· Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de...

31
MI4060-1 Mecánica de Rocas: Tarea de diseño de Caserones y Pilares Integrante : Stefano Contardo B. Profesores : Javier Vallejos M. Sofia Rebolledo L. Auxiliares : Gonzalo Pizarro B. Osvaldo Silva R. Ayudantes : Leandro Díaz A.

Transcript of  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de...

Page 1:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

MI4060-1 Mecánica de Rocas:Tarea de diseño de Caserones y Pilares

Integrante: Stefano Contardo B.

Profesores: Javier Vallejos M.

Sofia Rebolledo L.

Auxiliares: Gonzalo Pizarro B.

Osvaldo Silva R.

Ayudantes: Leandro Díaz A.

Manuel Rodríguez S.

Marcos Cifuentes N.

Pedro Sanhueza

Page 2:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Resumen

Para un yacimiento descubierto recientemente es necesario determinar las dimensiones de los caserones y pilares, para ello se determinó la distribución de esfuerzos por medio de Examine2D para una unidad básica de explotación de los caserones utilizando diferentes dimensiones y así estudiar como variaban. Luego, con estos datos se estudió el esfuerzo medio de los pilares para diferentes anchos mediante Área tributaria y Fórmula de Coates.

Finalmente, con el usó del Gráfico de estabilidad modificado se determinó el ancho del techo, mientras para el largo de la pared se utilizó el Gráfico de ELOS y con la Fórmula de resistencia de pilares de Laubscher se obtuvo un ancho para el pilar. Las dimensiones para el caserón y el pilar fueron las siguientes:

Altura [mts] Ancho [mts]Caserón 17,39 10Pilar 17,39 10,5

Con un ELOS = 0,5 y una Dilución = 2,78%

I

Page 3:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Introducción

En el presente informe se diseñan caserones y pilares para un yacimiento descubierto recientemente (Figura I), para ello se utilizan diferentes métodos vistos en clases y programas que ayudan a su cálculo como el Examine2D y el Dips, y así poder determinar las dimensiones de los pilares y caserones de forma que sean estables y se pueda maximizar la extracción del mineral.

En el informe se debieron cumplir con los siguientes objetivos:

Determinar esfuerzos en techos y paredes para una unidad básica de explotación de los caserones usando examine 2D.

Estimar el esfuerzo medio en los pilares mediante área tributaria y formula de Coates. Determinar las dimensiones preliminares para los caserones y pilares de manera de

maximizar la razón de extracción y que los pilares tengan un FS≥1.3. Utilizando los siguientes métodos empíricos:

1. Gráfico de estabilidad modificado para el techo (N´ versus Rh)2. Gráfico de ELOS para las paredes.3. Fórmula de resistencia de pilares de Laubscher.

Construir un modelo del yacimiento completo con su diseño preliminar en Examine2D y comparar los resultados con los esfuerzos determinados en los 2 primeros puntos.

(Figura I) Yacimiento de Oro

II

Page 4:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

DesarrolloPara el desarrollo del problema se tomó un caserón con la siguiente geometría,

Parte ACon el uso de Examine2D se obtuvo la distribución de esfuerzos para caserones con diferentes dimensiones, variando el ancho en 5, 10, 15 [mts] y el alto en 10, 15 y 20 [mts]. Antes de mostrar los resultados hay que notar que para los estados de esfuerzos se usó solo un Coeficiente de Poisson y no uno diferente para el macizo rocoso y el minera (o bien, techo y pared)l, ya que además de que el del macizo rocozo (v=0.21) y el del mineral (v=0.18) presenten una diferencia muy pequeña, también el aporte que realiza el Coeficiente de Poisson en los esfuerzos es mínimo, del orden de 10−3, por lo tanto se usa un coeficiente de Poisson v=0.2 (sólo para sacar la distribución de esfuerzos en Examine2D, para otros cálculos no se hará esto). Además el Módulo de Young no tiene efecto en la distribución y por último, otro punto importante es que para el cálculo de σ v se utilizó el caso crítico de la profundidad que es de 190 [mts] y usando γ=0.027 se obtiene σ v=5.13 y con un k=1,7 se tiene que σ NS=1,7∗5,13=8,721 [MPa], además se asumirá que σ EW es igual al σ 3=σ v.

1

Page 5:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Para H=20 [mts]

W= 5 [mts]

(Figura 1)

2

Page 6:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=10 [mts]

(Figura 2)

3

Page 7:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=15[mts]

(Figura 3)

4

Page 8:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

H=15 [mts]

W=5 [mts]

(Figura 4)

5

Page 9:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=10 [mts]

(Figura 5)

6

Page 10:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=15 [mts]

(Figura 6)

7

Page 11:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

H=10 [mts]

W=5 [mts]

(Figura 7)

8

Page 12:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=10[mts]

(Figura 8)

9

Page 13:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

W=15 [mts]

(Figura 9)

10

Page 14:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Parte BPara estimar los esfuerzos medios de los pilares se utilizarán los casos anteriores de la parte A, para Pilares se usarán anchos de 5, 10 y 15 [mts] con lo que se obtendrán 3 σ p para cada caso:

H=20[mts]

Wo=5[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 1,64 8,4010,00 1,281 6,57315,00 1,155 5,927

Wo=10[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 2,25 11,5610,00 1,634 8,38215,00 1,402 7,192

Wo=15[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 2,75 14,1110,00 1,949 9,99815,00 1,630 8,363

(Celdas 1) H=15[mts]

Wo=5[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 1,71 8,7610,00 1,326 6,80215,00 1,192 6,116

Wo=10[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 2,38 12,2210,00 1,704 8,74115,00 1,454 7,461

Wo=15[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 2,94 15,110,00 2,046 10,49515,00 1,700 8,718

(Celdas 2)

11

Page 15:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

H=10[mts]

Wo=5[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 1,79 9,210,00 1,376 7,05915,00 1,233 6,327

Wo=10[mts]

wp [mts] Sig p / Sig v Sig p [Mpa]5,00 2,53 13,0

10,00 1,784 9,15115,00 1,514 7,766

Wo=15[mts]wp [mts] Sig p / Sig v Sig p [Mpa]

5,00 3,17 16,210,00 2,158 11,07215,00 1,779 9,124

(Celdas 4)

12

Page 16:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Parte CPara encontrar una dimensión adecuada para los caserones y los pilares se utilizarán: El Gráfico de estabilidad modificado para el techo, el Gráfico de ELOS para las paredes y Fórmula de resistencia de pilares de Laubscher.

Factor A:

Como no es posible calcular A ya que no se cuenta con el ancho del caserón, entonces se asumirá como A=1, ya que así se maximiza N’, con lo cual se maximiza el RH, lo que a su vez maximiza el ancho del caserón (mayor extracción de mineral).

Factor B:

Se utilizó el programa Dips para encontrar el ángulo entre la pared/techo y las discontinuidades, con lo que se obtuvo:

Pared/Disc 1 Pared/Disc 2 Pared/Dics3

(Figura 10)

Se obtiene un Alfa critico = 31,48°

Techo/Disc 1 Techo/Disc 2 Techo/Dics3

(Figura 11)

Se obtiene un Alfa critico = 24,03°

13

Page 17:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Acá se observa los planos en el programa Dips:

(Figura 12)

14

Page 18:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

(Figura 13)

Entonces se tiene que:

Techo: Alfa = 24,03 => B=0,2

Pared: Alfa = 31,48 => B=0,22

Factor C:

(Figura 14)

15

Page 19:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

(Figura 15)

Como se observa se tiene:

Techo 15°: C=2,3

Pared 90°: C= 8

Finalmente se obtiene:

Q’ Pared = 12,7 ; Q’ Techo = 14,6

Entonces,

N’ Pared = 12,7*0,22*8*1 = 22,35

N’ Techo = 14,6*0,2*2,3*1 = 6,71

Ahora determinamos el ancho del techo mediante el Gráfico de estabilidad modificado, para ello utilizamos el N’ calculado y se lleva al límite en que es estable, con esto se obtiene que:

16

Page 20:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

(Figura 16)

Se tiene que,

HR Pared = 7,5

HR Techo = 5

Como se nos pide calcular el ancho del techo con este método sólo tomaremos en cuente el HR Techo. Además para despejar el ancho se asumirá que el Largo del cuerpo mineralizado en dirección E-W es infinito, por lo cual el HR=2∗Wo

Entonces, W o=10[mts ]

17

Page 21:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Luego, usando el gráfico de ELOS y el N’ de la pared determinamos el largo de la pared, se lleva hasta un ELOS = 0,5 en donde es el límite de lo estable y se obtiene que:

(Figura 17)

HR Pared = 9 [mts]

Por lo tanto el largo de la pared es 18 [mts] lo cual no abarca el total de la potencia del cuerpo mineralizado de 20 [mts].

Entonces, %Dilución = (0,5 / 18)*100 = 2,78%

Finalmente con estas dimensiones se obtiene el siguiente estado de esfuerzos:

18

Page 22:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

(Figura 18)

Finalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts], se puede obtener la resistencia Sp del pilar de la siguiente manera.

SP=DRMS∗We0.5

h0.7∗F

El Factor F depende de la razón We:h, entonces,

We = 4*Área/Perímero, entonces para una longitud infinita se tiene que We=2*Wp y con h la altura del pilar se tiene que el factor F es diferente de 1 cuando,

2*Wp/9.2~Wp/4,5 > 6:1

Wp>27 [mts] lo cual es un ancho muy grande para el pilar, por lo tanto el F = 1.

19

Page 23:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Además se sabe que, DRMS=AM∗AO∗AS∗AT∗RMS

Por lo tanto para sacar los valores de A se usan las siguientes suposiciones:

Am: Como el macizo se encuentra a una profundidad máxima de 190 [mts] y una mínima de 150 [mts], se asume que el macizo se mantiene sin ningún tipo de meteorización. Am=1

Ao: Hay tres sets de discontinuidades presentes en la roca caja y en el mineral. Dado que en el caserón hay 4 caras inclinadas con respecto a la vertical, Ao=0,7.

As: Dado que el pilar posee una inclinación de 15 grados, habrá una pequeña diferencia de ángulo entre los esfuerzos y la superficie del techo de los pilares. Así, As=0,7.

At: Por ser un método con tronadura, en el cual se asume el uso de explosivos de buena calidad, At=0,94.

Y además,

RMS=IRS∗(RMRL−P ( IRS ))

100

El valor de IRS será tomado como el valor del UCS de la roca presente en el techo de los pilares, como el techo es de mineral, entonces IRS = 114 [MPa] y el puntaje del IRS para Laubscher será de 12. Usando el dato del RMRL entregado, el RMS es:

RMS=114×(54−12)100

=47,88[MPa]

Luego del DRMS será la multiplicación del valor de RMS con todos los factores de ajuste, resultando un valor de 22,05 [MPa].

Entonces se tiene que:

Sp=22,05×√2×W p

17,390,7×1=4,22×√W p

Usando la fórmula de área tributaria, por simplicidad comparada con la de Coates, se tiene que

σ p=5,13× cos215+8,721×sin215

1−r= 5,371−Wo/(W o+W p)

= 5,371−10/(10+W p)

Se utiliza el FS,

FS=SPσ P

=1,3

Entonces,

20

Page 24:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

4,22×√W p=¿1,3x5,37

1−10/(10+W p)

Y usando Solver de Excel se obtiene que,

Wp = 10,5 [mts]

Parte CFinalmente se obtiene:

21

Page 25:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

(Figura 19)

22

Page 26:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Análisis de datosAnalizamos los datos entregados por la parte A.

5 10 15

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

-1.86 -1.22-0.40

18.13

13.99

10.71

19.88

11.82

9.17

-1.96-1.03

0.21

13.46

10.35

7.45

-1.68

0.121.14

Esfuerzo vs Ancho del caserón

Pared H=20mTecho H=20mTecho H=15mPared H=15mTecho H=10mPared H=10m

Ancho del Caserón [mts]

Esfu

erzo

[Mpa

]

(Grafico 1)

Es posible observar que a medida que aumenta el ancho del caserón, disminuye el esfuerzo en el techo y aumenta el esfuerzo en las paredes, con la diferencia que los esfuerzos del techo disminuyen más rápido (mayor inclinación) que los de la pared. Además, se ve como a medida que aumenta la altura del caserón también aumentan los esfuerzos en el techo, pero disminuyen los da la pared, sólo existe una excepción en el esfuerzo del techo para un caserón de H=15 [mts] que es mayor que el de H=20 [mts], lo cual se puede deber a la geometría del problema.

23

Page 27:  · Web viewFinalmente, para el cálculo del ancho del pilar se utilizara la Fórmula de resistencia de pilares de Laubscher. Entonces, para un FS=1,3 y ancho de caserón = 9 [mts],

Conclusión

Para un yacimientos con las dimensiones otorgadas no fue posible realizar un caserón con la altura igual a la potencia de la veta (20 [mts]) que hubiese sido lo ideal para no tener pérdidas de mineral, ahora si se hubiese querido abarcar toda la potencia del cuerpo mineralizado se hubiese podido diseñar un caserón cuadrado y vertida que hubiese abarcado también parte del macizo, pero debido a esto último a esto disminuiría la ley del mineral extraído, saber cuál tipo de caserón es mejor implica realizar un análisis a este último.

También se concluye que los datos se comportaron de manera esperada, como que a medida que aumenta el ancho del caserón, las paredes deben soportar mayores esfuerzos o que para la estimación de los esfuerzos medios de los pilares estos aumentaban a medida que aumentaba también el ancho del caserón ya que los pilares deben soportan una mayor fuerza sobre ellos.

24