Cap. 17 Fraccionamiento - carec.com.pe. Cap17. Fraccionamiento.pdf · El peso total de la torre de...

47
CAPITULO 17 FRACCIONAMIENTO

Transcript of Cap. 17 Fraccionamiento - carec.com.pe. Cap17. Fraccionamiento.pdf · El peso total de la torre de...

CAPITULO 17 FRACCIONAMIENTO

Ing. Jorge Barrientos, MSc. 17--1

CAP. 17. FRACCIONAMIENTO

1.- INTRODUCCIÓN

El presente capítulo, dentro del modulo para el curso de Ingeniería de Gas, pretende darle al ingeniero las herramientas necesarias para el entendimiento del diseño y manejo de la Torre de Fraccionamiento.

Si bien es cierto que el método riguroso para el cálculo del número de platos de una columna es el utilizado para definir el diseño final de una torre de fraccionamiento, los pasos aquí seguidos son los mínimos requeridos para determinar el diseño.

Los métodos rigurosos por su complejidad son realizados a través de computadoras, aplicando siempre los mismos conceptos básicos aquí expuestos.

Los métodos cortos para diseños, ya mencionados, presentan una desviación con respecto al método riguroso entre 5 a 7%, su uso y entendimiento son de gran importancia para la estimación inicial del diseño de la torre de fraccionamiento.

Los pasos expuestos van desde la determinación de la presión de trabajo de una torre hasta el cálculo de la altura, y la calidad calórico de tope y fondo que se requiere para su funcionamiento cabal.

También se presentan algunos problemas operativos de torres en funcionamiento y las soluciones para la corrección de los mismos, igualmente algunos aspectos de optimización.

Por último se desarrolla un problema aplicado al depropanizador de la Planta Fraccionamiento de Jose.

Se concluye diciendo que la profundización de estos aspectos teóricos y la experiencia en el manejo de torres de fraccionamiento son de gran importancia para la formación de un ingeniero de gas y de refinación.

2.- PRINCIPIOS DE FRACCIONAMIENTO

El desarrollo del fraccionamiento estuvo inicialmente limitado a la industria del alcohol, en donde se denominaba destilación. A medida que la industria petrolera se expandió, recibió considerable atención, gracias a que el fraccionamiento ocupa un puesto especial en la producción de productos de petróleo. No fue sino mucho después cuando el fraccionamiento dejó de ser un arte, y pasó a considerarse una ciencia.

Ing. Jorge Barrientos, MSc. 17--2

Hoy, el fraccionamiento ha llegado a ser una especialización, y las compañías petroleras emplean los ingenieros con base a su conocimiento del campo. Como consecuencia, numerosos datos se han podido recopilar. Los principios que soportan tan complicados diseños, son bastantes simples, y una vez que se entienden, permiten obtener una mejor información del equipo disponible.

La ciencia del fraccionamiento puede dividirse en tres clasificaciones: diseño de equipo nuevo, conversión de equipo viejo para nuevas operaciones, y mejoramiento del equipo existente. En el diseño de equipo nuevo, la inversión inicial ocupa un segundo plano, y suele diseñarse para operación económica. Cuando se invierte en equipos viejos, la inversión inicial ocupa un primer plano . El mejoramiento del equipo existente, puede hacerse bien mejorando las instalaciones para disminuir costos o aumentando la calidad del producto.

3.- CONSIDERACIONES TEÓRICAS

Una columna de fraccionamiento se usa para separar una mezcla en dos o más componentes en virtud de la diferencia en sus volatilidades o puntos de burbujeo. La volatilidad relativa de dos componentes, determina su dificultad en la separación por fraccionamiento. La separación es tanto más difícil cuanto más baja sea la volatilidad relativa (o más cerca estén los puntos de burbujeo). En la separación de una mezcla binaria es costumbre hablar del componente más volátil, aquel de punto de burbujeo más bajo y el componente menos volátil, aquel de punto de burbujeo más alto).

Debido a que el calor se suple por el fondo del fraccionador y se retira por el tope, se crea un gradiente de temperatura entre los platos del tope y los del fondo de la columna. El calor que entra al rehervidor, produce vapor en el fondo de la columna, el cual fluye hacia arriba, plato a plato. Debido a que el vapor encuentra continuamente puntos de baja temperatura, el componente menos volátil se condensa; su condensación produce calor, que a su vez vaporiza el componente más volátil del líquido que entra al plato, desde el plato inmediato superior. Este proceso de condensación y vaporización alternativa origina un producto de tope, enriquecido en el componente más volátil y un producto de fondo enriquecido en el componente menos volátil.

Cuando la carga está formada por dos o más componentes éstos se distribuyen hacia el tope y el fondo de la columna en cantidades apreciables. Si existen solamente dos componentes, el más volátil se denomina componente llave liviano y, el menos volátil, componente llave pesado. Estos componentes representan la sección donde se desea la separación. Si se fracciona un sistema multicomponente, pueden haber más de dos componentes distribuidos, en este caso los componentes llave serán aquellos que muestren mayor cambio en la composición entre el tope y el fondo. Cuando existan más de dos componentes que muestren esta posibilidad, la columna deberá diseñarse en condiciones de producir la separación más difícil.

Ing. Jorge Barrientos, MSc. 17--3

Una columna de fraccionamiento esta dividida en dos secciones a ambos lados del plato de carga, la sección del tope se llama zona de rectificación y la del fondo, zona de despojamiento (stripping). En la zona superior el componente más volátil es enriquecido o rectificado. En la zona del fondo el componente más volátil es removido del componente menos volátil. En la zona de despojamiento, cada plato, tiene una mayor cantidad de líquido que de vapor, mientras en la zona de rectificación ocurre lo contrario. Cuando la columna se opera a reflujo total, la cantidad del líquido y vapor, que dejan cada plato, se hacen igual en ambas secciones. Todo este proceso se ilustra en las figuras Nros. 1 y 2.

Fig. 1. Sistema de Fraccionamiento

Ing. Jorge Barrientos, MSc. 17--4

Fig. 2. Sistema de Fraccionamiento

Ing. Jorge Barrientos, MSc. 17--5

4.- PARÁMETROS FUNDAMENTALES DE DISEÑO

a. Tipos de Torres

La selección del tipo de equipo, las partes interiores de esos equipos, la razón líquido/gas, el diámetro y la altura de la columna tienen efectos importantes desde el punto de vista económico al seleccionar el tipo de torre para una operación de fraccionamiento.

En este caso nombraremos algunas ventajas importantes para la escogencia de torres empacadas y de platos:

Torres Empacadas:

Hay muchos casos en que las torres empacadas tienen ventajas importantes. Entre éstas se incluyen:

1. Operaciones al vacío. La caída de presión en una torre empacada se puede diseñar con frecuencia para un nivel más bajo que en el caso de una torre de platos y obtener, de todos modos, un contacto adecuado en el vapor y el líquido.

2. Los líquidos espumantes se pueden manejar con frecuencia en forma más satisfactoria en una torre empacada.

3. La retención de líquido suele ser generalmente menor, por lo que se puede manejar materiales sensibles al calor junto con procesos que pueden tener reacciones secundarias indeseables.

4. La construcción suele ser más sencilla y barata cuando el sistema es corrosivo para los materiales de construcción normales.

5. Para columnas pequeñas (menores que, aproximadamente, 2 pies de diámetros), las torres empacadas serán casi siempre más baratas que las de platos.

Torres Platos:

Las torres de tipo platos tienen ventajas importantes en muchos campos:

1. Se instalan con facilidad serpentines de enfriamiento en los platos, lo que las hace más conveniente cuando el calor de solución requiere enfriamiento interno.

2. Con el diseño apropiado para la longitud del flujo transversal de líquido, las torres de platos pueden manejar flujos más altos de líquido.

3. Para flujos de líquido extremadamente bajos (por ejemplo, en la deshidratación de gas natural en el cual se utiliza un glicol), las torres de

Ing. Jorge Barrientos, MSc. 17--6

platos tienen ventajas, puesto que se pueden diseñar para retener una cantidad dada de líquido en el plato.

4. Se puede preferir ciertos tipos de torres de plato, cuando hay disposiciones de materiales sólidos que se deben retirar periódicamente. La limpieza de las otras torres de platos se puede hacer por bocas de acceso, mientras que las torres empacadas requieren que caiga el empaque para facilitar la limpieza.

5. El peso total de la torre de platos suele ser menor que el de una torre empacada, diseñada para el mismo servicio. La resistencia limitada a la trituración de muchos materiales de relleno puede hacer obligatorio el uso de platos múltiples de soporte del empaque, para sostener el peso alto, de la columna empacada.

6. Se prefieren en general columnas de platos para las operaciones que requieren un gran número de unidades de transferencia o platos teóricos. Las torres empacadas tienden a someterse al encauzamiento de las corrientes de vapor y líquido y la distribución adecuada es difícil de mantener, sin patrones bastantes elaborados de redistribución.

b. Bases de Diseño

Para diseñar una columna de fraccionamiento es necesario seguir los siguientes pasos:

1. Definir la alimentación, recuperación de productos (Rata de Flujo) y especificaciones de los mismos (Caracterización).

2. Definir el componente Llave Pesado y el componente Llave Liviano.

3. Establecer la presión de la columna de acuerdo al medio enfriante en el condensador.

4. Calcular el punto de rocío para el destilado y el punto de burbujeo para el fondo. (Temperatura de tope y fondo).

5. Calcular el mínimo número de platos teóricos.

6. Calcular el mínimo reflujo.

7. Determinar el punto de operación de reflujo y el número de platos teóricos.

8. Determinar el plato de alimentación.

9. Calcular con la eficiencia de la columna (o plato) y determinar el número de platos.

10. Calcular el diámetro y altura de la torre.

Ing. Jorge Barrientos, MSc. 17--7

5.- CARACTERÍSTICAS DE LA ALIMENTACIÓN Y DE LOS PRODUCTOS CALIDAD, FLUJO, TEMPERATURA, RECOBRO

La calidad, flujos y recobros determinan la cantidad de productos a separar, los parámetros fundamentales para el balance de masa, de energía y el dimensionamiento de la torre; la temperatura permite determinar el grado de vaporización y por ende el gasto de energía.

Ejemplo: En el depropanizador de Jose entran: 5222 moles/hora de alimentación, la calidad de propano es: xf=0,5493 la calidad a obtener en el tope es xp=0,9724 y el fondo es xB=0,0015; ¿Cuántos moles/hora de propano salen por el tope y cuántos por el fondo?

F = P + B (F1)

PXp + BXB = FXf (F2)

Despejando B en función de F y P en (F1) e introduciendo en (F2) nos queda:

Bp

Bf

XXXX

FP−−=

P = 2496 moles/hora de producto de tope.

PXp = 2865 moles/hora de C3 tope

B = 2357 moles/hora de productos de fondo

B XB = 3.535 moles/hora de C3 por el fondo

El balance de energía alrededor de la torre muestra que:

qR = (qc + Qp + QB) – Qf

donde qR es el calor entregado en el rehervidor, qc el calor cedido en el condensador; Qp y QB son los calores con los que sale la corriente de tope y fondo respectivamente, Qf es el calor de entrada en la alimentación. Se puede notar que mientras mayor es Qf manteniendo qc, Qp, y QB fijos, qR es menor.

a. Medio enfriante en el condensador y presión de la columna

La temperatura de tope de la columna depende de la presión de operación de la misma, la cual, a su vez, depende del medio de enfriamiento disponible para condensar el reflujo. La mayoría de las columnas son diseñadas para usar agua como medio de enfriamiento en e condensador, a temperaturas que varían entre 90 y 105ºF.

Ing. Jorge Barrientos, MSc. 17--8

También se usa aire como medio enfriante en el cual se estima la temperatura a la salida del condensador entre 110 y 130ºF; en algunos casos como en la deetanizador, se usa un sistema semirefrigerado como medio enfriante, a temperaturas de 30 y 40ºF.

Un condensador total, condensa todos los vapores del plato del tope para generar una producción completamente líquida. En este caso la presión en el acumulador se obtiene haciendo un calculo de punto de burbuja. Si se utiliza un condensador parcial se condensa solo lo necesario para el reflujo, un calculo de punto de rocío dará la presión del acumulador.

La presión de la columna será igual a la presión del acumulador más la caída de presión a través del condensador y la línea de vapores de tope, generalmente en el orden de 5 a 15 psi.

Ejemplo: Calcular la presión de operación aproximada de una torre depropanizadora que usa aire como medio enfriante en un condensador total en donde la caída de presión de la torre al acumulador es de 15 lpca.

Componente Composición XD K´ at 130ºF y 285 lpca yi = kixi = 100

C2 2,56 2,75 7,04 C3 92,31 0,98 90,50 iC4 5,13 0,48 2,46

100,00 Presión columna = 285 + 15 = 300 lpca

b. Temperatura en la columna

El vapor que sale del plato del tope tiene la misma composición del producto del tope cuando se utiliza un condensador total. Esto no es verdad cuando se usa un condensador parcial, en ese caso el calculo de punto de rocío en los vapores del plato de tope dará la temperatura del fluido que sale del tope de la columna.

Ejemplo: Para el ejemplo anterior calcular la temperatura del tope de la torre.

P = 300 lpca

Componente Composición (yi)D K´ s a 300 lpca y 143ºF 1kiyi

Xi ==

C2 2,56 2,850 0,90

C3 92,31 1,033 89,42

iC4 5,13 0,530 9,68

100,00 De donde, la temperatura de tope será 143ºF

Ing. Jorge Barrientos, MSc. 17--9

De la misma manera la temperatura del fondo de la torre se obtiene del cálculo del punto de burbujeo del producto de fondo. A través de la torre podemos estimar una caída de presión entre 5 y 10 psi desde el fondo hasta el tope.

Ejemplo: Componente (Xi) B K´ a 305 lpca y 219ºF Yi = ki xi = 100

C3 1,85 1,760 3,25

iC4 68,25 1,044 71,20

NC4 29,90 2,855 25,50

99,95

Entonces 219ºF es la temperatura de fondo

La condición óptima para la operación de una columna se obtiene cuando la alimentación entra a su punto de burbujas, entonces la temperatura de alimentación de la columna deberá corresponderse con la temperatura de burbujeo a la presión de la columna.

Componentes Composición Alimentación (Xi)ºF K´ a 305 lpca y 211ºF Yi = ki xi = 100

C2 0,2 3,95 0,79

C3 8,9 1,66 14,77

iC4 63,3 0,99 62,64

NC4 27,6 0,99 21,85

100,00

La temperatura de alimentación al depropanizador será 211ºF

A continuación se encontrará la caracterización de la alimentación, producto de tope y de fondo de la torre depropanizadora de Jose y la elaboración de su diagrama de fases en equilibrio el cual se calculó mediante el uso del programa de un simulador.

Ing. Jorge Barrientos, MSc. 17--10

Tabla 1. Separación de un Fluido en una Torre de Fraccionamiento (Depropanizadora)

Componentes zi Tope %F Fondo %

C1 0,01 100,0000

C2 0,97 100,0000

C3 53,58 99,9748 0,0254

iC4 13,20 2,1786 97,8214

nC4 15,53 0,0237 99,9763

iC5 4,47 100,0000

nC5 2,56 100,0000

C6 5,76 100,0000

C7 2,45 100,0000

C8 0,53 100,0000

C9 0,70 100,0000

C10 0,25 100,0000

Tabla 2. Diagrama de Fases (P-T) de la carga

Presión, lpca Temp.. de Rocío Temperatura de burbujeo

100,0 207,023 85,231

150,0 229,023 116,964

200,0 245,462 142,021

250,0 258,626 163,177

300,0 269,561 181,764

350,0 178,837 198,545

400,0 286,792 214,009

450,0 293,610 228,529

500,0 299,401 242,382

550,0 304,159 255,861

600,0 307,704 269,368

650,0 309,371 283,678

Ing. Jorge Barrientos, MSc. 17--11

Tabla 3. Diagrama de Fases (P-T) del tope en una depropanizadora

Presión, lpca Puntos de Rocío ºF Puntos de burbujeo ºF 100 54,241 51,295

150 81,595 78,982

200 102,888 100,548

250 120,598 118,490

300 135,906 134,012

350 149,469 147,773

400 161,700 160,209

450 172,873 171,589

500 183,177 182,119

550 192,749 191,954

600 201,325

Tabla 4. Diagrama de Fases (P-T) del producto del fondo en una depropanizadora

Presión, lpca Puntos de Rocío TºF Puntos de burbujeo TºF

100,0 254,740 164,355

150,0 281,872 199,875

200,0 302,492 227,918

250,0 319,220 251,592

300,0 333,275 272,410

350,0 345,312 291,241

400,0 355,700 308,669

450,0 364,605 325,167

500,0 371,965 341,234

550,0 377.143 368,234

600,0

Ing. Jorge Barrientos, MSc. 17--12

Fig. 3. Gradiente de temperatura de los platos de un debutanizador

Ing. Jorge Barrientos, MSc. 17--13

Fig. 4. Composición de los hidrocarburos que llegan y salen de la torre.

Ing. Jorge Barrientos, MSc. 17--14

Fig. 5. Parámetros operacionales en una columna de fraccionamiento (de-propanizadora).

Ing. Jorge Barrientos, MSc. 17--15

Fig. 6. Diagrama de fases presión-temperatura de los productos de entrada y salida a una columna de-propanizadora.

c. Calculo del número de platos

Para una separación dada el número mínimo de platos se obtendrá cuando la columna opera a reflujo infinito.

Para el cálculo de platos y relación de reflujo existen métodos rigurosos (Largos, por computación) y métodos cortos. A continuación se presenta un resumen del orden de exactitud y la rigurosidad de los métodos.

Orden de Exactitud Método

1 Riguroso .

Calculo plato a plato con balance de calor en cada plato, usa correlaciones complicada de comportamiento líquido y vapor en equilibrio. Se realiza con la ayuda de un computador.

2 Calculo plato a plato con ciertas modificaciones o suposiciones (como por ejemplo carga de vapor cte. A través de la columna).

3 Método de Guillilands, platos mínimos obtenidos de Fenske y reflujo mínimo de Underwood.

4 Tratamiento del sistema como mezcla binaria y resuelto por el método de Mc Cabe-Thiele.

Ing. Jorge Barrientos, MSc. 17--16

Para el calculo del número mínimo de platos teóricos en forma rigurosa se realiza un calculo (plato a plato) de equilibrio de punto de rocío del tope hacia el fondo y de punto de burbuja del fondo hacia el tope de tal forma que en el plato donde estos cálculos coincidan se define el número de platos mínimos requeridos.

Aplicando métodos cortos como el caso de la correlación de FENSKE:

HK/LKlog

xdxb

xbxd

log

SMHKLK

α

=

en donde:

SM = Número mínimo de platos teóricos

LK/HK = Volatilidad relativa del llave liviano promedio del tope y fondo a la temperatura average.

TavgTavg HKKLKK

HKLK

=

=

2FondoTtopT

Tavg+

==

Xd = fracción molar en productos destilados

Xb = fracción molar en producto de fondo

d. Reflujo

Esta palabra se usó, con diferentes significados, el ingeniero de diseños, entiende por reflujo a la razón entre el volumen de fluido revertido a la torre dividido por un volumen de otro fluido, que entra o deja el fraccionador.

Las tres corrientes generales envueltas en esta razón son: la carga, producto de tope, y el vapor que deja cualquier plato. Los ingenieros de diseño generalmente piensan en razón reflujo en función del líquido y vapor que dejan cualquier plato en particular. Esta razón de reflujo que en realidad es el reflujo interno de la torre, es la más importante en lo que se refiere a operación de la columna.

Si el reflujo llega a la columna sin enfriamiento adicional, y la carga entra a su punto de burbujeo, el volumen de líquido que deja a cada plato en la zona de rectificación es aproximadamente igual al reflujo bombeado a la columna.

Ing. Jorge Barrientos, MSc. 17--17

La cantidad de reflujo hacia una columna, no solamente afecta la calidad del producto, sino también la capacidad de la misma. Aumentando la razón de reflujo, se incrementa el grado de separación y la carga calorífica de la torre, lo cual puede afectar la eficiencia. Una de las cualidades deseables en un plato de una columna de fraccionamiento es su habilidad para operar a relativa alta eficiencia en un amplio rango de cargas caloríficas. Si se utiliza una columna muy grande para fraccionar una pequeña cantidad de material, la carga calorífica puede ser tan baja, que los platos no funcionen adecuadamente. Esta situación podría mejorarse subiendo la razón de reflujo, de tal manera que la carga calorífica aumente hasta satisfacer las condiciones de operación de los platos.

La temperatura del reflujo enviado a la columna, afecta el reflujo interno. En caso de que el retorno que entra a la columna se enfríe por debajo del punto de condensación, se necesitará más vapor para llevar dicho producto sólo hasta el punto de burbujeo, el subenfriamiento del reflujo refleja mayores dificultades que la remoción de una cantidad igual de calor, condensando vapor adicional.

Por razones prácticas podría ser deseable operar con un reflujo subenfriado para asegurar un mejor bombeo. Si la bomba es de tipo cuello de botella (bottleneck) un aumento en el reflujo interno, puede lograrse, bajando la temperatura de reflujo sin aumentar su volumen.

Desde el punto de vista operacional es fácil hablar de razones de reflujo entre el reflujo y la carga o el producto de tope. Originalmente, la cantidad de reflujo enviada a una columna fue controlada separando la corriente del condensador, una parte como producto del tope y la otra como reflujo, por medio de una caja de desviación El resultado de un registro de aproximadamente 10 a 20 columnas indican los cambios de las razones de reflujo con amplia variación de la composición de la carga. Notándose que la razón basada en la carga, refleja la menor variación. Esto es un punto importante que se debe tener presente durante la operación de la columna. Si la composición de la carga cambia, la razón de reflujo debe variarse a fin de producir el mismo producto de tope.

Por ejemplo, si tenemos una mezcla en un fraccionador que contenga 50% de propano y 50% de butano y el reflujo requiere de 1,5 veces la carga de la columna, el caudal del reflujo no debe ser cambiado apreciablemente cuando se fracciona una mezcla que contenga solo 25% de propano. La nueva composición requerirá más o menos razón con respecto a la carga, pero al referirse al producto del tope esta mezcla con menor contenido de propano, requerirá de una razón 6:1 en lugar de 3:1.

Para el cálculo de reflujo mínimo se usa la relación de Underwood dentro de los métodos cortos lo cual ocurre al tener un número infinito de platos:

Ing. Jorge Barrientos, MSc. 17--18

( ) ( ) ( ) ( )( ) ( ) ( ) ( )HKxdD1qHKxfDL

LKxdD1qLKxfDLKHKKLK

−++−++

=

( ) ( )( ) ( )HKxdDqHKXFL

LKxdDqLKxfL++

=

(KLK/KHK)F = Relación de Constantes de equilibrio de Componentes claves en la alimentación

L = Moles de líquido saliendo de cualquier plato arriba de la alimentación.

D = Moles de producto de tope.

(Xf)LK = Composición de componentes clave liviano en la alimentación.

(Xf)HK = Composición del componentes pesado en la alimentación.

(Xf)LK = Composición del componentes liviano en el tope.

(Xd)HK = Composición del componentes clave pesado en el tope.

q = 1 Para la alimentación entrando al punto de burbuja el cual es la condición más óptima de entrada (q = 0 para vapor a punto de roció).

ónvaporizacidecalorentaciónlimademol1vaporizarpararequeridocalor

q =

Al obtener el número mínimo de platos y el reflujo mínimo, se usa la correlación de Gilliland para determinar el número de platos teóricos y el reflujo de operación de la gráfica de Gilliland suponiendo un valor de s (número de platos) se obtiene el reflujo correspondiente y se elabora una gráfica de R vs S. Ver figuras 7, 8 y 9.

Ing. Jorge Barrientos, MSc. 17--19

Fig. 7. Gráfica de Gilliland para el reflujo vs el número de platos S

Ing. Jorge Barrientos, MSc. 17--20

Fig. 8. Monograma de Gilliland para el cálculo del número de platos teóricos en

una torre

Ing. Jorge Barrientos, MSc. 17--21

Fig. 9. Variación de los platos teóricos con reflujo

e. Cálculo para un Reflujo Óptimo

Separación de C3-iC4

Radio de Reflujo 2.6 3.0 4.0 5.0

Equipos

Diámetro de la torre Ft 3,0 3,1 3,5 3,8

Número de platos 48 35 28 25

Área de condensador Ft2 1,320 1,460 1,825 2,200

Área del reboiler Ft2 560 625 780 935

Servicios

Agua de enfriamiento, gpm 290 320 400 480

Vapor de 15 psig, lb/hr 4,100 4,550 5,670 6,800

Costos de Inversión $

Torres 10,250 8,400 8,200 8,200

Tubulares 9,400 10,150 12,200 14,250

Total 19,650 18,550 20,400 22,450

Variación de los platos teóricos con reflujo

Ing. Jorge Barrientos, MSc. 17--22

f. Cálculo para un Reflujo Óptimo

Separación de C3-iC4

Depreciación de la Inversión, $/DC 26.90 25.40 27.90 30.70

Costo de servicios $/DC

Agua de enfriamiento 4.20 4.60 5.80 6.90

Vapor de 15 psig 14.80 16.40 20.40 24.50

Total 19.00 21.00 26.20 31.40

Con esta gráfica se selecciona un punto de operación usualmente R = 1,3 Rmin y/o S = 2 SMIN; pero la selección depende de los costos de operación vs costos de instalación, alta razón de reflujo significan altos costos de operación.

g. Método de MC Cabe Thiele para número de platos

El método es aplicado sólo para sistemas binarios, para ser adaptado al sistema de un multicomponente se selecciona un componente llave liviano y un componente llave pesado. Ver figura 2.1.10.

El desarrollo de la curva de equilibrio para una mezcla binaria se realiza usando los conceptos de fugacidad en equilibrio; supongamos en el depropanizador a presión de 225 lpca el componente liviano es el propano y el pesado el isobutano.

Fv C3 = FL C3 en equilibrio

Fv C3 = δ nY C 3

FL = P C3 x C3

Ing. Jorge Barrientos, MSc. 17--23

Fig. 10. Diagrama de equilibrio propano/i-butano

Para condiciones ideales suponemos que:

π Yc3 = Pc3 Xc3 Componente Liviano

π Yc4 = Pc4 Xc4 Componente Pesado

Sabiendo que:

Yc4 = 1 – Yc3

Xc4 = 1 – Xc3

Y sabiendo que:

π==

PiXiYi

iK

Donde Pi es presión de vapor de líquido del componente a la temperatura.

Tenemos que:

Ing. Jorge Barrientos, MSc. 17--24

43

43 PccP

PccX

−−π

=

3333

3 XcKcXcPc

cY =π

=

Preparamos la tabla de la curva de Equilibrio π = 225 lpca

T(ºF) Pc3 Pc4 π - Pc4 Pc3 – Pc4 Xc3 Yc3

100 188,38 72,04 182,97 116,28 1,573 1,16 **

110 214,02 83,22 1,313 **

120 242,19 95,75 1,088 **

*130 273,08 109,72 0,888 0,952

140 306,76 125,19 0,715 0,866

150

160

250

** Todo líquido * Temperatura de rocío a lpca

Al tener la curva de equilibrio, fijamos los tres diferentes puntos sobre la misma:

1) Pureza del producto de tope (Xc 3 D = 0.987)

2) Composición molar en el fondo (Xc 3 B = 0.005)

3) Pureza en la alimentación (Xc3 F = 0.574)

La línea de operación en la zona de rectificación es:

1RXD

X1R

RY n1n +

++

=+

la pendiente interseción

La línea de operación en la zona de despojamiento

FR1F

YFR1R

X 1nm +−

+++

= +

Ing. Jorge Barrientos, MSc. 17--25

DL

R = usualmente es económico usar entre 2 y 3

entaciónlimalaenmoles.Nroentaciónlimalaenlíquidosmoles.Nro

FLF

q ==

En el diagrama siguiente se ve el efecto de la condición de la alimentación sobre la línea de alimentación. ra, alimentación como líquido frío rb, alimentación como líquido saturado. re, alimentación como vapor sobre calentado.

a: Líquido saturado b: Subenfriado c: Alimentación parcialmente vaporizada (normal) d: Alimentación vapor saturado e: alimentación vapor sobre calentado

Diagrama:

Pendiente es: 1q

q−

de la ecuación 1q

Xfx

1qq

y−

−−

=

Ing. Jorge Barrientos, MSc. 17--26

Ejemplo: XD = 0.987 XB = 0.005

Alimentación 31% vaporizada

q = 0.69 pendiente = -2.2

31.012.2

087.01R

XD =+

=+

Diagrama:

Diagrama de Mc-Cabe Thiele. El número de triángulos representa el número de platos ideales.

h. Problema de destilación

Ejemplo:

Diagrama Mc Cabe-Thiele: 100 moles/hr de una solución 60 mol % de C6 y 40 mol % de C7 va ser separada en un producto del tope cuya composición debe ser 97 mol % de C6 y un producto de fondo con 96 mol % de C7, en una torre de destilación operada a 1 atmósfera de presión.

La carga es un líquido saturado.

Use una razón de reflujo 1,25 veces el mínimo.

El reflujo es también un líquido saturado.

1.- Cuántos moles/hr se obtienen por el tope. 2.- Cuántas etapas perfectas se necesitan

Ing. Jorge Barrientos, MSc. 17--27

Respuesta: :

Composición de la carga:

Componentes Zi Tope Fondo C6 0.60 0.97 0.04

C7 0.40 0.03 0.96

Cálculo de D, moles de producto de evaluación o del tope y B, moles del producto del fondo; con respecto al C6:

0,60 x 100 moles = 0,97 x D + 0,04 B D + B = 100 moles/hr 60 = 0,97 (100 –B) + 0,04 B

78,3993,0

37B ==

D = 60,22

Composición de flujo que deja la columna:

Componentes Tope Fondo

C6 (60,22) (0,97) = 58,41 (39,78) (0,04) = 1,59

C7 (60,22) (0,03) = 1,81 (39,78) (0,96) = 38,19

Temperatura de la carga a P = 14,7 lpca (punto de burbujeo)

Componentes Zi T (burbujeo)

C6 0,60 155,73 93,438

C7 0,40 209,17 83,668

177,106

Punto de burbujeo a 14,7 lpca = 177ºF

32,256,03,1

C,KC,K

7

6 ==α

Cálculo de la curva de equilibrio del diagrama Mc Cabe-Thiele (ver tabla No. 5)

Ing. Jorge Barrientos, MSc. 17--28

Tabla No. 5

X αX (α -1) X 1+(α -1)x Y=x/1+(α -1) x

0,1 0,232 0,132 1,123 0,205

0,2 0,464 0,264 1,264 0,366

0,3 0,696 0,396 1,396 0,500

0,4 0,928 0,528 1,528 0,608

0,5 1,160 0,660 1,660 0,698

0,6 1,392 0,792 1,792 0,777

0,7 1,624 0,924 1,924 0,845

0,8 1,856 1,056 2,056 0,904

0,9 2,088 1,188 2,188 0,954

1,0 2,320 1,320 2,320 1,000

L = 1,25 x D = 1,25 x 60,2 = 75,27 moles/hr

431,0125,1

97,01R

XY O

O =+

=+

=

XF = 0,60 fracción de C6 en la carga XD = 0,97 fracción de C6 en el tope XB = 0,0094 fracción de C6 en el fondo

Línea operacional por encima del plato carga:

DXVD

XVL

Y n1n +=+

y dado que R = L/D, 1R

1VD

;1R

RVL

+=

+=

De la figura no. 11 puede conocerse el significado de los parámetros anotados.

Ing. Jorge Barrientos, MSc. 17--29

Fig. 11. Método gráfico de Mc Cabe-Thiele para determinar el número de platos

Ing. Jorge Barrientos, MSc. 17--30

97,049,13522,60

X49,135

27,75y n1n =+=+

Yn + 1 = 0,556 xn + 0,431

donde 0.55 es el valor de la pendiente y 0,431 es la intersección con el eje “Y”.

Línea operacional inferior: VXB

xVL

1y Bmm =+

Y dando que L = L + qF L = V + B

BLXB

xBL

Ly B

m1m −−

−=+

L = 75,27 moles/hr + (1,0) 100 moles/hr

L = 175,27 moles/hr

V = L – B = 175,27 – 39,78 = 135,49

49,13504,0x78,39

x49,13527,175

y m1m −=+

Ym+1 = 1,295 Xm – 0,0117

Ejemplo para x = 0,6

Ym+1 = 1,295 x 0,6 – 0,0117

Ym+1 = 0,7770 – 0,0117 = 0,7653

Para la línea operacional superior.

Yn+1 = 0,5556 xn + 0,431

Yn+1 = 0,556 x 0,6 + 0,431 = 0,765

Cálculo del punto de rocío en el acumulador.

Asumiendo que el acumulador trabaja a presión atmosférica. Punto de rocío del producto del tope.

Ing. Jorge Barrientos, MSc. 17--31

Componentes zi T Zi x T T = 100 y/k P = 1 atm.

ki

C6 0,96 155,7 151,00 1,00 0,97

C7 0,03 209,2 8,35 0,40 0,07

1,04

De donde la temperatura del tope de la columna puede considerarse igual a 159ºF

Temperatura del fondo

Punto de burbujeo del producto del fondo:

Componentes zi T de burbujeo Zi x T Ki Ki x xi

C6 0,04 155,7 6,23 2,1 0,08

C7 0,96 209,1 201,00 1,0 0,96

1,04 Temperatura del fondo de la torre = 207ºF

Método de Fenske para determinar el mínimo número de platos teóricos:

( )c

c

mc

d

nd

c

xk

log

xx

xx

log

nm

=−

3,2ln04,096,0

03,097,0

lnnm

=−

3,2kk

1,20,11,2

kk

5,24,00,1

kk

avd

c

nd

c

nd

c

=

=

=

=

m – n = ln (32,3) (24) / ln 2,3

8833,065,6

3,2ln5,77ln

nm ===−

Ing. Jorge Barrientos, MSc. 17--32

Cálculo del reflujo mínimo por el método de Underwood.

( ) ( )( ) ( )

−++−++

D,x.D1qF,xDLD,x.D1qf,xDL

kk

ddO

ccO

d

c

D,x.D.gF,xLD,x.D.qF,xL

ddO

ccO

++

=

32,256,033,1

KK

d

c == a 1 atm. y 177ºF

xc, F = 0,60 xd, F = 0,40 xc ´D = 0,97 L = 75,27 xd ´D = 0,03 D = 60,22

( )( )

++

=

++

03,0x22,60L60,097,0x22,60L60,0

40,022,60L60,022,60L

32,2O

O

O

O

807,1L40,0413,58L60,0

09,24L40,1826,83L39,1

O

O

O

O

++

=+

+

0,556 LO2 + 2,515 LO + 33,530 LO + 151,473

= 0,240 LO2 + 23,36 LO + 14,45, LO + 1407,17

de donde:

1,774 LO2 – 3,24 LO – 1255, 696 = 0

632,020,1587147,3774,1

LO

+±=

hr/moles907,65632,0

879,39774,1LO =

+

094,122,60

907,65DL

min.R O ===

i. Eficiencia de los platos

Cuando se habla de eficiencia en torres se definen dos tipos, eficiencia global y eficiencia local o eficiencia de Murphree.

La eficiencia global Eo se define como la relación de número de platos ideales y el número de platos reales.

Ing. Jorge Barrientos, MSc. 17--33

realesplatos.Nrocosteóriplatos.Nro

Eo =

Y la eficiencia local (o sea Musphree) E´ se define como:

1YnYn

n;1Yn*Yn

1YnYn´E

+↑↑

+−+−

=

en donde: Yn = Concentración real de la fase de vapor que sale del plato n. Yn* = Concentración de vapor en equilibrio en el líquido de acuerdo a las

condiciones teóricas en el plato N. Yn+1 = concentración real de vapor que entra al plato N.

De tal forma que:

( )( )( ) BOTTOP

BOTTOP

xXYY

M;L/MVLog

1L/MV´E1logEo

−−

=−+

=

en donde: M = es la pendiente de la curva de equilibrio L/V = es la pendiente de la línea de operación

DRICKAMER Y BRADFORD en A.I.CH.E. presentan una correlación de eficiencia global de plato en contra del promedio de la viscosidad de cada componente en la alimentación

E = 17 – 61,6 log Σ XF Mu

ΣMu = Promedio molar de la viscosidad en la alimentación a la Temperatura promedio en la columna.

Ejemplo: Para un depropanizador Temperatura tope = 143ºF Temp.. fondo= 219ºF Temperatura promedio = 181ºF

Componentes XF u a 181ºF Σu* XF

C2 0,002 -- --

C3 0,089 0,054 0,00481

iC4 0,633 0,108 0,06820

nC4 0,276 0,120 0,3310

ΣMu = 0,10611

E = 17 – 61,6 log (0,106) = 77,1%

Para comprender mejor este punto, observemos las figuras 12, 13, 14, 15 y 16.

Ing. Jorge Barrientos, MSc. 17--34

Fig. 12. Utilización de la eficiencia de Murphree en el diagrama XY. La

línea de trazos representa la curva efectiva de equilibrio Y´ frente a Xe, para M/ = 0,60 BA/CA = Yz/xz = 0,60

Fig. 13. Línea de operación y equilibrio rectas, para su utilización con M, cd, línea de equilibrio verdadera, Ye frente a X ef, línea de operación Yn+1 frente a

Xn,gh, línea de equilibrio efectiva, Y´e frente a Xe.

Ing. Jorge Barrientos, MSc. 17--35

Fig. 14. Relación entre las eficiencias de Murphree y local.

Caso 1: Vapor completamente mezclado y líquido sin mezclar.

Caso 2: Vapor y líquido sin mezclar, con flujo de líquido en la misma dirección para todos los platos.

Caso 3: Vapor y líquido sin mezclar con flujo de líquido en direcciones opuestas en platos adyacentes.

Las columnas ordinarias de platos perforados actúan en forma intermedia entre los casos 1 y 3. Para obtener las condiciones que se especifican en el caso 2 se necesita una construcción especial.

Ing. Jorge Barrientos, MSc. 17--36

Fig. 15. Relación entre las eficiencias de Murphree y global

Fig. 16. Relación entre las eficiencias de Murphree y local.

Ing. Jorge Barrientos, MSc. 17--37

j. Eficiencia típicas globales encontradas en la literatura para diferentes columnas

Columnas Eficiencias globales

Demetanizadores Aprox. 0,50

Deetanizadores Criogénicos 0,55 - 0,65

Deetanizadores a Alta Presión 0,70 – 0,75

Depraponizadores 0,70 – 0,75

Debutanizadores 0,70 – 0,75

Separadores de Butano 0,75 – 0,80

k. Localización de la carga

La localización propia de la carga es difícil de determinar. En el caso de una mezcla binaria, existe una localización definitiva que dará la condición más económica de operación de la columna. En el caso de policomponentes el sitio de entrada no es tan definido. Si se cambia la ubicación del plato de carga para un sistema policomponente, cambiarán también la composición del tope y del fondo, dependiendo de lo que se haga con el número de platos y la razón de reflujo.

Existen algunas guías generales para determinar la ubicación propia del plato de carga, la cual debería entrar a la columna a la temperatura de burbujeo calculada a la carga deberá ser aproximadamente igual a su razón en el plato de carga

En la practica es difícil determinar la composición en los platos, y no es beneficioso utilizar este método. En general, si la carga contiene un porcenta je bajo del componente llave más liviano, que a su vez debe producirse por el tope con gran pureza, la carga debe entrar más bien baja, de tal manera que un mayor número de platos se usen en la rectificación del componente llave más liviano.

Si el producto del fondo requiere de especificaciones de alta pureza y de la remoción de la mayoría de los componentes livianos, entonces la ubicación del plato de carga debe proporcionar más plato para la sección del fondo.

Afortunadamente, se operan los fraccionadores para producir un producto determinado bien en el tope o en el fondo. Por ejemplo, un deisobutanizador no tiene por objeto hacer isobutano con alta pureza, sino de asegurarse que el producto del fondo no contenga isobutano; por lo tanto, el principal trabajo del fraccionador será de despojar el isobutano del butano normal. Si el producto del fondo de tales columnas contiene mucho isobutano, la acción lógica debería ser subir el plato de carga si fuere posible y, quizás, aumentar la razón de reflujo.

Ing. Jorge Barrientos, MSc. 17--38

La temperatura de la carga es otro punto importante en la operación de una columna. Teóricamente el producto debería entrar a su punto de burbujeo. En realidad la temperatura de la carga puede ser inferior al punto de burbujeo, sin embargo, pudiera ocurrir que el intercambio no fuera suficiente y que la adición resultara antieconómica, en ese caso el calor adicional podría suplicarse en el rehervidor. Esta adición de calor en el rehervidor aumenta un poco la carga colorífica en la sección inferior de la columna sin afectar de manera significativa la carga calorífica por encima del plato de carga. La mayoría de las columnas alcanzan la capacidad de vapor en la zona superior antes que en la zona inferior. Si se encuentran dificultades con la capacidad de la columna, podría investigarse si la carga está entrando a su punto de burbujeo.

Desde el punto de vista del control de la columna es preferible que la carga entre por debajo del punto de burbujeo antes que por encima.

Cuando la temperatura de la carga está por encima de su punto de burbujeo, o la presión está por encima de la presión de la columna, ocurre una cierta vaporización en la entrada del fluido a la torre; este vapor adicional recarga el condensador sin mejorar el comportamiento de la columna.

Si la columna está operando a su capacidad de vapor en la sección inferior, podría introducirse la alimentación por encima del punto de burbujeo, para aumentar la carga de vapor en la sección superior sin cambiar la inyección de vapor en la sección inferior.

Cuando se operan varis torres en serie, tal como en las plantas de gasolina natural, ocurre una cierta separación instantánea en el plato de carga, debido a que ésta deja la columna anterior a su punto de burbujeo y a una presión un poquito más alta. Instalando un enfriador a esta corriente, podría aumentarse sustancialmente la capacidad de la siguiente columna, al reducir la vaporización en su respectiva entrada.

Para la localización del plato de alimentación Fenske, supone cuando la proporción de platos en la sección de rectificación de la columna será constante e independiente de la rata de reflujo, para lo que obtiene que:

α Sn = (d/f)LK (f/d)HK α Sm =(f/b)LK (b/f)HK

LK = Componentes llave liviano HK = Componentes llave pesado

en donde α es la volatilidad relati va del componente liviano y pesado o la relación promedio de las constantes de equilibrio a la temperatura promedio.

Sn = número de platos encima del plato de alimentación. Sm = número de platos debajo del plato de alimentación.

Ing. Jorge Barrientos, MSc. 17--39

f = composición del liviano o pesado componente llave en la alimentación. b = composición del liviano o pesado componente llave en el fondo. d = composición del liviano o pesado componente llave en el tope.

Kirkbride presentó una relación empírica para estimar en el plato de alimentación.

( )( )

=

2

XdHkXDLk

LkXfDHkXfB

log106,0MN

log

en donde:

N = Número de plato zona de rectificación M = Número de plato zona de despojamiento B = Moles/horas de producto de fondo D = Moles/horas de destilado Xf = Composición en la alimentación Xb = Composición en el fondo Xd = Composición en el tope Hk = composición llave pesado Hk = Componente llave liviano

l. Balance global de energía-Análisis de condensador y rehervidor

Haciendo un balance de energía en la figura anexa.

A F + qr = qc + Qd + Qb

Qr = qc + Qd + Qb – Qf

Ejemplo: Torre de-propanizadora Jose.

m. Balance global de energía-Análisis de condensador y rehervidor

Cálculo condensador

qc = V H C3 V = 160 lb mol/min AHC3 = -5456 btu/lb mol (120ºF, 238 lpca)

qc = 52,37 MM Btu/hr

Cálculo Alimentación

Qf = FL* HFL + Fv * HFv

FL = 10.,5 lb mol/min HFL = 4492 Btu/lb mol Fv = 0,506 lb mol/min

Ing. Jorge Barrientos, MSc. 17--40

*Hfv = 9539 Btu/lb mol

Qf = 28,18 mm Btu/hr.

Cálculo productivo de tope

QD = D * HD D = 57,015 mol/min QD = 5,47 MMBtu/hr *HD = 1602 Btu/lb mol

Cálculo rehervidor

qr = qc + Qd + Qb -Qf qr = 53, 42 Mmbtu/hr

* Referencias calculadas del N.G.P.S.A.

6.- PROBLEMAS OPERACIONALES EN UNA TORRE DE FRACCIONAMIENTO

a. Variables que afectan la operación de la columna

Entre las variables más importantes que afectan la operación de la columna tenemos: Presión de la columna, razón de reflujo, ubicación del plato de carga, temperatura de la carga, etc.

La selección adecuada de estas variables mejoraran la calidad y cantidad de los productos. El cambio de una de las variables afecta el valor de los productos. El cambio de una de las variables afecta el valor de las otras, de donde se hace importante entender el efecto de cambiar una variable.

Presión de la columna.

Afecta el grado de separación al cambiar la volatilidad relativa, a mayor presión menor volatilidad relativa y por tanto más difícil la separación. Si la capacidad de la columna esta limitada por el área del condensador, un aumento en la presión aumentará la diferencia de temperatura disponible en el condensador (Q = UA T), si la capacidad de la columna está limitada por la carga calórica, un aumento en presión de la columna aumentará la capacidad de la columna.

La contaminación del producto del tope se controla más efectivamente aumentando la presión que la rata de reflujo.

Reflujo.

La cantidad de reflujo afecta la calidad del producto y la calidad de la columna ya que aumenta el grado de separación y la carga calorífica de la columna lo cual afecta la eficiencia del plato.

Ing. Jorge Barrientos, MSc. 17--41

La temperatura del reflujo afecta el reflujo interno. Un reflujo subenfriado requiere mayor cantidad de energía para vaporizar, sin embargo, en caso donde se tengan limitaciones de bombeo de reflujo el reflujo subenfriado aumenta el reflujo interno.

Excesivo reflujo produce inundación y por ende mala separación en los platos.

Para cambio en la composición de alimentación no apreciables se recomienda mantener la razón de reflujo constante o aumentarla máximo un 15% de la razón mínima de operación y hacer los ajustes en el rehervidor.

Ubicación del plato de alimentación.

Un bajo porcentaje del componente llave liviano en la alimentación, el cual debe producirse por el tope con gran pureza requiere bajar el plato de alimentación para aumentar la zona de rectificación.

Por ejemplo en un separador de butanos donde no se requiere mucho isobutano en el fondo se puede corregir subiendo el plato de carga y disminuyendo la razón del reflujo.

Temperatura de cargas.

Normalmente es económico que la alimentación entre a su punto de burbuja por cuanto requiere menos carga el rehervidor, sin embargo, debe evaluarse económicamente el efecto de llevarlas a su punto de burbujeo o agregar más calor en el rehervidor cuando la carga entra subenfriada.

Por limitaciones en la capacidad de la columna y del condensador conviene introducir la carga por debajo de su punto de burbujeo ya que se genera menos vapor en la zona de rectificación.

b. Factores que afectan la operación de la columna

Variación en la rata de reflujo.

Los resultados experimentales demuestran que la mayor eficiencia en los platos se obtienen para columnas cargadas entre 85 al 98% del punto de inundación, debajo del 75% de esta capacidad las eficiencias caen violentamente.

En torres operando a rata máxima cualquier oleaje en el reflujo puede causar inundación en los platos del tope y la torre deja de fraccionar. En una torre en equilibrio y en especificación (tope y fondo) al aumentar la temperatura del fondo se debe aumentar el reflujo para evitar la contaminación del producto de tope; caso contrario al bajar la temperatura del fondo se debe contar el reflujo para evitar la contaminación en el producto de fondo ya que existen menos vapores para despojamiento.

Ing. Jorge Barrientos, MSc. 17--42

Variación en la composición de la alimentación.

En condiciones extremas las variaciones de la composición de diseño puede reducir la capacidad de la planta, o aún más hacer físicamente imposible producir los productos en especificaciones.

Por ejemplo un 10% de variación en la composición de propano aumentado a un depropanizador requiere de 1 a 2 platos adicionales o aumento de 33% de la razón de reflujo, sería necesario bajar la rata de alimentación a la torre hasta darle flexibilidad de manejo a la columna.

De la misma manera el aumento de livianos en una torre conlleva a afectar la capacidad de condensación y la presión de la torre, por lo que en algunos casos es necesario colocar una torre estabilizadora antes para asegurar la pureza del producto.

Variación en la condición de la alimentación.

Idealmente la alimentación a la columna entre en el punto de burbuja y parcialmente vaporizada, las experiencias muestran que no es deseable vaporizar más del 50% de los vapores que salen por el tope de la columna.

El precalentamiento de la alimentación es particularmente usado como medio de recuperación de energía con productos calientes para ser almacenados en frío.

Obviamente el efecto de cambio en el contenido calórico de la alimentación se compensa con mayor condensación en el tope o menor consumo de calor en el rehervidor.

El incremento o no de calor a la alimentación depende de su composición con respecto al diseño, cuando existe ineficiencia en el rehervidor aumento de calor en la carga es recomendable compensado por aumento de reflujo.

Para la ineficiencia en el condensador se reduce el precalentamiento de la alimentación y el calor necesario es añadido por el rehervidor permitiendo realizar el fraccionamiento hasta corregir el problema.

c. Problemas operacionales

Fraccionamiento pobre a altas ratas de alimentación. Relación de reflujo 3.5 a 1.0.

a. La eficiencia de los platos se reduce debido a una sobrecarga. b. Se debe reducir la relación de reflujo para descargar sección de

rectificación.

Ing. Jorge Barrientos, MSc. 17--43

Funcionamiento inadecuado del rehervidor.

a. Burbujeo de película (vapor binding): Puede ocurrir cuando el medio de calentamiento se encuentra a excesiva temperatura o a alta densidad de calor, ocasionando formación de una película de vapor que evita la transferencia de calor.

b. Oleaje (surging) causas: 1. Mala ubicación de los espaciadores (baffles). 2. El área de salida del vapor es insuficiente. 3. Taponamiento del espacio entre los tubos.

c. Caída de presión: 1. Es crítica en rehervidores tipo termosifón. 2. El tamaño de líneas no es adecuado. 3. La elevación entre el fondo de la torre y el rehervidor es inadecuada.

d. Carga excesiva de calor en el rehervidor: 1. Precalentamiento adicional alimentación (causa) 2. Reducir rata de carga (solución). 3. Posibilidad de reducir reflujo.

e. Torre Inundada:

1. Causas: a) .Ensuciamiento o incrustaciones que bloquean el flujo. b) Fallas mecánicas. c) Obstáculos en los bajantes. d) Concentración de aguas en los platos. e) Exceso de reflujo.

2. Detección: a) Verificar la calidad del producto. b) Verificar la capacidad. c) Balance de calor en condensador. d) Abrir la válvula de purga en los platos. e) Verificar caída de presión en la torre.

3. Solución operacional, por cambios físicos: a) Cambiar entrada de calor a la sección. b) Reducir rata de alimentación. c) Reducir reflujo. d) Elevar presión de la torre.

4. Control por cambios mecánicos: a) Proporcionando más área al bajante. b) Sustituyendo platos por otros de mayor capacidad. c) Incrementando espacio entre platos eliminando platos intermedios.

Ing. Jorge Barrientos, MSc. 17--44

7.- EJERCICIOS

Para el diseño de un despropanizador se tienen los siguientes datos:

Alimentación: A 167ºF y 5222 moles/hr

Composición (mol%): C2: 1,2; C3: 50; iC4: 15; nC4: 16; iC5: 5,3; nC5: 4,2; C6+: 8,28 y 0% vaporizada (saturada)

Tope: A 121ºF

Composición (mol%): C2: 2.401; C3: 96.026; iC4: 1.516; nC4: 0,061

Fondo: 2276 moles/hr, 235ºF

Composición (mol%): C2: 0; C3: 0,067; iC4: 29,29; nC4: 44.679; iC5: 11,64; nC5: 9.205; C6+: 4.509

Presión promedio del trabajo: 250 psia

De acuerdo a la data anterior se pide calcular:

A. Número de platos mínimo B. Relación de reflujo mínimo C. Número de platos teóricos y reales para una relación de reflujo = 2; y

una eficiencia global de platos de 85%. D. Determinar el plato de alimentación.

8.- RESPUESTA AL EJERCICIO

Para el diseño de un despropanizador se tienen los siguientes datos:

Alimentación: A 167ºF y 5222 moles/hr

Composición (mol%): C2: 1,2; C3: 50; iC4: 15; nC4: 16; iC5: 5,3; nC5: 4,2; C6+: 8,28 y 0% vaporizada (saturada)

Tope: A 121ºF

Composición (mol%): C2: 2.401; C3: 96.026; iC4: 1.516; nC4: 0,061

Fondo: 2276 moles/hr, 235ºF

Composición (mol%): C2: 0; C3: 0,067; iC4: 29,29; nC4: 44.679; iC5: 11,64; nC5: 9.205; C6+: 4.509

Presión promedio del trabajo: 250 psia

De acuerdo a la data anterior se pide calcular:

Ing. Jorge Barrientos, MSc. 17--45

A. Número de platos mínimo B. Relación de reflujo mínimo C. Número de platos teóricos y reales para una relación de reflujo = 2; y

una eficiencia global de platos de 85%. D. Determinar el plato de alimentación.

A. Aplicando Fenske pag. del tema de fraccionamiento:

Hk/LklogXdXb

XbXd

logSm HkLk

α

=

Donde:

2TfondoTtop

TaveraverageT,PHkLk

Hk/Lk+

=

αα

P = 250 psia

Fº1782

2355,121Taver =

+=

En diagramas de equilibrio en el G.P.S.A. Data Book a P = 250 psia y T = 178ºF.

KC3 = 1,70 KiC4 = 0,89

mínimosplatos16o79,15Sm

89,070,1

log

15,03,0

0007,096,0

logSm =→

=

B. Aplicando underwood pag. Tema de fraccionamiento en donde Q = 1 por estar la alimentación saturada y 0% vaporizada la ecuación queda:

( )( ) ( )

( ) ( ) HkXDDHkXfLLkXdDLkXfL

HkXfLk)Xf(

kHkklk

F ++

=

a P = 250 psia y T = 167ºF en el data book KC3 = 1,55 y KiC4 = 0,78 D = F – B = 2946 mol/hr

( )( ) 015,0x29465,0L

96,0x29465,0L15,050,0

x78,055,1

++

=

Despejando Lmin tenemos:

(L) min = 5175,5 en donde (L/D) min = 1,75

C. Aplicando la relación de Gilliland para L/D = 2

Ing. Jorge Barrientos, MSc. 17--46

( )[ ]0833,0

1275,12

1D/LminD/LD/L

=+

−=

+−

Cortando en la grafica de la pag. tema de fraccionamiento e interceptando el eje de las abcisas tenemos que:

( )56,0

1SSmS

=+

S = 37,6 o 38 platos teóricos

Eficiencia = 0,85

S = 44,7 o 45 platos reales

D. Usando la relación de Kirkbride, pag. del tema de fraccionamiento.

( )( )

( )( )

=

2

HkXdLkXb

LkXfDHkXfB

log206,0MN

log

( )( )( )( )

=

2

015,00007,0

5,0294615,02276

log206,0MN

log

2671,0MN

log −=

5405,0MN

= como N + M = 45

Plato de alimentación = 15,78 o plato Nro. 16