Trabajo metodos numericos

Post on 04-Jan-2016

6 views 2 download

description

Metodos numericos

Transcript of Trabajo metodos numericos

TALLER

1. Realice un mapa conceptual de los métodos iterativos empleados en la solución de ecuaciones diferenciales de valor inicial.

2. Plantee y solucione dos ejercicios sobre diferenciación numérica explicando paso a paso el procedimiento utilizado.

f ( x )=sin (x ) en x1=π4 y h=0.01

La fórmula para derivación numérica es: f ' (x1 )=f (x1+h )−f (x1 )

h

Así:

f ' (2 )=f ( π4 +0.01)−f ( π4 )

0.01=sin( π4 +0.01)−sin ( π4 )

0.01=0.714142−√2

20.01

=0.7035

f ( x )=x3 en x1=4 y h=0.001

f ' (4 )= f(4+0.001 )−f (4 )

0.001=4.001

3−43

0.001=64.048012−64

0.001=0.048012001

0.001=48.012001

3. Solucione el siguiente ejercicio utilizando la Regla del Trapecio, la Regla de Simpson 1/3 y la Regla de Simpson 3/8. Compare los resultados y haga un pequeño análisis.

Métodos iteracivos para E.D.O de V.I

Método de Euler Método de Taylor Método de Euler modificado

Método de Runge.Kutta de

cuarto orden

Método predictor-corrector

∫0

1x

2 x+1dx

Solución:

- Regla del trapecio:

∆ x=b−an

=1−04

=14=0,25

Veamos

∫a

b

f ( x )dx=b−a2n [f (x0 )+2 f (x1 )+2 f (x2 )+…+2 f (xn−1)+ f (xn ) ]

Reemplazando

∫0

1x

2 x+1dx=1−0

2(4 )[ f (0 )+2 f (0,25 )+2 f (0,5 )+2 f (0,75 )+ f (1 ) ]

¿ 18 [0+2 0,25

2 (0,25 )+1+2 0,52 (0,5 )+1

+2 0,752 (0,75 )+1

+ 12 (1 )+1 ]

¿ 18 [0+13 + 1

2+ 35+13 ]

¿ 18 [ 5330 ]= 53

240=0,221

- Regla Simpson 1/3

Veamos

∫a

b

f ( x )dx=b−a3n [f (x0 )+3 f ( x1 )+3 f (x2 )+2 f ( x3 )+…+2 f (xn−2 )+4 f (xn−1 )+f (xn ) ]

Reemplazando

∫0

1x

2 x+1dx=1−0

3(4 ) [ f (x0 )+4 f (x1 )+2 f (x2 )+4 f (x3 )+ f (xn) ]

¿ 112

[ f (0 )+4 f (0,25 )+2 f (0,5)+4 f (0,75 )+ f (1 ) ]

¿ 112 [0+4 16+2 14 +4 3

10+ 13¿]

¿ 112 [ 2710 ]= 9

40=0,225

- Regla Simpson 3/8 Veamos

∫0

1x

2 x+1dx=

3(1−0)8(4) [f (x0 )+3 f (x1 )+3 f (x2 )+2 f (x3 )+ f (xn) ]

¿ 332

[ f (0 )+3 f (0,25 )+3 f (0,5)+2 f (0,75 )+f (1 ) ]

¿ 332 [0+3 16 +3 1

4+2 310

+ 13¿]

¿ 332 [ 13160 ]=131640=0,205

El valor real de esa integral es 0,225; luego podría decirse que los tres métodos son aproximados al valor real pero en este caso el mejor método el que más se aproxima es la Regla Simpson 1/3.

4. Solucione el siguiente ejercicio utilizando la regla del trapecio, la regla de Simpson 1/3 y la regla de Simpson 3/8. Compare los resultados y haga un pequeño análisis (dividiendo en 4 intervalos).

∫0

43√x exdx

REGLA DEL TRAPECIO:

∫a

b

f ( x )dx ≈ b−a2n

[ f ( x0 )+2 f (x1 )+2 f ( x2 )+…+2 f (xn−1 )+f (xn )]

x0=0 , x1=1 , x2=2 , x3=3 , x4=4

∫0

43√x exdx ≈ 4−0

2 (4 )[ 3√0e0+2 ( 3√1e1 )+2 ( 3√2e2)+2 ( 3√3e3 )+ 3√4 e4 ]=1

2[0+5.436563+18.619254+57.936713+86.669160 ]=84.330845

REGLA DE SIMPSON 1/3 Caso general

∫a

b

f ( x )dx ≈ h3 [ f (x0 )+4 f ( x1 )+2 f (x2 )+4 f (x3 )+2 f (x4 )+…+ f (xn) ]

h=b−an

h=4−04

=1

∫0

43√x exdx=1

3[ 3√0e0+4 ( 3√1e1)+2 ( 3√2e2 )+4 ( 3√3e3 )+ 3√4e4 ]=1

3[0+10.873127+18.619254+115.873428+86.669160 ]=232.034969

3=77.34498966

REGLA DE SIMPSON 3/8

∫a

b

f ( x )dx=3h8

¿ con h=b−a3

=43

x0=0 , x1=43, x2=

83, x3=4

∫0

43√x exdx=12

24 [ 3√0e0+3( 3√ 43 e4 /3)+3( 3√ 83 e83 )+ ( 3√4 e4 )]=12 [0+12.526415+59.8727837+86.6691608 ]=159.0683595

2=79.53417975

El valor real aproximado de esta integral es: 76.9621

Por lo tanto El método que más se aproxima es el de la regla de Simpson 1/3.

5. Solucione el siguiente ejercicio utilizando la integración de Romberg. Usando segmentos de longitud 1, 1/3 y 1/6.

∫0

1

ex2

dx

Solución: Para n=1Usamos la fórmula del trapecio, esto es;

∫a

b

f ( x )dx=b−a2n [f (x0 )+2 f (x1 )+2 f (x2 )+…+2 f (xn−1)+ f (xn ) ]

I 1=∫0

1

ex2

dx=1−02(1) [ f (x0 )+ f (x1 ) ]

¿ 12

[ f (0 )+ f (1 ) ]

¿ 12

[e (0 )2+e(1)2 ]

¿ 12

[1+e ]

¿1,86

Para n=3

∆ x=b−an

=1−03

=13

Usamos la fórmula del trapecio, esto es;

∫a

b

f ( x )dx=b−a2n [f (x0 )+2 f (x1 )+2 f (x2 )+…+2 f (xn−1)+ f (xn ) ]

I 2=∫0

1

ex2

dx=1−02(3) [ f (x0 )+2 f (x1 )+2 f (x2 )+f (x3 ) ]

¿ 16

[ f (0 )+2 f (1/3 )+2 f (2/3 )+ f (1 ) ]

¿ 16

[ e(0)2+2e(1/3)2+2e(2/3)2+e (1)2 ]

¿ 16

[1+2e 19+2e 49+e]¿1,512

Para n=6

∆ x=b−an

=1−06

=16

Usamos la fórmula del trapecio, esto es;

∫a

b

f ( x )dx=b−a2n [f (x0 )+2 f (x1 )+2 f (x2 )+…+2 f (xn−1)+ f (xn ) ]

I 3=∫0

1

ex2

dx=1−02(6) [f (x0 )+2 f (x1 )+2 f (x2 )+2 f (x3 )+2 f (x4 )+2 f ( x5 )+ f (x6)]

¿ 16

[ f (0 )+2 f (1/6 )+2 f (1/3 )+2 f (1/2 )+2 f (2 /3 )+2 f (5 /6 )+ f (1 ) ]

¿ 16

[ e(0)2+2e(1/6)2+2e(1/3)2+2e(1/2)2+2e(2/3 )2+2e(5 /6)2+e (1)2 ]

¿ 16

[1+2e 136+2e 19+2e14+2e 49+2e 2536+e]¿1,475

NIVELI

NIVELII

NIVELIII

I 1 I 4=43I 2−

13I 1

I 5=43I3−

13I2

1615I 5−

115I 4

I 2

I 3

NIVELI

NIVELII

NIVELIII

1,86I 4=

43

(1,512 )−13

(1,86 )=1,396

I 5=43

(1,475 )−13

(1,512 )=1,4626

1615

(1,4626 )− 115

(1,396 )=1,467041,512

1,475

6. Solucione el siguiente ejercicio utilizando la integración de Romberg. Usando segmentos de longitud 1, ½, 1/4, 1/8

∫1

2

ex ln ( x )dx

Formulas del trapecio: Cuando n=1 h2[ f (a )+ f (b )]

Cuando n=2,3 ,…,∞ h2[ f (a )+2∑

j=1

n−1

f (a+ jh )+ f (b )] y

h=limite superior−limite inferior

n

Segmentos: 1, ½, ¼, 1/8.

Cuando h=1 n=1

I 1=12

[e1ln (1 )+e2 ln (2 ) ]=12

[0+5.121703 ]=2.560851

Cuando h=1/2 n=2

I 2=14 [e1 ln (1 )+2(e1+

12 ln(1+12 ))+e2 ln (2 )]= 14 [0+3.634337+5.121703 ]=2.189010

Cuando h=1/4 n=4

I 3=18¿

Cuando h=1/8 n=8

I 4=116

¿

Nivel 1 Nivel 2 Nivel 3 Nivel 4I 1=2.560851 I 5=2.065063 I 8=2.0625862 I=2.062585184I 2=2.189010 I 6=2.062741 I 9=2.0625852I 3=2.0943085 I 7=2.062595I 4=2.070524

43I 2−

13I1=2.065063

43I 3−

13I2=2.062741

43I 4−

13I 3=2.062595

1615I 6−

115I 5=2.0625862

1615I 7−

115I 6=2.0625852

6463I 9−

163I 8=2.062585184

7. Usar el Método de Euler mejorado para aproximar y (2,3) tomando h=0.1 dada la ecuación diferencial

y '=2 x+ y−3y (2 )=1

x1=2+0.1=2.1

u1=1+0.1 (2 (2 )+1−3 )=1.2

y1=1+0.1( 12 ) [(2 (2 )+1−3 )+(2 (2.1 )+(1.2 )−3 ) ]=1.22

x2=2.1+0.1=2.2

u2=1.22+0.1 (2 (2.1 )+1.22−3 )=1.462

y2=1.22+0.1( 12 )[(2 (2.1 )+1.22−3 )+(2 (2.2 )+(1.462 )−3 ) ]=1.4841

x3=2.2+0.1=2.3

u3=1.4841+0.1 (2 (2.2 )+1.4841−3 )=1.77251

y3=1.4841+0.1 (12 )[(2 (2.2 )+1.4841−3 )+(2 (2.3 )+(1.77251 )−3 )]=1.7969305

x4=2.3+0.1=2.4

u4=1.797+0.1 (2 (2.3 )+1.797−3 )=2.1367

y4=1.797+0.1( 12 ) [(2 (2.3 )+1.797−3 )+(2 (2.4 )+(2.1367 )−3 )]=2.1637

x5=2.4+0.1=2.5

u5=2.1637+0.1 (2 (2.4 )+2.1637−3 )=2.56

y5=2.1637+0.1( 12 )[ (2 (2.4 )+2.1637−3 )+ (2 (2.5 )+ (2.56 )−3 )]=2.59

x6=2.5+0.1=2.6

u6=2.59+0.1 (2 (2.5 )+2.59−3 )=3.5

y6=2.59+0.1( 12 )[ (2 (2.5 )+2.59−3 )+(2 (2.6 )+(3.5 )−3 )]=3.1

x7=2.6+0.1=2.7

u7=3.1+0.1 (2 (2.6 )+3.1−3 )=3.63

y7=3.1+0.1(12 )[ (2 (2.6 )+3.1−3 )+ (2 (2.7 )+(3.63 )−3 )]=3.66

x8=2.7+0.1=2.8

u8=3.66+0.1 (2 (2.7 )+3.66−3 )=4.26

y8=3.66+0.1( 12 )[ (2 (2.7 )+3.66−3 )+(2 (2.8 )+(4.26 )−3 )]=4.3

x9=2.8+0.1=2.9

u9=4.3+0.1 (2 (2.8 )+4.3−3 )=5

y9=4.3+0.1( 12 ) [(2 (2.8 )+4.3−3 )+(2 (2.9 )+(5 )−3 )]=5.035

x10=2.9+0.1=3

u10=5.035+0.1 (2 (2.9 )+5.035−3 )=5.8185

y10=5.035+0.1(12 )[(2 (2.9 )+5.035−3 )+(2 (3 )+ (5.8185 )−3 )]=5.8676

8. Utilizar el método de Runge-Kutta para aproximar y (0.5 )

Dada la siguiente ecuación diferencial:

y '=2 xy

y (0 )=1

El método de Runge-Kutta de segundo orden se presenta con las siguientes expresiones:

k 1=f (xn , y n) ; k2=f (xn+h , yn+hk1 )

yn+1= yn+h2(k1+k2)

h=0.25 , x0=0 , y0=1k 1=f (x0 , y0 )=f (0,1 )=0

Para esta iteración x1=0.25k 2=f (x0+h , y0+hk1 )=f (0+0.25 ,1+0.25 (0 ) )= f (0.25 ,1 )=0.5

y1= y (0.25 )= y0+h2

(k 1+k2 )=1+ 0.252

(0+0.5 )=1716

=1.0625

La segunda iteración es:

k 1=f (x1 , y1 )=f (0.25 ,1.0625 )=1732

=0.53125

k 2=f (x1+h , y1+hk1 )=f (0.25+0.25 ,1.0625+0.25 (0.53125 ))=f (0.5 ,1.1953125 )=1.1953125

y2= y (0.5 )= y1+h2

(k1+k 2 )=1.0625+ 0.252

(0.53125+1.1953125 )=1.278320313

9. Hallar la solución aproximada que proporciona el Método de Adams-Bashorth de segundo, tercer y cuarto orden para la ecuación: h=0.1, x en [1,2]

y '=4−2 xy2

y (1 )=1- Segundo orden

Por el método de Euler

x0=1

y0=1

f 0=( 4−2 (1 )12 )=2

x1=1.1

y1=1+0.1( 4−2 (1 )12 )=1.2

f 1=( 4−2 (1.1 )1.22 )=1.25

Por método de Adam’s Bashorth

x3=0.3

y3=1.2+0.12

(3 (1.25 )−2 )=1.3

x4=0.4

y4=1.3+0.12

(3 (1.25 )−2 )=1.3875

x5=0.5

y5=1.3875+0.12

(3 (1.25 )−2 )=1.475

x6=0.6

y6=1.475+0.12

(3 (1.25 )−2 )=1.5625

x7=0.7

y7=1.5625+0.12

(3 (1.25 )−2 )=1.65

x8=0.8

y8=1.65+0.12

(3 (1.25 )−2 )=1.7375

x9=0.9

y9=1.7375+0.12

(3 (1.25 )−2 )=1.825

x10=1

y10=1.825+0.12

(3 (1.25 )−2 )=1.9

- Tercer orden

x2=1.2

y2=1.2+0.1( 4−2 (1.1 )(1.2)2 )=1.325

f 2=( 4−2 (1.2 )1.3252 )=0.911

Por método de Adam’s Bashorth

x3=1.3

y3=1.325+0.112

[23 (0.911)−16 (1.25 )+5 (2 ) ]=1.416275

x4=1.4

y4=1.416275+0.112

[23 (0.911 )−16 (1.25 )+5 (2 ) ]=1.50755

x5=1.5

y5=1.50755+0.112

[23 (0.911 )−16 (1.25 )+5 (2 ) ]=1.598825

x6=1.6

y6=1.5 98825+0.112

[23 (0.911)−16 (1.25 )+5 (2 ) ]=1.6901

x7=1.7

y7=1.6901+0.112

[23 (0.911 )−16 (1.25 )+5 (2 ) ]=1.781375

x8=1.8

y8=1.781375+0.112

[23 (0.911)−16 (1.25 )+5 (2 ) ]=1.87265

x9=1.9

y9=1.87265+0.112

[23 (0.911 )−16 (1.25 )+5 (2 ) ]=1.963925

x10=2

y10=1.963925+0.112

[23 (0.911 )−16 (1.25 )+5 (2 ) ]=2.0552

- Cuarto orden

x3=1.3

y3=1.325+0.1( 4−2 (1.2 )(1.325)2 )=1.42

f 3=( 4−2 (1.3 )1.422 )=0.695

Por método de Adam’s Bashorth

x4=0.4

y4=1.42+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.473

x5=0.5

y5=1.473+0.124

[55 (0.695 )−59 (0.911)+37 (1.25 )−9 (2 ) ]=1.526

x6=0.6

y6=1.526+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.58

x7=0.7

y7=1.58+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.633

x8=0.8

y8=1.633+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.686

x9=0.9

y9=1.686+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.74

x10=1

y10=1.74+0.124

[55 (0.695 )−59 (0.911 )+37 (1.25 )−9 (2 ) ]=1.793