/(TOL/6)] %GRR = 100x[GRR/TV]

% GRR = % GRR =GRR =

Variación de las piezas (PV) %PV = 100x[PV/(TOL/6)] %PV = 100x[PV/TV]

% PV = % PV =PV =

Variación Total (TV) Número de categorías de datos

ndc = 1,41 x (PV/GRR)

TV = ndc = ≈≈≈≈

0

0,00571

Piezas

Inspect.

2

Pruebas

10 0,3146

K2

0,70710,5231

K3

3

5 0,4030

ESTUDIO DE REPETIBILIDAD Y REPRODUCIBILIDAD MSA 4ª Ed.15-5-14

ANÁLISIS DE LA MEDIDA

0,00571

FOR13294

SOBRE TOLERANCIA

0,8862

K1

2

0,00

11,27

5,71

12,427

0,05034

0,05066

99,36

12

5,71

50,34

0,59083

SOBRE PROCESO

% VARIACIÓN

11,27

0,00

1KREV ×=

−×=

nrEV

)KX(AV2

22DIFF

22 AVEVGRR +=

3p KRPV ×=

22 PVGRRTV +=

Page 65: Variaciones dimensionales en piezas plásticas de inyección ...

uno de los parámetros, en la que todas las piezas hubieran sido más similares, el valor

del GRR del proceso nos hubiera salido también por debajo de 10.

Para realizar este estudio he utilizado unas plantillas de un curso que realicé

sobre MSA, con los valores reales de nuestro estudio de R&R de medición del codo,

ya que podíamos visualizar también los gráficos de control. En la plantilla que

utilizamos en mi empresa no tenemos gráficos, por eso me ha parecido más visual

utilizar estas plantillas. Pero en el anexo 14 pongo la Excel real del estudio en formato

de mi empresa.

En este primer caso hemos analizado un sistema de medida por variables, es

decir, tenemos mediciones numéricas para los cálculos, porque son los datos que

obtenemos del control en producción de estas características.

En otros casos no tenemos variables, como es el caso de los pasa-no pasa, en

los que el resultado es APTO o NO APTO (es decir, pasa, o no pasa). En este caso se

dice que es un sistema de medida por atributos.

Sistemas de medida por atributos

Este método es el que vamos a usar para valorar el pasa-no pasa del primer

caso, del fuelle de PP+EPDM para el que teníamos ese control.

Cuando se utiliza un sistema de medida existe siempre un riesgo cuantificable

de tomar decisiones incorrectas con el mismo. El riesgo más alto se encuentra cuando

el valor medido adquiere valores próximos a los límites. Por ello, para realizar el

análisis del sistema de medidas por atributos, se coge el 25% de las piezas en o cerca

del límite inferior de la especificación y el 25% en o cerca del límite superior.

Existen tres métodos para el análisis de los sistemas de medida por atributos:

- Método de las tablas de concordancia : permite analizar la variabilidad de los

resultados que proporciona el sistema de medida y los ratios de eficacia, fallos

y falsas alarmas. Se realiza utilizando 50 piezas extraídas “aleatoriamente” del

proceso productivo.

Page 66: Variaciones dimensionales en piezas plásticas de inyección ...

- Método de la Señal de Detección : permite visualizar la variabilidad y el sesgo

del sistema de medida. Se puede ejecutar como complemento del método de

las tablas de concordancia.

- Método Analítico : permite determinar si el sistema de medida tiene un sesgo

significativo. se realiza en base a 8 piezas de valor conocido seleccionadas

convenientemente.

Vamos a utilizar en este caso el Método largo de la Señal de Detección . Se

seleccionan 50 piezas, 3 operarios y 3 mediciones por pieza, y se requiere que cada

una de las piezas de muestra puedan ser evaluadas fuera de línea por un sistema de

medida por variables. En este caso, como ya teníamos las piezas medidas con

tridimensional, utilizamos esos valores para realizar el R&R. Lo único que necesitamos

un 25% de piezas cerca del límite superior o por encima, y un 25% cerca del límite

inferior o por debajo, así que vamos a fabricar a propósito estas piezas cerca de la

tolerancia superior y por encima de ella, y también por debajo de la inferior, porque

cerca de ella ya tenemos.

Este valor de referencia se muestra en la columna “Valor de Referencia” de la

Tabla 5.3 (Tabla completa en el anexo 15 )

Tabla 5.3 Valores de referencia de los tres inspect ores

Page 67: Variaciones dimensionales en piezas plásticas de inyección ...

Seguimos la misma sistemática que para el caso de sistema de medida por

variables. Numeramos las piezas y se las vamos pasando a cada uno de los operarios,

cada vez en diferente orden y vamos apuntando los resultados que sacan en las

columnas. El resultado será “pasa” (+) o “no pasa” (-).

El código, que aparecerá en la última columna será:

+ = Aceptada por consenso total

- = Rechazada por consenso total

X = Desacuerdo

La amplitud de estas zonas (zonas de desacuerdo) es lo que estamos

intentando determinar, y la amplitud media de estas zonas será utilizada para

comparar el sistema de medida con la tolerancia especificada, o con la amplitud de la

variación 6σ del proceso para determinar el valor de GRR.

- Rango superior de incertidumbre: dUSL = 75,98 - 75,90 = 0,08

- Rango inferior de incertidumbre: dLSL = 75,31 - 75,20 = 0,11

Page 68: Variaciones dimensionales en piezas plásticas de inyección ...

- Rango medio de incertidumbre: d = (0,08 + 0,11) / 2 = 0,095

- Rango de tolerancia: 0,7 (± 0,35)

- GRR = d / T = 0,095 / 0,7 = 0,135

GRR = 13,5 % 10% < GRR < 30%: aceptable con reser vas

En este caso, al salirnos apto con reservas, deberíamos analizar por qué, y

solicitar a nuestro cliente la aceptación del uso de este equipo de control para esta

característica.

El motivo en este caso podría deberse a que se trata de una pieza flexible,

deformable, y de “goma”, que puede agarrarse al pasa y falsear el criterio del

inspector. Cuando estamos en el límite superior, también dependiendo de la fuerza

que haga cada inspector podría darla tanto por buena como por mala.

Page 69: Variaciones dimensionales en piezas plásticas de inyección ...

6. Conclusiones

Coste económico del estudio

El estudio realizado en este proyecto no es un estudio rápido, fácil ni barato.

Lleva asociados unos gastos de maquinaria y de personal que deben ser

cuantificados, no obligatoriamente en este caso, sino para saber cuánto le cuesta a

una empresa realizarlos.

En el Anexo 16 tenemos desglosados cada uno de los costes que tenemos

que tener en cuenta para evaluar económicamente este trabajo. Pero los principales

son los siguientes:

- Materia prima : el precio de cada uno de los materiales. Está claro que

tenemos que intentar comprar barato pero no primando la calidad del material.

Tenemos que encontrar el material que cubra nuestras necesidades al menor

precio.

- Máquina de inyección : en función del tonelaje de la máquina y de la

antigüedad de la misma, este valor será uno u otro. En este caso, las tres

piezas se inyectan en máquinas de 250 toneladas y que tienen más de 10 años

de antigüedad, por lo que están ya amortizadas.

- Preparador de inyección : es la persona que va a estar “jugando” con los

parámetros para conseguir piezas con diferentes dimensiones.

- Medición de piezas : tendríamos que contar las horas del metrólogo y las

horas máquina, pero en este caso, en el coste del metrólogo va incluida la

máquina.

- Gestión del R&R : es la persona de Calidad que prepara las piezas y a los

operarios para la realización del R&R como tal. Suele ser un Ingeniero de

Calidad.

- 3 operarios : en cada uno de los R&R que hemos visto tomaban parte tres

operarios, por lo que hay que contar el tiempo que ellos han invertido en

realizarlos.

Esta es una estimación bastante real de lo que cuesta este proceso en la

planta. La realización de estos R&R es un requisito de la norma que rige a las

empresa de automoción, la ISO TS 16949, y por lo tanto hay que realizarlo.

Page 70: Variaciones dimensionales en piezas plásticas de inyección ...

Podemos ver la Tabla 6.1 sacada del Anexo 16 con la estimación de costes.

Pieza Operación Cantidad (horas o Kg)

Precio/unidad (€/Kg o €/hora)

Total (€)

Fuelles PP+EPDM

Precio material (Kg) 23,00 2,95 67,9

Máquina inyección 5,0 24,7 123,7

Preparador inyección 5,0 55,0 275,0

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 52,0 204,5 2550,0

Codos PP+GF30

Precio material (Kg) 22,6 1,80 40,7

Máquina inyección 2,5 24,7 61,9

Preparador inyección 2,5 55,0 137,5

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 47,0 231,1 2323,4

Codos PA6+GF30

Precio material (Kg) 12,0 2,24 26,9

Máquina inyección 3,5 24,7 86,6

Preparador inyección 3,5 55,0 192,5

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 49,0 231,5 2389,4

Total

148,0 667,1 7262,8

Tabla 6.1 Cotización del estudio R&R

Page 71: Variaciones dimensionales en piezas plásticas de inyección ...

Visto este desglose de gastos, con este proyecto le he “ahorrado” a la empresa

los gastos de medición de piezas y gestión del R&R (Tabla 6.2) , ya que lo he realizado

personalmente fuera del horario laboral.

El resumen de estos gastos serían los siguientes:

Tabla 6.2 Gastos de medición de piezas y gestión de l R&R

El resto de los gastos inevitablemente han recaído sobre la empresa, pero el

beneficio también. Teníamos un “proyecto” interno en el Departamento de Calidad,

que es en el que yo trabajo, de sacar adelante seis R&R (o MSA) que teníamos

pendientes antes del 30 de junio de 2014, y con este proyecto hemos realizado tres,

por lo que hemos ganado tiempo y recursos para realizar los demás.

A la hora de realizar estos estudios R&R en mi empresa, agrupamos por

familias, en función de la dimensión a controlar y del material de la pieza que se

controla. Por lo tanto hemos cubierto la realización de tres materiales diferentes.

Pieza OperaciónCantidad

(horas o Kg)Precio/unidad (€/Kg o €/hora)

Total (€)

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

Subtotal 18,0 100,5 907,4

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

Subtotal 18,0 100,5 907,4

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

Subtotal 18,0 100,5 907,4

Total 54,0 301,6 2722,2

Codo PP+GF30

Fuelles PP+EPDM

Codo PA6+GF30

Page 72: Variaciones dimensionales en piezas plásticas de inyección ...

Conclusiones

Como conclusión podemos decir, que entre otras cosas, el tiempo de ciclo es

muy importante en una empresa, no visto desde el punto de vista de la calidad, pero si

desde el punto de vista económico. Cuanto menor tiempo de ciclo tengamos mayor

será la rentabilidad de la pieza. Reduciremos en este caso el tiempo máquina y el

tiempo del preparador y del operario.

Si conseguimos reducir el peso de la pieza sin que sus características

significativas se veas afectadas, estaremos reduciendo la cantidad de material

empleado, y por lo tanto también el precio de la pieza.

Por lo que el reto es conseguir procesos lo más estables posibles en el menor

tiempo de ciclo, es encontrar el equilibrio entre cantidad y calidad.

Porque producir sin calidad no es rentable. Los costes asociados a una mala

calidad pueden ser más elevados que los posibles ahorros que se produzcan. A los

costes de no calidad internos de la empresa se pueden asociar los relacionados con el

cliente, una mala imagen puede quitarnos muchos beneficios o no darnos ninguno.

Por eso un lema a seguir en toda empresa que apueste por el trabajo bien

hecho y por la calidad de sus productos seria:

SAFETY FIRST, SAFETY FIRST, SAFETY FIRST, SAFETY FIRST, QUALITY ALWAYSQUALITY ALWAYSQUALITY ALWAYSQUALITY ALWAYS

Page 73: Variaciones dimensionales en piezas plásticas de inyección ...

7. BIBLIOGRAFÍA

www.tecnologiadelosplasticos.blogspot.com

www.wikipedia.com

www.exxonmobil.com

www.lyondellbasell.com

www.comai.com

www.interempresas.net

http://www.omniaplastica.it

http://books.google.es/books?id=eGdLTd3UiN8C&printsec=frontcover&dq=inauthor:%

22Bertrand+L.+Hansen%22&hl=es&sa=X&ei=_ORnU6jFFpSYyQOkmIHgBg&ved=0C

D8Q6AEwAA#v=onepage&q&f=false

MSA de Ford

http://quality.aes-standards.com/msa-es.html

Documentación del Curso de Análisis de los Sistemas de medida según MSA 4ª

edición de TCM

Page 74: Variaciones dimensionales en piezas plásticas de inyección ...

ANEXO 1

Page 75: Variaciones dimensionales en piezas plásticas de inyección ...

DIFERENTES MATERIALES Y SUS PROPIEDADES

PE – POLIETILENO

Es químicamente el polímero más simple. Es uno de los plásticos más comunes,

debido a su alta producción mundial (aproximadamente 60 millones de toneladas

anuales alrededor del mundo) y a su bajo precio.

Tipo: Termoplástico.

Información: Estructura muy elástica, con buena recuperación al impacto.

Plástico con aspecto y tacto ceroso.

Resistente a la mayor parte de los disolventes y ácidos.

El periodo elástico y plástico es mayor que en otros plásticos.

Poca resistencia al cizallamiento.

A partir de 87° tiende a deformarse.

Muy buenas cualidades de moldeo.

Plástico muy usado en la fabricación de parachoques.

Temperatura de soldadura: 275º 300º.

Arde: Mal

Humo: No.

Color de la llama: Amarillo claro y azul.

Fig. 1.1 Imagen del polietileno sin tratar

Page 76: Variaciones dimensionales en piezas plásticas de inyección ...

PA - POLIAMIDA

Tipo: Termoplástico.

Información: Se alea fácilmente con otros tipos de plásticos y admite cargas de

refuerzo. (Más adelante se explicarán que son las cargas de refuerzo)

Se fabrican en varias densidades, desde flexibles, como la goma, hasta rígido, como el

nylon.

Presenta buenas propiedades mecánicas y facilidad de mecanizado.

Buena resistencia al impacto y al desgaste.

Éste plástico se suelda con facilidad.

Temperatura de soldadura: 350º 400º.

Arde: Mal

Humo: No.

Color de la llama: Azul.

PP – POLIPROPILENO

Tipo: Termoplástico.

Información: Plástico que posee características muy similares a las del polietileno y

supera en muchos casos sus propiedades mecánicas.

Rígido, con buena elasticidad.

Aspecto y tacto agradables.

Resiste temperaturas hasta 130°.

Admite fácilmente cargas reforzantes (fibras de vidrio, talcos, etc) que dan lugar a

materiales con posibilidades de mecanizado muy interesantes.

Es uno de los plásticos más usados en la automoción en todo tipo de elementos y

piezas.

Temperatura de soldadura: 275º 300º.

Arde: Bien.

Humo: Ligero.

Color de la llama: Amarillo claro.

Page 77: Variaciones dimensionales en piezas plásticas de inyección ...

ANEXO 2

Page 78: Variaciones dimensionales en piezas plásticas de inyección ...

POLIPROPIPENO (PP)

El polipropileno (PP) es el polímero termoplástico, parcialmente cristalino, que

se obtiene de la polimerización del propileno. Pertenece al grupo de las poliolefinas y

es utilizado en una amplia variedad de aplicaciones que incluyen empaques para

alimentos, tejidos, equipo de laboratorio, componentes automotrices y películas

transparentes. Tiene gran resistencia contra diversos disolventes químicos, así como

contra álcalis y ácidos.

El PP más utilizado hoy en día es el llamado isotáctico, que se caracteriza por

la distribución regular de los grupos metilo que le otorga una alta densidad de las

partículas. Sus principales propiedades son:

• Densidad: el PP tiene un peso específico entre 0,9 g/cm³ y 0,91 g/cm³

• Temperatura de reblandecimiento alta

• Gran resistencia al stress cracking (es una grieta interna o externa causada por

tensión, compresión o esfuerzos de cizalla. Las condiciones ambientales

normalmente aceleran el desarrollo de estas grietas)

• Tendencia a ser oxidado (problema normalmente resuelto mediante la adición

de antioxidantes)

Polipropileno PP Comentarios

Módulo elástico en tracción

(GPa) 1,1 a 1,6

Alargamiento de rotura en

tracción (%) 100 a 600

Junto al polietileno, una de

las más altas de todos los

termoplásticos

Carga de rotura en tracción

(MPa) 31 a 42

Módulo de flexión (GPa) 1,19 a 1,75

Resistencia al impacto

Charpy (kJ/m²) 4 a 20

Dureza Shore D 72 a 74

Tabla 2.1 Propiedades mecánicas del Polipropileno

Page 79: Variaciones dimensionales en piezas plásticas de inyección ...

Presenta muy buena resistencia a la fatiga, por ello la mayoría de las piezas

que incluyen bisagras utilizan este material.

Polipropileno PP Comentarios

Temperatura de fusión (°C) 160 a 170 Superior a la del polietileno

Temperatura máxima de

uso continuo (°C) 100

Superior al poliestireno, al

LDPE y al PVC pero inferior

al HDPE, al PET y a los

"plásticos de ingeniería"

Temperatura de transición

vítrea (°C) -10

Tabla 2.1 Propiedades térmicas del Polipropileno

A baja temperatura el polipropileno se vuelve frágil (típicamente en torno a los

0 °C).

El polipropileno ha sido uno de los plásticos con mayor crecimiento en los

últimos años y se prevé que su consumo continúe creciendo más que el de los otros

grandes termoplásticos (PE, PS, PVC, PET).

El PP es transformado mediante muchos procesos diferentes. Los más utilizados son:

• Moldeo por inyección de una gran diversidad de piezas, desde juguetes hasta

parachoques de automóviles.

• Moldeo por soplado de recipientes huecos como por ejemplo botellas o

depósitos de combustible.

• Termoformado de, por ejemplo, contenedores de alimentos. En particular se

utiliza PP para aplicaciones que requieren resistencia a alta temperatura

(microondas) o baja temperatura (congelados).

• Producción de fibras , tanto tejidas como no tejidas.

• Extrusión de perfiles, láminas y tubos.

• Producción de película , en particular:

• Película de polipropileno biorientado (BOPP), la más extendida,

representando más del 20% del mercado del embalaje flexible en

Europa Occidental

Page 80: Variaciones dimensionales en piezas plásticas de inyección ...

• Película moldeada ("cast film")

• Película soplada ("blown film"), un mercado pequeño actualmente

(2007) pero en rápido crecimiento

• El PP es utilizado en una amplia variedad de aplicaciones que incluyen

empaques para alimentos, tejidos, equipo de laboratorio, componentes

automotrices y películas transparentes.

• Tiene gran resistencia contra diversos solventes químicos, así como contra

álcalis y ácidos.

Una gran parte de los grados de PP son aptos para contacto con alimentos y una

minoría puede ser usada en aplicaciones médicas o farmacéuticas.

Los principales añadidos que se utilizan para mejorar las propiedades del

polipropileno son: EPDM (caucho), que se añade al PP para conferirle una mayor

elasticidad y una buena recuperación de la deformación por impacto. Fibra de vidrio ,

que se añade tanto al PP como a la PA para mejorar las características mecánicas,

entre ellas, aumentar su resistencia a la rotura por tracción. Y por último utilizamos el

talco , que mejora la resistencia al rayado de la superficie de las piezas mejorando el

aspecto estético superficial.

Page 81: Variaciones dimensionales en piezas plásticas de inyección ...

ANEXO 3

Page 82: Variaciones dimensionales en piezas plásticas de inyección ...

POLIPROPILENO REFORZADO

Por ser un plástico estándar que ofrece buena combinación de propiedades y

procesabilidad, el polipropileno es un material base especialmente utilizado para ser

modificado. La aplicación en el sector del automóvil que está cobrando más

importancia en este sentido es el interior del habitáculo, ya que no solo requiere

propiedades mecánicas sino estéticas, por lo que nos centraremos precisamente en

estas últimas.

1. Características de los compuestos de PP

Un compuesto de PP será aquel modificado con cualquier tipo de carga que extienda

las propiedades del polipropileno base en cualquier sentido: aumento de rigidez,

dureza, tracción ó mejora de las propiedades estéticas.

La Tabla 3.1 proporciona una orientación acerca de la influencia de las cargas

y refuerzos sobre las características del polipropileno, partiendo de un polipropileno

homopolímero.

A partir de la misma, se pueden sacar, entre otras, las siguientes conclusiones:

•La mejora de las propiedades mecánicas es máxima en los tipos de PP reforzados

con fibra de vidrio, especialmente si van ancladas químicamente, pero tienen un mal

comportamiento estético.

•Los compuestos de refuerzos minerales planos (bidimensionales) presentan

características reforzantes mucho más pronunciadas que los productos esféricos

(tridimensionales), aunque estos últimos tengan unas excelentes propiedades

estéticas.

•La disminución de la tenacidad (relacionada con el módulo elástico en tracción)

depende de la proporción, estructura y tamaño de partícula de los refuerzos utilizados,

así como la calidad superficial.

Por todo ello, se viene seleccionando por parte de los constructores de

automoción (OEM, de aquí en adelante), para la aplicación de interior en los vehículos,

los grados de polipropileno con 20 por ciento de refuerzos minerales bidimensionales.

Page 83: Variaciones dimensionales en piezas plásticas de inyección ...

La Tabla 3.2 considera como afecta el tipo de base polimérica utilizada sobre

las características del polipropileno, partiendo de un compuesto de PP con 20 por

ciento de talco.

A partir de los resultados mostrados se ven los siguientes puntos a destacar:

•Al usar como base polimérica PP copolímero heterofásico, propiedades como la

dureza y el HDT varían en la misma dirección, disminuyendo al añadir etileno al

Compuesto de PP.

•El módulo de flexión varía de forma inversa a la resistencia al impacto que aumenta

al añadir etileno a la base polimérica.

•En cualquiera de los casos el aspecto estético superficial es bueno.

Tabla 3.1 . Influencia de las cargas y refuerzos sobre las características del

polipropileno. Variación en porcentaje (%) respecto al PP homopolímero no

modificado. MEF: Módulo elástico en Flexión, MET: Módulo elástico en Tracción y

HDT = Temperatura de deformación.

1.1. Rigidez a altas temperaturas

Durante el proceso de inyección, la rigidez del material es crítica a la hora de realizar

la expulsión del molde. Un producto que no sea lo suficientemente rígido será

difícilmente desmoldeado y tendrá propensión a quedarse agarrado por los tetones de

montaje de la pieza.

Page 84: Variaciones dimensionales en piezas plásticas de inyección ...

A temperaturas superiores, se observa un considerable descenso de la rigidez.

Cuanto menor sea la temperatura a la que alcance la rigidez requerida para el óptimo

desmoldeo, mayor tiempo de enfriamiento y, por tanto, menor productividad de las

piezas inyectadas.

También afecta en este punto, la contracción postmoldeo del material (Ver Baja

contracción).

Tabla 3.2 . Influencia de la base polimérica sobre las características del polipropileno

reforzado.

1.2. Resistencia al impacto en frío

Frente a las ventajas del polipropileno, existe un inconveniente que no hay que

subestimar y es que la adición de cargas y refuerzos baja la resistencia al impacto a

bajas temperaturas. [...]. La mejora de esta propiedad está siendo conseguida por el

uso de copolímeros heterofásicos de muy alto contenido en etileno ó por la formación

de complicados sistemas de tres fases con los que se obtiene gran resistencia al

impacto sin merma apreciable de la rigidez (SEBS, EPDM, EPM, terpolímeros,...).

1.3. Baja contracción

El polipropileno no modificado presenta, además de una alta contracción de

transformación (entre 1,7 y 2,2%), una contracción longitudinal diferencial, que

provoca frecuentemente problemas de deformación.

Page 85: Variaciones dimensionales en piezas plásticas de inyección ...

Incorporando productos de refuerzo o cargas bidimensionales o

tridimensionales, no sólo puede reducirse considerablemente la contracción en sí, sino

también la contracción diferencial. Y esta mejora aumenta al aumentar el porcentaje

de carga o refuerzo añadido.

En el caso de Compuestos de PP con fibra de vidrio la contracción diferencial

sigue siendo muy alta, lo que provoca riesgo de deformaciones que no pueden

corregirse con parámetros de transformación.

1.4. Comportamiento acústico

Los diseñadores de automóviles han procurado reducir los ruidos mediante

numerosas medidas. Este fue uno de los motivos para el cambio del ABS por el PP en

el interior de los coches.

Con piezas de compuestos de PP reforzados, los problemas de ruidos pueden

reducirse drásticamente, e incluso eliminarse por completo, principalmente gracias a

dos características de dicho material:

•Alto factor mecánico de pérdidas.

•Escasa tendencia al deslizamiento (stick-slip).

Teniendo en cuenta un proceso de amortiguación de ruido, la energía vibratoria

se transforma en calor mediante fricción interna, lo que se llama amortiguación interna.

Una medición para la amortiguación interna es el factor mecánico de pérdida. En la

figura 2 se observa la diferencia existente entre el polipropileno y el ABS, [...]. La zona

grisácea corresponde a la ganancia de amortiguación del PP respecto al ABS.

1.5. Calidad superficial

Dada la infinidad de componentes de plástico visibles, la calidad de su

superficie tiene una extraordinaria importancia. Los tipos de polipropilenos reforzados

con productos minerales ofrecen de entrada superficies mates y de tacto “cálido”.

Otra cosa importante que se exige a las superficies es una presentación lo más

uniforme posible, sin “aguas” ni estrías o líneas de flujo visibles ni efectos

mates/brillantes. Los compuestos de PP se optimizan día a día en este sentido,

Page 86: Variaciones dimensionales en piezas plásticas de inyección ...

presentando ventajas evidentes los reforzados con talco. La selección específica de

los tipos de minerales utilizados, además de la mayor fluidez de la base polimérica

elegida y el uso de grados de reología controlada de alta fluidez y estrecha distribución

de pesos moleculares, han mejorado claramente la calidad de las superficies.

Pero en los últimos tiempos, la propiedad que más problemas está generando

a nuestros clientes es la deficiente resistencia al rayado de los compuestos reforzados

con talco. Este es un mineral extremadamente blando, con valor de 1 en la escala de

dureza de Mohs, lo que explicaría por qué los grados de PP reforzados con talco son

susceptibles de tener problemas de baja resistencia al rayado.

Page 87: Variaciones dimensionales en piezas plásticas de inyección ...

ANEXO 4

Page 88: Variaciones dimensionales en piezas plásticas de inyección ...

85

ANEXO 5

Page 89: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE PARA MÁQUINAS DE INYECCIÓN

Proyecto / Cliente: Grupo: Fecha:

Ref.Molde Postizos: Maquina No: (34)

ESQUEMA CÁMARA CALIENTECARACTERISTICAS DE LA PIEZARef. pieza

Cerrar molde 1,3PROGRAMA DE ROBOT Y MANO RetardoInyec.No. Programa % de Trabajo: Inyección 2 Tolerancia ±1seg

No. Mano Apertura molde: 550 Compac. 6 Tolerancia ±20% seg

Refrigeración 65Grueso de molde (mm): Abrir molde 3,5 TEMPERATURAS CÁMARA CALIENTE Tolerancia ± 15ºC

Fuerza de cierre mínima (Tn): RetardoExpuls. Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9Expuls. salida 4,6 190

PLASTIFICACION Recogida 0,6 TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tolerancia ± 15ºC

Expuls. entrada Boq Z1 Z2 Z3 Z4 Z5 Z6Revoluciones del rodar (rpm,%): Total 200 200 195 190 185Contrapresión (bar, %): Referencia Denominación PostizosTiempo de dosificación (seg) 10 873 54 S01 Tubo con envolutas Phi II, sin pipeta

11 216 28 S01 Tubo con envolutas Phi II, con pipeta 903 634

DESCOMPRESIÓN.Velocidad % Valvula1 - abrir en cerrar enRecorrido Valvula2 - abrir en cerrar en

INYECCION 1 2 3 4 5 6 7 8 9 10 11 12

Velocidad 60 20 Tolerancia ± 10mm/s

Posicion 30Presión 70 70 Tolerancia ± 50bar, ±15%

PRESIÓN DE COMPACTACIÓN Cojín de material (mm):Posicion cambio: Tiempo 6 Tolerancia ± 20%

bar 20 mm Tolerancia ± 5mm Presión 30% Tolerancia ± 10bar, ±15%

REFRIGERACIÓN, ATEMPERACIÓN MOLDE.Caudalimetro

1234567

Caudalimetro

1234567

SECUENCIA DE MOLDE PROGRAMACIÓN NOYOS12 Noyo1 Inyecc.3 Expuls.4 Noyo2 Inyecc.5 Expuls.6 Noyo3 Inyecc.7 Expuls.8 Noyo4 Inyecc.9 Expuls.

10 Noyo5 Inyecc.11 Expuls.

Expulsión Maq. RetrocesoSoplar aireExpulsión Maq. AvanzaAbrir MoldeInyección

Prog: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 con mov. Paralelos

Cerrar molde Programa Prioridad Presión %Vel Comentarios

50 Corredera lado operario E1-S4 S1-E450 Corredera lado contrario operario E2-S5 S2-E550 Macho inferior E6-S650 Macho superior E3-S3 70

Caudal lt/min y TºC

Zona refrigerada parte expulsión Circuitos molde Puen tes Tº atemp. ºC Nº circuito multiconect

Puentes Tº atemp. ºC Nº circuito

multiconecto30 Boquilla E1-S1

50%8mm

14

Caudal lt/min y TºC

Zona refrigerada parte inyección Circuitos molde

Final de carga (mm) *: 130

40% 8320%20

16 797 22 211 TPE

564220

10 873 54 S01 Tubo con envolutas Phi II s\ pipeta 230,5 235,1 225,9

Ref.Material Material de la pieza Tiempos de ciclo

FORD 1217-06 FUELLE Phi II 170-350Tn 18/10/2013

903 594 ver tabla 900,030 ,034 ,037 ,038

Denominación pieza Peso [gr] Lim.Sup. Lim.Inf.

Presión de aire: 0,3

Velocidades apertura: 20-8-8-20

Posiciones apertura: 75-95-350

Macho atemperado: 70ºC

Expulsor:

Abrir: 6%-6% (cambio en 40mm)

Utiliza secuencial

Sepro Battenfeld

abierta compactación

abierta compactación

después de compactación

después de rodar

Demag

Fichero: Fuelle inyectado PP+EPDM.xlsx Revisión: P1

Page 90: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE PARA MÁQUINAS DE INYECCIÓN

Proyecto / Cliente: Grupo: Fecha:

Ref.Molde Postizos: Maquina No: (34)

ESQUEMA CÁMARA CALIENTECARACTERISTICAS DE LA PIEZARef. pieza

Cerrar molde 5PROGRAMA DE ROBOT Y MANO RetardoInyec.No. Programa % de Trabajo: Inyección 3,1 Tolerancia ±1seg

No. Mano Apertura molde: 550 Compac. 10,9 Tolerancia ±20% seg

Refrigeración 55Grueso de molde (mm): Abrir molde 8 TEMPERATURAS CÁMARA CALIENTE Tolerancia ± 15ºC

Fuerza de cierre mínima (Tn): RetardoExpuls. Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9Expuls. salida 5,2 220

PLASTIFICACION Recogida 0,6 TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tolerancia ± 15ºC

Expuls. entrada Boq Z1 Z2 Z3 Z4 Z5 Z6Revoluciones del rodar (rpm,%): Total 200 200 195 190 185Contrapresión (bar, %): Referencia Denominación PostizosTiempo de dosificación (seg) 10 873 54 S01 Tubo con envolutas Phi II, sin pipeta 903 594

11 216 28 S01 Tubo con envolutas Phi II, con pipeta 903 634

DESCOMPRESIÓN.Velocidad % Valvula1 - abrir en cerrar enRecorrido Valvula2 - abrir en cerrar en

INYECCION 1 2 3 4 5 6 7 8 9 10 11 12

Velocidad 20 60 20 Tolerancia ± 10mm/s

Posicion 110 30Presión 70 70 70 Tolerancia ± 50bar, ±15%

PRESIÓN DE COMPACTACIÓN Cojín de material (mm):Posicion cambio: Tiempo 10,9 Tolerancia ± 20%

bar 18 mm Tolerancia ± 5mm Presión 32% Tolerancia ± 10bar, ±15%

REFRIGERACIÓN, ATEMPERACIÓN MOLDE.Caudalimetro

1234567

Caudalimetro

12 Corredera lado contrario operario34567

SECUENCIA DE MOLDE PROGRAMACIÓN NOYOS12 Noyo1 Inyecc.3 Expuls.4 Noyo2 Inyecc.5 Expuls.6 Noyo3 Inyecc.7 Expuls.8 Noyo4 Inyecc.9 Expuls.

10 Noyo5 Inyecc.11 Expuls.

Expulsión Maq. RetrocesoSoplar aireExpulsión Maq. AvanzaAbrir MoldeInyección

Prog: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 con mov. Paralelos

Cerrar molde Programa Prioridad Presión %Vel Comentarios

70 Macho inferior E6-S6

30 E2-S5 S2-E540 Corredera lado operario E1-S4 S1-E4

Macho superior E3-S3 65

Medida caudalím.

Zona refrigerada parte expulsión Circuitos molde Puen tes Tº atemp. ºC Nº circuito multiconect

Puentes Tº atemp. ºC Nº circuito

multiconecto50 Boquilla E1-S1

50%8mm

3 - 10

Medida caudalím.

Zona refrigerada parte inyección Circuitos molde

Final de carga (mm) *: 120

50% 8820%21

16 797 22 211 TPE

560220

10 873 54 S01 Tubo con envolutas Phi II s\ pipeta 232,2 236,8 227,6

Ref.Material Material de la pieza Tiempos de ciclo

FORD 1217-06 FUELLE Phi II 170-350Tn 18/10/2013

903 594 ver tabla 900,030 ,034 ,037 ,038

Denominación pieza Peso [gr] Lim.Sup. Lim.Inf.

Presión de aire: 0,25

Velocidades apertura: 20-8-8-20

Posiciones apertura: 75-95-350

Macho atemperado: 65ºC

Expulsor:

Abrir: 6%-6% (cambio en 40mm)

Utiliza secuencial

Sepro Battenfeld

abierta compactación

abierta compactación

después de compactación

después de rodar

Demag

Fichero: Fuelle inyectado PP+EPDM.xlsx Revisión: P2

Page 91: Variaciones dimensionales en piezas plásticas de inyección ...

86

ANEXO 6

Page 92: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 75,60

2 2

3

10

9

3

1

0

1

2

3

4

5

6

7

8

9

10

11

LI=75,10

LS=76,10

VN=75,60 Med.=75,62 +3s-3s

Ø55 ±0.8 (mm)75,1385 75,2538 75,3692 75,4846 75,6000 75,7154 75,8308 75,9462 76,0615 76,1769

Toler. Inferior : 75,10

Resultados

Nº de datos : 30

Media : 75,624

Sigma : 0,0546

Máximo : 75,72

Mínimo : 75,50

Ppk : 2,903

> TI Real : 0,00

> TI Estimado : 0,00

Test KS (D) : 0,163

Test KS (P) : 0,401

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=75,10

LS=76,10

VN=75,60 Med.=75,62 +3s-3s

Ø55 ±0.8 (mm)75,1385 75,2538 75,3692 75,4846 75,6000 75,7154 75,8308 75,9462 76,0615 76,1769

Distribución

DISTRIBUCION NORMAL

Media= 75,62433 Sigma= 0,05463

Datos75,67 75,62 75,72 75,62 75,53 75,64 75,67 75,62 75,57 75,6575,50 75,69 75,59 75,61 75,55 75,64 75,70 75,61 75,57 75,6175,71 75,67 75,67 75,66 75,61 75,52 75,63 75,61 75,64 75,63

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1087354S02 Nº Modificación : 00 Característica : Ø55 ±0.8 Código : Ø 55 ± 0,8

Descripción : Diámetro interior boca grande (P1) Nº Estudio : 2 Fecha Estudio : 26/03/2014 17:31:55

Operario : 3275 Máquina : LINEA DE MONTAJEEquipo medida : MMC 3D 0-1624 Orden de trabajo : ----------

Pág: 1 26/03/2014

Page 93: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 75,60

1 1 1

2

10

13

2

0,0

2,5

5,0

7,5

10,0

12,5

15,0

LI=75,10

LS=76,10

VN=75,60 Med.=75,40 +3s-3s

Ø55 ±0.8 (mm)75,1385 75,2538 75,3692 75,4846 75,6000 75,7154 75,8308 75,9462 76,0615 76,1769

Toler. Inferior : 75,10

Resultados

Nº de datos : 30

Media : 75,397

Sigma : 0,0509

Máximo : 75,47

Mínimo : 75,25

Ppk : 1,946

> TI Real : 0,00

> TI Estimado : 0,00

Test KS (D) : 0,176

Test KS (P) : 0,310

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=75,10

LS=76,10

VN=75,60 Med.=75,40 +3s-3s

Ø55 ±0.8 (mm)75,1385 75,2538 75,3692 75,4846 75,6000 75,7154 75,8308 75,9462 76,0615 76,1769

Distribución

DISTRIBUCION NORMAL

Media= 75,39733 Sigma= 0,05092

Datos75,42 75,36 75,42 75,40 75,44 75,40 75,40 75,43 75,35 75,3875,31 75,25 75,26 75,41 75,43 75,44 75,38 75,39 75,39 75,3775,43 75,39 75,44 75,40 75,42 75,42 75,44 75,43 75,45 75,47

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1087354S02 Nº Modificación : 00 Característica : Ø55 ±0.8 Código : Ø 55 ± 0,8

Descripción : Diámetro interior boca grande (P2) Nº Estudio : 2 Fecha Estudio : 26/03/2014 17:31:55

Operario : 3275 Máquina : LINEA DE MONTAJEEquipo medida : MMC 3D 0-1624 Orden de trabajo : ----------

Pág: 1 26/03/2014

Page 94: Variaciones dimensionales en piezas plásticas de inyección ...

87

ANEXO 7

Page 95: Variaciones dimensionales en piezas plásticas de inyección ...

88

SECADO DEL MATERIAL

Una vez tenemos el material en nuestra empresa, lo hemos chequeado y

verificado que es el correcto y con las características requeridas, se procede a secarlo

para que esté listo para su utilización. Este proceso de secado consiste en dotar al

termoplástico del grado de humedad apropiado para la correcta fabricación de las

piezas.

Procesar materiales con exceso de humedad puede dar lugar a diversos

defectos en la producción de las piezas terminadas. Estos defectos pueden ser tanto

visuales como también funcionales. En inyección los principales defectos son

rechupes, marcas de fisuras en la superficie, degradación del material, baja viscosidad

de fusión entre otros.

Podemos separar los polímeros en dos grupos definidos: los que son hi-

groscópicos y los que no. Los no higroscópicos como el polietileno, polipropileno,

poliestireno, PVC, pueden acumular humedad solamente sobre la superficie del

material si son expuestos en condiciones de alta humedad. En cambio, los materiales

higroscópicos como el nylon, ABS, PET, policarbonato, tienen mucha afinidad por el

agua, por lo tanto absorben la humedad dentro de su estructura molecular.

El proceso de secado de los materiales se realiza mediante el flujo continuo de

aire seco caliente, en silos denominados deshumidificadores. El aire es secado

mediante tamices moleculares.

En la Fig. 7.1 se muestra un esquema básico del proceso de secado de un

material.

Page 96: Variaciones dimensionales en piezas plásticas de inyección ...

89

Fig. 7.1 Esquema del proceso de secado de un material

Eficiencia del secado

Para poder quitar con eficiencia la humedad existen cuatro parámetros

fundamentales a tener en cuenta a la hora de secar cada material. Estos son: la

temperatura, el punto de rocío, el tiempo y el flujo de aire.

Temperatura: en polímeros higroscópicos las moléculas de agua son conducidas

dentro de las cadenas del polímero. El aumento de la temperatura debilita la unión

entre las cadenas y las moléculas de agua. Por encima de cierta temperatura,

dependiendo del material, las moléculas de agua se mueven libremente.

Punto de rocío: la temperatura del punto de rocío es la temperatura a

la cual ocurre la condensación del agua. El punto de rocío provoca un aumento de la

presión de vapor en el interior del polímero. Este aumento provoca la

disminución de la humedad en el material.

Tiempo: la deshumidificadón del material recién comienza cuando se alcanza la

temperatura correcta pero no es instantánea; la humedad tarda un tiempo en migrar

Page 97: Variaciones dimensionales en piezas plásticas de inyección ...

90

del interior del polímero hada la superficie para luego salir completamente de la

superficie del material.

Flujo de aire: el aire transfiere el calor y elimina la humedad de la superficie del

polímero. Si el flujo de aire no es suficiente el material no llegará a calentarse a la

temperatura necesaria durante el tiempo de residencia en la tolva con lo cual el

polímero quedará con cierta humedad. En cambio, si el flujo es excesivo el material no

logrará enfriar lo suficiente el aire que retorna. Esto no es deseado porque se reduce

la capacidad del desecante, aumenta el punto de rocío y puede llegar a dañar al

soplador.

Pellets de menor tamaño secarán más rápido por tener una mayor relación

superficie/volumen. La humedad del interior tarda menos en salir al exterior de cada

partícula de material.

Además, al tener menor tamaño, el aire entre los pellets es menor, con lo cual

se reduce el flujo de la corriente de aire para el secado disminuyendo la capacidad de

deshumidificación si no se tiene en cuenta el tamaño.

Por otro lado, los pellets de mayor tamaño requieren más tiempo de

permanencia en la tolva de secado ya que la humedad tarda más en salir a la

superficie. Y para el secado, la corriente de aire necesaria es menor al poseer más

espacio libre entre partículas del material.

Para el proceso que se realiza debe saberse si el material a utilizar requiere de

deshumidificadón y, si es así, se deberá contar con el equipo adecuado para poder

realizar dicho tratamiento. Por ejemplo: una humedad elevada en el material a inyectar

puede generar inconveniente en las piezas terminadas, pues presentan una fragilidad

elevada. Estos inconvenientes en las piezas se pueden hacer manifiesto en corto o

largo plazo.

Page 98: Variaciones dimensionales en piezas plásticas de inyección ...

91

ANEXO 8

Page 99: Variaciones dimensionales en piezas plásticas de inyección ...

Hostacom X G3 U10 100001

Compounded Polyolefin

Product Description

Hostacom X G3 U10 is a 30% glass coupled PP homopolymer with high flow, high stiffness, low

creep under load at elevated temperatures.

Product Characteristics

Status Commercial: Active

Test Method used ISO

Availability Europe, North America, Latin America

Typical Properties Method Value Unit

Physical

Density ISO 1183 1.14 g/cm³

Melt volume flow rate (230°C/2.16Kg) ISO 1133 15 cm³/10min

Mechanical

Tensile Modulus (Secant) ISO 527-1, -2 6500 MPa

Tensile Stress at Yield (50 mm/min) ISO 527-1, -2 80 MPa

Tensile Strain at Yield (50 mm/min) ISO 527-1, -2 3.0 %

Impact

Charpy unnotched impact strength (23 °C, Type 1,

Edgewise)

ISO 179 25 kJ/m²

Charpy notched impact strength (23 °C, Type 1,

Edgewise, Notch A)

ISO 179 6.0 kJ/m²

Thermal

Heat deflection temperature A (1.80 MPa) Unannealed ISO 75A-1, -2 140 °C

Vicat softening temperature (A50 (50°C/h 10N)) ISO 306 130 °C

Notes

Typical properties; not to be construed as specifications.

© LyondellBasell Industries Holdings, B.V. 2012

LyondellBasell markets this product through the following entities:

Equistar Chemicals, LP•

Basell Sales & Marketing Company B.V.•

Basell Asia Pacific Limited•

Basell International Trading FZE•

LyondellBasell Australia Pty Ltd•

For the contact details of the LyondellBasell company selling this product in your country, please visit

http://www.lyondellbasell.com/.

Seite 1 von 2Basell - Hostacom X G3 U10 100001 - Compounded Polyolefin

08.04.2013https://polymers.lyondellbasell.com/portal/binary/com.vignette.vps.basell.productgrad...

Page 100: Variaciones dimensionales en piezas plásticas de inyección ...

Before using a product sold by a company of the LyondellBasell family of companies, users should make

their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY) OTHER THAN AS SEPARATELY AGREED TO BY THE PARTIES IN A CONTRACT.

This product(s) may not be used in:

(i) any U.S. FDA Class I, Health Canada Class I, and/or European Union Class I medical devices, without prior notification to Seller for each specific product and application; or

(ii) the manufacture of any of the following, without prior written approval by Seller for each specific product and application: U.S. FDA Class II medical devices; Health Canada Class II or III medical devices;

European Union Class II medical devices; or any equivalent U.S. FDA, Health Canada, or European Union regulations pertaining to medical devices; packaging in direct contact with a pharmaceutical active

ingredient and/or dosage form; and tobacco-related products and applications. This product(s) may not

be used in the manufacture of any of the following applications: U.S. FDA Class III medical devices; Health Canada Class IV medical devices; European Class III medical devices; applications involving

permanent implantation into the body; life-sustaining medical applications; and lead, asbestos or MTBE related applications. All references to the U.S. FDA, Health Canada and European Union regulations

include another country’s equivalent regulatory classification.

Users should review the applicable Material Safety Data Sheet before handling the product.

Addhere, Adflex, Adstif, Adsyl, Akoafloor, Akoalit, Alathon, Alkylate, Amazing Chemistry, Aquamarine, Aquathene, Arconate, Arcopure, Arcosolv, Arctic Plus, Arctic Shield, Avant, Catalloy, Clyrell, CRP, Crystex,

Dexflex, Duopac, Duoprime, Explore & Experiment, Filmex, Flexathene, Glacido, Hifax, Histif, Hostacom, Hostalen, Ideal, Integrate, Koattro, LIPP, Lucalen, Luflexen, Lupolen, Lupolex, Luposim, Lupostress,

Lupotech, Metocene, Microthene, Moplen, MPDIOL, Nerolex, Nexprene, Petrothene, Plexar, Polymeg, Pristene, Prodflex, Pro-Fax, Punctilious, Purell, SAA100, SAA101, Sequel, Softell, Spherilene, Spheripol,

Spherizone, Starflex, Stretchene, Superflex, TBAc , Tebol, T-Hydro, Toppyl, Trans4m, Tufflo, Ultrathene,

Vacido and Valtec are trademarks owned or used by the LyondellBasell family of companies.

Adsyl, Akoafloor, Akoalit, Alathon, Aquamarine, Arconate, Arcopure, Arcosolv, Arctic Plus, Arctic Shield, Avant, CRP, Crystex, Dexflex, Duopac, Duoprime, Explore & Experiment, Filmex, Flexathene, Hifax,

Hostacom, Hostalen, Ideal, Integrate, Koattro, Lucalen, Lupolen, Microthene, Moplen, MPDIOL, Nexprene, Petrothene, Plexar, Polymeg, Pristene, Pro-Fax, Punctilious, Purell, Sequel, Softell, Spheripol, Spherizone,

Starflex, Tebol, T-Hydro, Toppyl, Tufflo and Ultrathene are registered in the U.S. Patent and Trademark Office.

Release Date: 09 Apr 2008

Seite 2 von 2Basell - Hostacom X G3 U10 100001 - Compounded Polyolefin

08.04.2013https://polymers.lyondellbasell.com/portal/binary/com.vignette.vps.basell.productgrad...

Page 101: Variaciones dimensionales en piezas plásticas de inyección ...

ANEXO 9

Page 102: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE DE PARÁMETROS PARA INYECTORAS Rev 00(34) ansbsmnsmb

Proyecto / Cliente: Fecha: 31/01/2014 TIEMPOS DE CICLOCerrar molde 4,2 SECUENCIA DE MOLDE

MANO ROBOT Inyección 2,2 Tol: ± 0,3 s 1N°Programa: % de Trabajo: % Compactación 6,8 Tol: ± 1 s PROTECCIÓN DE MOLDE: 2MOLDE Refrigeración 18 Tol: ± 1 s Carrera de inicio: mm Fin: mm 3Ref.Molde: Cavidades: 2 Abrir molde 5,7 Velocidad: % 4Apertura molde: 400 mm Girar molde Presión: 60 % 5Fuerza de cierre mínima: 250 kN Extracción pieza Tiempo: s 6Grueso de molde: 597 mm TOTAL 42 Tol: ± 1 s 7CARACTERISTICAS DE LA PIEZA 8

Ref. pieza

CIRCUITOS REFRIGERACIÓN MOLDE

TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tol:Boq Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 +15°C 1240 240 230 225 220 -15ºC 2

TEMPERATURAS CÁMARA CALIENTE Tol: 3Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 +15°C 4240 240 240 240 240 240 -15ºC 5PLASTIFICACION DESCOMPRESIÓN 6

Final de carga: 130 mm 7Revoluciones del rodar: 100 mm/s Velocidad 40 mm/sContrapresión: 15 bar Recorrido 8 mmTiempo de dosificación (s): Tol: ± 4 s 1

2Válvula 1 - 3Válvula 2 - 4Válvula 3 - 5Válvula 4 - 6

INYECCION 71 2 3 4 5 6 7 8 9 10

Velocidad % 25 50 20 Tol: ± 10 mm/s ATEMPERACIÓN MOLDEPosicion mm 110 35Presión % 65 65 65 Tol: ± 9,8 %

PRESIÓN DE COMPACTACIÓN Tol: ± 5,3 bar1 2 3 4 5 6 7 8 9 10

Tiempo s 6,8Presión bar 35Cojín de material: mm Tol:Posicion cambio: cm³ Tol: ± 2 mm

OBSERVACIONESPRUEBA DE COJÍN EN EL HUSILLO Y COMPROBAMOS QUE NO CIERRA EL ANILLO

Expuls.Noyo4Inyecc.Expuls.Noyo3Inyecc.Expuls.

4 30 30

Noyo2Inyecc.

Velocidad Comentarios

Noyo1Inyecc. 4 30 30 MOLDMASTERExpuls.

30

PROGRAMACIÓNNOYOS

Programa: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 Con mov. paralelos

Programa Prioridad Presión

Temperatura Zona refrigerada parte móvil Circuitos Puentes

Temperatura Zona refrigerada parte fija Circuitos Puentes

NOYO 1 Inicio inyección Fin enfriamientoAbrir en Cerrar en Compactación 80 4 - 5 - 6

Medida Zona refrigerada parte móvilCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

80 1 - 2 - 3

DESPUÉS DE RODAR

80 MOLDMASTER80 3 - 4

Medida Zona refrigerada parte fijaCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

80 1 - 2

Ref.Material Material de la pieza Tª secado(°C) Tiempo secado16 707 22 231 PP - GF30 HOSTACOM X G3 U10 BLACK 100001

Denominación pieza Peso (gr) Lím.Sup. (gr) Lím.Inf.(gr)11 294 37 P01 SOPORTE TMAP 117,5 121,03 113,98

903 903

FORD 1329Inyectora: 900.034

Utiliza secuencial

abierta

abierta

abierta

abierta

Page 103: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE DE PARÁMETROS PARA INYECTORAS Rev 01(34) ansbsmnsmb

Proyecto / Cliente: Fecha: 14/04/2014 TIEMPOS DE CICLOCerrar molde 4 SECUENCIA DE MOLDE

MANO ROBOT Inyección 2,1 Tol: ± 0,3 s 1N°Programa: % de Trabajo: % Compactación 1 Tol: ± 1 s PROTECCIÓN DE MOLDE: 2MOLDE Refrigeración 4+10 Tol: ± 1 s Carrera de inicio: 300 mm Fin: mm 3Ref.Molde: Cavidades: 2 Abrir molde 3 Velocidad: 25 % 4Apertura molde: 350 mm Girar molde Presión: 50 % 5Fuerza de cierre mínima: 250 kN Extracción pieza 1,9 Tiempo: 4 s 6Grueso de molde: 595 mm TOTAL 29 Tol: ± 1 s 7CARACTERISTICAS DE LA PIEZA 8

Ref. pieza

CIRCUITOS REFRIGERACIÓN MOLDE

TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tol:Boq Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 +15°C 1230 240 230 220 210 -15ºC 2

TEMPERATURAS CÁMARA CALIENTE Tol: 3Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 +15°C 4240 240 240 240 240 240 -15ºC 5PLASTIFICACION DESCOMPRESIÓN 6

Final de carga: 90 mm 7Revoluciones del rodar: 100 % Velocidad 50 mm/sContrapresión: 20 % Recorrido 8 mmTiempo de dosificación (s): 4,1 Tol: ± 4 s 1

2Válvula 1 - 3Válvula 2 - 4Válvula 3 - 5Válvula 4 - 6

INYECCION 71 2 3 4 5 6 7 8 9 10

Velocidad % 25 25 50 Tol: ± 10 % ATEMPERACIÓN MOLDEPosicion mm 25 70Presión % 50 50 50 Tol: ± 7,5 %

PRESIÓN DE COMPACTACIÓN Tol: ± 3,8 bar1 2 3 4 5 6 7 8 9 10

Tiempo s 1Presión bar 25Cojín de material: mm Tol: ± 3 mmPosicion cambio: mm Tol: ± 2 mm

OBSERVACIONESTiempo de enfriamiento: 4s + 10s(de noyo salir)=14s

Expuls.Noyo4Inyecc.Expuls.Noyo3Inyecc.Expuls.

4 30 30 Por tiempo entrar 1s y salir 14s

Noyo2Inyecc.

Velocidad Comentarios

Noyo1Inyecc. 4 30 30 MOLDMASTERExpuls.

18

PROGRAMACIÓNNOYOS

Programa: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 Con mov. paralelos

Programa Prioridad Presión

50°C FIGURA CAVIDAD 1 Y CAVIDAD 2 1 y 4 1 y 412

Temperatura Zona refrigerada parte móvil Circuitos Puentes

Temperatura Zona refrigerada parte fija Circuitos Puentes

NOYO 1 Inicio inyección Fin enfriamientoAbrir en Cerrar en Compactación 80 4 - 5 - 6

Medida Zona refrigerada parte móvilCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

80 1 - 2 - 3

DESPUÉS DE RODAR

80 3 - 480 1 - 2

Medida Zona refrigerada parte fijaCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

80 MOLDMASTER

Ref.Material Material de la pieza Tª secado(°C) Tiempo secado16 707 22 231 PP - GF30 HOSTACOM X G3 U10 BLACK 100001

Denominación pieza Peso (gr) Lím.Sup. (gr) Lím.Inf.(gr)11 294 37 P01 CODO SOPORTE IAT 116 119,48 112,52

903 903

FORD 1329Inyectora: 900.034

Utiliza secuencial

abierta

abierta

abierta

abierta

Page 104: Variaciones dimensionales en piezas plásticas de inyección ...

96

ANEXO 10

Page 105: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 70,30

29

1

0

5

10

15

20

25

30

35

LI=70,00

LS=70,60

VN=70,30 Med.=70,31+3s-3s

0 (mm)70,0391 70,1043 70,1696 70,2348 70,3000 70,3652 70,4304 70,4957 70,5609 70,6261

Toler. Superior : 70,60

Toler. Inferior : 70,00

Resultados

Nº de datos : 30

Media : 70,309

Sigma : 0,0040

Máximo : 70,32

Mínimo : 70,30

Pp : 24,840

Ppk : 24,095

> TS Real : 0,00

< TI Real : 0,00

> TS Estimado : 0,00

< TI Estimado : 0,00

Test KS (D) : 0,465

Test KS (P) : 0,000

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=70,00

LS=70,60

VN=70,30 Med.=70,31+3s-3s

0 (mm)70,0391 70,1043 70,1696 70,2348 70,3000 70,3652 70,4304 70,4957 70,5609 70,6261

Distribución

DISTRIBUCION NORMAL

Media= 70,30900 Sigma= 0,00403

Datos70,31 70,31 70,31 70,30 70,31 70,30 70,31 70,31 70,31 70,3170,31 70,31 70,31 70,31 70,31 70,31 70,31 70,31 70,31 70,3170,31 70,32 70,31 70,31 70,30 70,31 70,31 70,30 70,31 70,31

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1051436S01-1 Nº Modificación : -- Característica : 0 Código : Ø70.3 ± 0.3

Descripción : Diámetro exterior boca cliente (P1) Nº Estudio : 2 Fecha Estudio : 02/04/2014 14:09:44

Operario : R. Barra Máquina : 1Equipo medida : 00-0048 Orden de trabajo : --

Pág: 1

Page 106: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 70,30

7

12

8

3

0,0

2,5

5,0

7,5

10,0

12,5

LI=70,00

LS=70,60

VN=70,30 Med.=70,15+3s-3s

0 (mm)70,0391 70,1043 70,1696 70,2348 70,3000 70,3652 70,4304 70,4957 70,5609 70,6261

Toler. Superior : 70,60

Toler. Inferior : 70,00

Resultados

Nº de datos : 30

Media : 70,152

Sigma : 0,0094

Máximo : 70,17

Mínimo : 70,14

Pp : 10,692

Ppk : 5,429

> TS Real : 0,00

< TI Real : 0,00

> TS Estimado : 0,00

< TI Estimado : 0,00

Test KS (D) : 0,232

Test KS (P) : 0,080

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=70,00

LS=70,60

VN=70,30 Med.=70,15 +3s-3s

0 (mm)70,0391 70,1043 70,1696 70,2348 70,3000 70,3652 70,4304 70,4957 70,5609 70,6261

Distribución

DISTRIBUCION NORMAL

Media= 70,15233 Sigma= 0,00935

Datos70,16 70,17 70,15 70,17 70,14 70,15 70,15 70,15 70,16 70,1670,16 70,14 70,17 70,14 70,15 70,14 70,15 70,16 70,15 70,1470,16 70,15 70,15 70,15 70,15 70,16 70,15 70,16 70,14 70,14

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1051436S01-1 Nº Modificación : -- Característica : 0 Código : Ø70.3 ± 0.3

Descripción : Diámetro exterior boca cliente (P2) Nº Estudio : 2 Fecha Estudio : 02/04/2014 14:09:44

Operario : R. Barra Máquina : 1Equipo medida : 00-0048 Orden de trabajo : --

Pág: 1

Page 107: Variaciones dimensionales en piezas plásticas de inyección ...

97

ANEXO 11

Page 108: Variaciones dimensionales en piezas plásticas de inyección ...

PA 6, 30 % glass fibers, injection molding, heat-aging stabilized

ISO Shortname: ISO 1874-PA 6, GHR, 14-090, GF30

Property Test Condition Unit Standard guidevalued.a.m. cond.

Rheological properties

C Molding shrinkage, parallel 60x60x2; 280 °C / MT 80°C; 600 bar

% ISO 294-4 0.3

C Molding shrinkage, transverse 60x60x2; 280 °C / MT 80°C; 600 bar

% ISO 294-4 0.69

Post- shrinkage, parallel 60x60x2; 120 °C; 4 h % ISO 294-4 0.06

Post- shrinkage, transverse 60x60x2; 120 °C; 4 h % ISO 294-4 0.13

Mechanical properties (23 °C/50 % r. h.)

C Tensile modulus 1 mm/min MPa ISO 527-1,-2 9500 5800

C Tensile Stress at break 5 mm/min MPa ISO 527-1,-2 170 100

C Tensile Strain at break 5 mm/min % ISO 527-1,-2 3.0 6.0

C Tensile creep modulus 1 h MPa ISO 899-1 5100

C Tensile creep modulus 1000 h MPa ISO 899-1 4100

C Charpy impact strength 23 °C kJ/m² ISO 179-1eU 75 90

C Charpy impact strength -30 °C kJ/m² ISO 179-1eU 65 60

C Charpy notched impact strength 23 °C kJ/m² ISO 179-1eA 10 20

C Charpy notched impact strength -30 °C kJ/m² ISO 179-1eA < 10 10

Izod impact strength 23 °C kJ/m² ISO 180-1U 65 80

Izod impact strength -30 °C kJ/m² ISO 180-1U 60 55

Izod notched impact strength 23 °C kJ/m² ISO 180-1A 10 20

Izod notched impact strength -30 °C kJ/m² ISO 180-1A <10 <10

Flexural modulus 2 mm/min MPa ISO 178-A 9300 5000

Flexural strength 2 mm/min MPa ISO 178-A 270 160

Flexural strain at flexural strength 2 mm/min % ISO 178-A 4.0 6.0

Flexural stress at 3.5 % strain 2 mm/min MPa ISO 178-A 260 140

C Puncture maximum force 23 °C N ISO 6603-2 1000 1230

C Puncture maximum force -30 °C N ISO 6603-2 860

C Puncture energy 23 °C J ISO 6603-2 3 6

C Puncture energy -30 °C J ISO 6603-2 3

Ball indentation hardness N/mm² ISO 2039-1 210 100

Thermal properties

C Melting temperature 10 °C/min °C ISO 11357-1,-3 222

C Temperature of deflection under load 1.80 MPa °C ISO 75-1,-2 200

C Temperature of deflection under load 0.45 MPa °C ISO 75-1,-2 215

Vicat softening temperature 50 N; 120 °C/h °C ISO 306 > 200

C Coefficient of linear thermal expansion, parallel 23 to 55 °C 10-4/K ISO 11359-1,-2 0.2

C Coefficient of linear thermal expansion, transverse 23 to 55 °C 10-4/K ISO 11359-1,-2 1.0

Durethan BKV 30 H2.0 901510

Page 1 of 3

Edition 16.04.2014

Page 109: Variaciones dimensionales en piezas plásticas de inyección ...

Property Test Condition Unit Standard guidevalued.a.m. cond.

C Burning behavior UL 94 (1.6 mm) Class UL 94 HB

C Burning behavior UL 94 3.2 mm Class UL 94 HB

C Oxygen index Method A % ISO 4589-2 22

Glow wire test (GWFI) 1.5 mm °C IEC 60695-2-12 700

Burning behavior US-FMVSS302 >=1.0 mm ISO 3795 passed

C Vicat softening temperature 50 N; 50 °C/h °C ISO 306 200

Electrical properties (23 °C/50 % r. h.)

C Relative permittivity 100 Hz - IEC 60250 4.2 12

C Relative permittivity 1 MHz - IEC 60250 3.8 4.4

C Dissipation factor 100 Hz 10-4 IEC 60250 100 2550

C Dissipation factor 1 MHz 10-4 IEC 60250 170 780

C Volume resistivity Ohm·m IEC 60093 1E13 1E10

C Surface resistivity Ohm IEC 60093 1E14 1E13

C Electric strength 1 mm kV/mm IEC 60243-1 35 30

C Comparative tracking index CTI Solution A V IEC 60112 425

Other properties (23 °C)

C Water absorption (Saturation value) Water at 23 °C % ISO 62 7.0

C Water absorption (Equilibrium value) 23 °C; 50 % RH % ISO 62 2.1

C Density kg/m³ ISO 1183 1360

Bulk density kg/m³ ISO 60 700

Processing conditions for test specimens

C Injection molding-Melt temperature °C ISO 294 280

C Injection molding-Mold temperature °C ISO 294 80

Processing recommendations

Drying temperature dry air dryer °C - 80

Drying time dry air dryer h - 2-6

Residual moisture content % Acc. to KarlFischer

0.03-0.12

Melt temperature (Tmin - Tmax) °C - 270-290

Mold temperature °C - 80-120

C These property characteristics are taken from the CAMPUS plastics data bank and are based on the international catalogue of basic data forplastics according to ISO 10350.

Durethan BKV 30 H2.0 901510

Page 2 of 3

Edition 16.04.2014

Page 110: Variaciones dimensionales en piezas plásticas de inyección ...

Disclaimer

Standard Disclaimer

The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way ofproduction evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products,technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specificanalysis must at least include testing to determine suitability from a technical as well as health, safety and environmental standpoint. Such testing has not necessarilybeen done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale. All information and technicalassistance is given without warranty or guarantee, and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expresslyrelease us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement orrecommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict withpatents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

Typical Properties

Property data is provided as general information only. Property values are approximate and are not part of the product specifications.

Flammability

Flammability results are based on small-scale laboratory tests for purposes of relative comparison and are not intended to reflect the hazards presented by this or anyother material under actual fire conditions.

Health and Safety

Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling LANXESSproducts mentioned in this publication. Before working with these products, you must read and become familiar with the available information on their hazards, properuse, and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets (MSDS) and product labels. Consult yourLANXESS Corporation representative or contact the Product Safety and Regulatory Affairs Department at LANXESS. For materials that are not LANXESS products,appropriate industrial hygiene and other safety precautions recommended by their manufacturer(s) must be followed.

Color and Visual Effects

Type and quantity of pigments or additives used to obtain certain colors and special visual effects can affect mechanical properties.

LANXESS Corporation | Pittsburgh, PA 15275

© LANXESS Corporation

Durethan BKV 30 H2.0 901510

Page 3 of 3

Edition 16.04.2014

Page 111: Variaciones dimensionales en piezas plásticas de inyección ...

98

ANEXO 12

Page 112: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE DE PARÁMETROS PARA INYECTORAS Rev 01 ansbsmnsmb

Proyecto / Cliente: Fecha: 25/04/2014TIEMPOS DE CICLOCerrar molde 3,5 SECUENCIA DE MOLDE

MANO ROBOT Inyección 1,7 Tol: ± 0,3 s 1N°Programa: % de Trabajo: % Compactación 1,3 Tol: ± 1 s PROTECCIÓN DE MOLDE: 2MOLDE Refrigeración 16 Tol: ± 1 s Carrera de inicio: 125 mm Fin: mm 3Ref.Molde: Cavidades: 1+1 Abrir molde 4,7 Velocidad: 25 % 4Apertura molde: 420 mm Girar molde Presión: 50 % 5Fuerza de cierre mínima: 250 kN Extracción pieza 2,8 Tiempo: 4 s 6Grueso de molde: 590 mm TOTAL 30 Tol: ± 1 s 7CARACTERISTICAS DE LA PIEZA

Ref. pieza

CIRCUITOS REFRIGERACIÓN MOLDE

TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tol:Boq Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 +15°C 1270 270 265 260 240 -15ºC 2

TEMPERATURAS CÁMARA CALIENTE Tol: 3Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 +15°C 4320 320 280 280 280 -15ºC 5PLASTIFICACION DESCOMPRESIÓN 6

Final de carga: 90 mm 7Revoluciones del rodar: 50 % Velocidad 40 %Contrapresión: 20 % Recorrido 10 mmTiempo de dosificación (s): 6,0 Tol: ± 3 s 1

2Válvula 1 - 3Válvula 2 - 4Válvula 3 - 5

INYECCION 61 2 3 4 5 6 7 8 9 10 7

Velocidad % 50 75 25 Tol: ± 10 %Posicion mm 80 30 ATEMPERACIÓN MOLDEPresión % 70 70 70 Tol: ± 11 %

PRESIÓN DE COMPACTACIÓN Tol: ± 4,2 %1 2 3 4 5 6 7 8 9 10

Tiempo s 1,3Presión % 28Cojín de material: mm Tol: ± 3 mmPosicion cambio: mm Tol: ± 2 mm

OBSERVACIONESB5 ON 795 OFF 400

Expulsión hidraúlica

Expuls.Noyo3Inyecc.Expuls.Noyo2Inyecc.Expuls. 1 30 100

Noyo1Inyecc. 1 30 100

PROGRAMACIÓNNOYOS

Programa: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 Con mov. paralelos

Programa Prioridad Presión Velocidad Comentarios

6 50°C TODO 4 - 5 - 6 - 7 - 816

Temperatura Zona refrigerada parte móvil Circuitos Puentes

50°C TODO 1 - 2 - 3Temperatura Zona refrigerada parte fija Circuitos Puentes

400 788

Medida Zona refrigerada parte móvilCircuitos

moldePuentes

Nº circuito multiconector

Abrir en Cerrar en Compactación

Cau

dalím

etro

s

500 795

DESPUÉS DE RODAR

Zona refrigerada parte fijaCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

30 MOLDMASTER

16 735 22 012 PA6-GF30 DURETHAN BKV30 H2.0 80 ºC 2 - 4 h.Medida

11 300 02 S01 TUBO AIRE LIMPIO 225,8 232,6 219,0Ref.Material Material de la pieza Tª secado(°C) Tiempo secado

Denominación pieza Peso (gr) Lím.Sup. (gr) Lím.Inf.(gr)11 300 01 S01 CASQUILLO 40 41,2 38,8

InyecciónAbrir molde

903 912 Avance expulsión (Noyo 1)Retroceso expulsión (Noyo 1)

NISSAN 1250 - 12Inyectora: 900.030

Cerrar molde

Utiliza secuencial

abierta

abierta

abierta

Page 113: Variaciones dimensionales en piezas plásticas de inyección ...

HOJA DE AJUSTE DE PARÁMETROS PARA INYECTORAS Rev 02 ansbsmnsmb

Proyecto / Cliente: Fecha: 25/04/2014TIEMPOS DE CICLOCerrar molde 3,5 SECUENCIA DE MOLDE

MANO ROBOT Inyección 1,7 Tol: ± 0,3 s 1N°Programa: % de Trabajo: % Compactación 11,3 Tol: ± 1 s PROTECCIÓN DE MOLDE: 2MOLDE Refrigeración 60 Tol: ± 1 s Carrera de inicio: 125 mm Fin: mm 3Ref.Molde: Cavidades: 1+1 Abrir molde 4,7 Velocidad: 25 % 4Apertura molde: 420 mm Girar molde Presión: 50 % 5Fuerza de cierre mínima: 250 kN Extracción pieza 1,8 Tiempo: 4 s 6Grueso de molde: 590 mm TOTAL 83 Tol: ± 1 s 7CARACTERISTICAS DE LA PIEZA

Ref. pieza

CIRCUITOS REFRIGERACIÓN MOLDE

TEMPERATURAS CILINDRO DE PLASTIFICACIÓN Tol:Boq Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 +15°C 1270 270 265 260 240 -15ºC 2

TEMPERATURAS CÁMARA CALIENTE Tol: 3Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 +15°C 4320 320 280 280 280 -15ºC 5PLASTIFICACION DESCOMPRESIÓN 6

Final de carga: 90 mm 7Revoluciones del rodar: 50 % Velocidad 40 %Contrapresión: 20 % Recorrido 10 mmTiempo de dosificación (s): 6,0 Tol: ± 3 s 1

2Válvula 1 - 3Válvula 2 - 4Válvula 3 - 5

INYECCION 61 2 3 4 5 6 7 8 9 10 7

Velocidad % 50 75 25 Tol: ± 10 %Posicion mm 80 30 ATEMPERACIÓN MOLDEPresión % 70 70 70 Tol: ± 11 %

PRESIÓN DE COMPACTACIÓN Tol: ± 4,2 %1 2 3 4 5 6 7 8 9 10

Tiempo s 11,3Presión % 28Cojín de material: mm Tol: ± 3 mmPosicion cambio: mm Tol: ± 2 mm

OBSERVACIONESB5 ON 795 OFF 400

InyecciónAbrir molde

903 912 Avance expulsión (Noyo 1)Retroceso expulsión (Noyo 1)

NISSAN 1250 - 12Inyectora: 900.030

Cerrar molde

Denominación pieza Peso (gr) Lím.Sup. (gr) Lím.Inf.(gr)11 300 01 S01 CASQUILLO 40 41,2 38,8

16 735 22 012 PA6-GF30 DURETHAN BKV30 H2.0 80 ºC 2 - 4 h.Medida

11 300 02 S01 TUBO AIRE LIMPIO 233 240,0 226,0Ref.Material Material de la pieza Tª secado(°C) Tiempo secado

Zona refrigerada parte fijaCircuitos

moldePuentes

Nº circuito multiconector

Cau

dalím

etro

s

30 MOLDMASTER

DESPUÉS DE RODAR

Medida Zona refrigerada parte móvilCircuitos

moldePuentes

Nº circuito multiconector

Abrir en Cerrar en Compactación

Cau

dalím

etro

s

500 795400 788

Temperatura Zona refrigerada parte fija Circuitos Puentes

Temperatura Zona refrigerada parte móvil Circuitos Puentes

50°C TODO 1 - 2 - 3

4 50°C TODO 4 - 5 - 6 - 7 - 816

PROGRAMACIÓNNOYOS

Programa: 1-Molde abierto 2-Con parada intermedia 3-Molde cerrado sin fuerza cierre 4-Molde cerrado con fuerza cierre 5-6 Con mov. paralelos

Programa Prioridad Presión Velocidad Comentarios

Expulsión hidraúlicaExpuls. 1 30 100Noyo1

Inyecc. 1 30 100

Expuls.Noyo2Inyecc.

Expuls.Noyo3Inyecc.

Utiliza secuencial

abierta

abierta

abierta

Page 114: Variaciones dimensionales en piezas plásticas de inyección ...

99

ANEXO 13

Page 115: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 62,00

17

11

2

0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

LI=61,70

LS=62,30

VN=62,00 Med.=62,18+3s-3s

29,5 ± 0,15 (Huella 2) (mm)61,7391 61,8043 61,8696 61,9348 62,0000 62,0652 62,1304 62,1957 62,2609 62,3261

Toler. Inferior : 61,70

Resultados

Nº de datos : 30

Media : 62,184

Sigma : 0,0073

Máximo : 62,20

Mínimo : 62,17

Cpk : 5,297

> TI Real : 0,00

> TI Estimado : 0,00

Test KS (D) : 0,291

Test KS (P) : 0,012

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=61,70

LS=62,30

VN=62,00 Med.=62,18+3s-3s

29,5 ± 0,15 (Huella 2) (mm)61,7391 61,8043 61,8696 61,9348 62,0000 62,0652 62,1304 62,1957 62,2609 62,3261

Distribución

DISTRIBUCION NORMAL

Media= 62,18433 Sigma= 0,00728

Datos62,18 62,19 62,18 62,18 62,19 62,18 62,18 62,17 62,19 62,2062,18 62,19 62,17 62,18 62,19 62,20 62,18 62,18 62,19 62,1862,19 62,19 62,18 62,18 62,19 62,18 62,19 62,18 62,19 62,18

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1109123S01 Nº Modificación : 02 Característica : 29,5 ± 0,15 (Huella 2) Código : Ø 62,0 ± 0,3

Descripción : Diámetro interior (P1) Nº Estudio : 2 Fecha Estudio : 07/05/2014 23:47:22

Operario : 3275 Máquina : Línea de montajeEquipo medida : MMC 0-1191 Orden de trabajo : ------

Pág: 1 08/05/2014

Page 116: Variaciones dimensionales en piezas plásticas de inyección ...

Parámetros del estudio Histograma

Valor Nominal : 62,00

1

8

21

0

5

10

15

20

25

LI=61,70

LS=62,30

VN=62,00 Med.=62,25+3s-3s

29,5 ± 0,15 (Huella 2) (mm)61,7391 61,8043 61,8696 61,9348 62,0000 62,0652 62,1304 62,1957 62,2609 62,3261

Toler. Inferior : 61,70

Resultados

Nº de datos : 30

Media : 62,246

Sigma : 0,0067

Máximo : 62,25

Mínimo : 62,22

Ppk : 2,675

> TI Real : 0,00

> TI Estimado : 0,00

Test KS (D) : 0,408

Test KS (P) : 0,000

Recta de Henry

-3s

-2s

-1s

Media

1s

2s

3s

.01

2

5

20

50

80

95

98

99.99

LI=61,70

LS=62,30

VN=62,00 Med.=62,25+3s-3s

29,5 ± 0,15 (Huella 2) (mm)61,7391 61,8043 61,8696 61,9348 62,0000 62,0652 62,1304 62,1957 62,2609 62,3261

Distribución

DISTRIBUCION NORMAL

Media= 62,24633 Sigma= 0,00669

Datos62,24 62,25 62,25 62,24 62,22 62,24 62,24 62,25 62,24 62,2562,25 62,25 62,24 62,25 62,25 62,25 62,25 62,25 62,25 62,2462,25 62,25 62,25 62,25 62,25 62,25 62,25 62,25 62,25 62,24

Observaciones:

Mann+Hummel Ibérica, s.a.

Referencia : 1109123S01 Nº Modificación : 02 Característica : 29,5 ± 0,15 (Huella 2) Código : Ø 62,0 ± 0,3

Descripción : Diámetro interior (P2) Nº Estudio : 2 Fecha Estudio : 07/05/2014 23:47:22

Operario : 3275 Máquina : Línea de montajeEquipo medida : MMC 0-1191 Orden de trabajo : ------

Pág: 1 08/05/2014

Page 117: Variaciones dimensionales en piezas plásticas de inyección ...

100

ANEXO 14

Page 118: Variaciones dimensionales en piezas plásticas de inyección ...

Estudio de repetibilidad y reproducibilidad MSA 4 Nº

Estudio R&R por el método de la Media y el Rango:

Código: Nº de serie:

Fabricante: Modelo:

Datos generales del estudio

Característica: Cond. ambientales:

Especificación:

Operaciones previas al estudio

Datos del estudio

Marcar el tipo de análisis del sistema de medida:

Operario A:

Operario B:

Operario C: Tolerancia total: 0,6000

OPERARIO/ PIEZAS MEDIA

PRUEBA# 1 2 3 4 5 6 7 8 9 10

1. A 1 70,3100 70,1600 70,3100 70,3100 70,1600 70,1600 70,1500 70,1600 70,1500 70,3200 70,2190

2. 2 70,3100 70,1500 70,3000 70,3000 70,1600 70,1500 70,1600 70,1700 70,1500 70,3100 70,2160

3. 3 70,3200 70,1500 70,3000 70,3000 70,1500 70,1500 70,1500 70,1700 70,1600 70,3100 70,2160

4. Media 70,3133 70,1533 70,3033 70,3033 70,1567 70,1533 70,1533 70,1667 70,1533 70,3133 Xa = 70,21700

5. Rango 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 Ra = 0,0100

6. B 1 70,3100 70,1600 70,3100 70,3100 70,1500 70,1500 70,1600 70,1700 70,1600 70,3200 70,2200

7. 2 70,3200 70,1500 70,3100 70,3000 70,1600 70,1600 70,1600 70,1600 70,1500 70,3200 70,2190

8. 3 70,3100 70,1500 70,3000 70,3000 70,1500 70,1500 70,1500 70,1700 70,1500 70,3100 70,2140

9. Media 70,3133 70,1533 70,3067 70,3033 70,1533 70,1533 70,1567 70,1667 70,1533 70,3167 Xb = 70,21767

10. Rango 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 Rb = 0,0100

11. C 1 70,3100 70,1600 70,3100 70,3100 70,1600 70,1600 70,1500 70,1600 70,1500 70,3100 70,2180

12. 2 70,3100 70,1500 70,3100 70,3100 70,1500 70,1500 70,1600 70,1600 70,1500 70,3100 70,2160

13. 3 70,3200 70,1600 70,3000 70,3000 7',15 70,1600 70,1500 70,1700 70,1600 70,3100 70,2256

14. Media 70,3133 70,1567 70,3067 70,3067 70,1550 70,1567 70,1533 70,1633 70,1533 70,3100 Xc = 70,21750

15. Rango 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0100 0,0000 Rc = 0,0090

16. Media Pzas. 70,3133 70,1544 70,3056 70,3044 70,1550 70,1544 70,1544 70,1656 70,1533 70,3133 X = 70,21739

Rp = 0,1600

17. [Ra = 0,0100] + [ Rb = 0,0100] + [ Rc = 0,0090 ]/[# NUMERO DE OPERARIOS = 3 ] R = 0,0097

18. [Max X = 70,21767] - [Min X = 70,21700] = Xdif = 0,00067 0,00067

19. [R = 0,0097] * [ D4* =2,58 ] = UCLr = 0,0249 0,0249

*D4 = 3,27 para dos pruebas y 2,58 para tres. UCLr representa el límite para las R's individuales.

Marque aquellos que están más allá de ese límite. Identifique las causas y corríjalas. Repita esas lecturas con el mismo operario

y unidad como al principio o descarte los valores y vuelva a hacer el promedio, vuelva a estimar R y los valores límite para

las observaciones restantes.

Pág. 1 de 2

Jesús Crespo

Francisco Ordovas

Javier Murillo

R & R por variables (MSA 4) (FF7450DE-1EC6-454A-AB7706EBED6E4F9B)

2012-0011

08501731

CD-15CPXR

Diámetro exterior de conexión Temperatura: 20 ± 5 ºC

Humedad: <60% HrØ 70,3 ± 0,3

Pie de Rey digital (0.....150 mm)

8-1258

Mitutoyo

El estado general del instrumento es correcto

Control estadístico del proceso Control de conformidad del producto

Page 119: Variaciones dimensionales en piezas plásticas de inyección ...

Estudio de repetibilidad y reproducibilidad MSA 4 Nº

Estudio R&R por el método de la Media y el Rango:

Código: Nº de serie:

Fabricante: Modelo:

2012-0011

08501731

CD-15CPXR

Pie de Rey digital (0.....150 mm)

8-1258

Mitutoyo

Análisis de Mediciones Unitarias

Repetibilidad - Variaciones de Equipo (EV)

EV = R * K1 Pruebas K1 %EV = 100 [EV/(Tolerancia/6)]

= 2 0,8862 =

= 3 0,5908 =

Reproducibilidad - Variación de Estimador (AV)

%AV = 100 [AV/(Tolerancia/6)]

AV = =

=

=

Operarios 2 3 n = Numero de Datos

K2 0,7071 0,5231 r = Numero de Pruebas

Repetibilidad & Reproducibilidad (R & R)

Datos K3

R&R = 2 0,7071 % R&R = 100[R&R/(Tolerancia/6)]

3 0,5231 =

= 4 0,4467 =

5 0,403

6 0,3742

Variación por Partes (PV) 7 0,3534

8 0,3375 %PV = 100 [PV/(Tolerancia/6)]

PV= Rp * K3 9 0,249 =

= 10 0,3146 =

Variación Total (TV) Ndc = 1,41(PV/R&R)

=

TV = = = 12,4274 ~ 12

Para información sobre la teoría y las constantes utilizadas en el estudio véase Manual de referencia de MSA, Cuarta Edición

Resultado del estudio

Criterios para aceptar el estudio: R&R < 10% ----------- APTO

10%≤R&R≤30% ----------- APTO CON RESERVAS

Estudio válido sólo si Ndc≥5 R&R >30% ----------- NO APTO

Vistos los resultados obtenidos, el instrumento es: APTO Observaciones

y/o actuaciones:

Estudio realizado por Firma Fecha del estudio

Pág. 2 de 2

% Variaciones Totales (respecto a la tolerancia)

100 [0,0000 / 0,10000]

0,00%

100 [0,0057 / 0,10000]

0,0507

5,71%

50,34%

5,71%

1,41[0,0503/0,0057]

100 [0,0057 / 0,10000]

100 [0,0503 / 0,10000]

22/04/2014F. Sebastián

R & R por variables (MSA 4) (FF7450DE-1EC6-454A-AB7706EBED6E4F9B)

Estudio realizado sobre la Ref. 1068178S01

0,0097 * 0,5908

0,0057

0,0000

0,0057

0,0503

Page 120: Variaciones dimensionales en piezas plásticas de inyección ...

101

ANEXO 15

Page 121: Variaciones dimensionales en piezas plásticas de inyección ...

Datos generales del aparato

Código:

Obj. Nº Valor ref. 1 2 3 1 2 3 1 2 3 Cód. Obj. Nº Valor ref. 1 2 3 1 2 3 1 2 3 Cód.

1 75,6700 + + + + + + + + + + + 26 75,9800 - - - - - - - - - - -

2 75,6200 + + + + + + + + + + + 27 76,1700 - - - - - - - - - - - Nº serie:

3 75,7200 + + + + + + + + + + + 28 75,6200 + + + + + + + + + + + Modelo:

4 75,5300 + + + + + + + + + + + 29 75,6500 + + + + + + + + + + + Fabricante:

5 75,3800 + + + + + + + + + + + 30 75,9000 + + + + + + + + + + +

6 75,4300 + + + + + + + + + + + 31 75,8500 + + + + + + + + + + + Operaciones previas al estudio

7 75,2000 - - - - - - - - - - - 32 75,7800 + + + + + + + + + + +

8 75,6500 + + + + + + + + + + + 33 75,6700 + + + + + + + + + + +

9 75,4400 + + + + + + + + + + + 34 75,6400 + + + + + + + + + + +

10 75,3100 + + + + + + + + + + + 35 75,6300 + + + + + + + + + + + Datos generales del estudio

11 70,9800 - - - - - - - - - - - 36 75,5000 + + + + + + + + + + + Característica:

12 75,6900 + + + + + + + + + + + 37 76,0800 - - - - - - - - - - -

13 75,7000 + + + + + + + + + + + 38 75,4200 + + + + + + + + + + + Especificación:

14 75,2500 + - - + - - + - + + X 39 75,2600 + - + + - - + - - - X

15 75,6700 + + + + + + + + + + + 40 75,2000 - - - - - - - - - - -

16 75,7100 + + + + + + + + + + + 41 75,4100 + + + + + + + + + + + Unidad de medida:

17 75,9300 + + + + + + - + - - X 42 75,4500 + + + + + + + + + + + Tolerancia superior:

18 75,3500 + + + + + + + + + + + 43 75,3800 + + + + + + + + + + + Tolerancia inferior:

19 76,0000 - - - - - - - - - - - 44 75,5200 + + + + + + + + + + +

20 75,6100 + + + + + + + + + + + 45 76,0500 - - - - - - - - - - - Valoración

21 76,1500 - - - - - - - - - - - 46 75,9600 - + + - + - + + - - X

22 75,6700 + + + + + + + + + + + 47 75,4000 + + + + + + + + + + + Dentro de tolerancias: "+"

23 75,4700 + + + + + + + + + + + 48 76,1100 - - - - - - - - - - - Fuera de tolerancias: "-"

24 75,5700 + + + + + + + + + + + 49 75,6100 + + + + + + + + + + + Sin concordancia: "X"

25 75,7600 + + + + + + + + + + + 50 75,6400 + + + + + + + + + + +

El 25% de las piezas debe estar cerca del límite inferior y otro 25% cerca del límite superior

Usuario A Usuario B Usuario C Usuario A Usuario B Usuario C

Estudio de repetibilidad y reproducibilidad por atributos MSA 4

Ref.

Ref.

75,9500

8-1388

8-1388

103-764

--

75,2500

--

Diámetro interior boca a turbo del tubo aire limpio

Ø 75,6 ± 0,35

Instrumento en estado general correcto

Page 122: Variaciones dimensionales en piezas plásticas de inyección ...

Nº Estudio de repetibilidad y reproducibilidad por atributos MSA 4 8-1388

Obj. Nº Valor ref. 1 2 3 1 2 3 1 2 3 Cód. Obj. Nº Valor ref. 1 2 3 1 2 3 1 2 3 Cód. Análisis de resultados

27 76,1700 - - - - - - - - - - - 35 75,6300 + + + + + + + + + + +

21 76,1500 - - - - - - - - - - - 28 75,6200 + + + + + + + + + + +

48 76,1100 - - - - - - - - - - - 2 75,6200 + + + + + + + + + + +

37 76,0800 - - - - - - - - - - - 49 75,6100 + + + + + + + + + + +

45 76,0500 - - - - - - - - - - - 20 75,6100 + + + + + + + + + + +

19 76,0000 - - - - - - - - - - - 24 75,5700 + + + + + + + + + + +

26 75,9800 - - - - - - - - - - - 4 75,5300 + + + + + + + + + + + %

46 75,9600 - + + - + - + + - - X 44 75,5200 + + + + + + + + + + +17 75,9300 + + + + + + - + - - X 36 75,5000 + + + + + + + + + + + Resultado del estudio

30 75,9000 + + + + + + + + + + + 23 75,4700 + + + + + + + + + + +

31 75,8500 + + + + + + + + + + + 42 75,4500 + + + + + + + + + + + %GRR <= 10%

32 75,7800 + + + + + + + + + + + 9 75,4400 + + + + + + + + + + + 10%<%GRR<=30% X

25 75,7600 + + + + + + + + + + + 6 75,4300 + + + + + + + + + + + %GRR > 30%

3 75,7200 + + + + + + + + + + + 38 75,4200 + + + + + + + + + + +

16 75,7100 + + + + + + + + + + + 41 75,4100 + + + + + + + + + + + Observaciones:

13 75,7000 + + + + + + + + + + + 47 75,4000 + + + + + + + + + + +

12 75,6900 + + + + + + + + + + + 43 75,3800 + + + + + + + + + + +

33 75,6700 + + + + + + + + + + + 5 75,3800 + + + + + + + + + + +

22 75,6700 + + + + + + + + + + + 18 75,3500 + + + + + + + + + + +

15 75,6700 + + + + + + + + + + + 10 75,3100 + + + + + + + + + + +

1 75,6700 + + + + + + + + + + + 39 75,2600 + - + + - - + - - - X

29 75,6500 + + + + + + + + + + + 14 75,2500 + - - + - - + - + + X

8 75,6500 + + + + + + + + + + + 40 75,2000 - - - - - - - - - - -

50 75,6400 + + + + + + + + + + + 7 75,2000 - - - - - - - - - - -34 75,6400 + + + + + + + + + + + 11 70,9800 - - - - - - - - - - -

Estudio realizado por Firma Fecha del estudio

Usuario CUsuario A Usuario B Usuario C Usuario A Usuario B

0,11

0,08

d1 = 75,31-75,2 =

d2 = 75,98-75,9 =

d = (d1+d2)/2 = 0,095

Apto con reservas

No apto

%GRR = 13,6

Apto

Page 123: Variaciones dimensionales en piezas plásticas de inyección ...

102

ANEXO 16

Page 124: Variaciones dimensionales en piezas plásticas de inyección ...

Pieza OperaciónCantidad

(horas o Kg)Precio/unidad (€/Kg o €/hora)

Total (€)

Precio material (Kg) 23,00 2,95 67,9

Máquina inyección 5,0 24,7 123,7

Preparador inyección 5,0 55,0 275,0

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 52,0 204,5 2550,0

Precio material (Kg) 22,6 1,80 40,7

Máquina inyección 2,5 24,7 61,9

Preparador inyección 2,5 55,0 137,5

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 47,0 231,1 2323,4

Precio material (Kg) 12,0 2,24 26,9

Máquina inyección 3,5 24,7 86,6

Preparador inyección 3,5 55,0 192,5

Medición piezas 10,0 51,5 515,4

Gestión del R&R 8,0 49,0 392,0

3 operarios (R&R) 24,0 49,0 1176,0

Subtotal 49,0 231,5 2389,4

Total 148,0 667,1 7262,8

Codos PP+GF30

Fuelles PP+EPDM

Codos PA6+GF30

ESTIMACIÓN DE COSTES