investigacion del atomo

30
Introducción Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto, que tales partículas, fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego átomos, indivisible). En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos : los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles. Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones. El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas, se dedujo la distribución de la carga eléctrica al interior de los átomos.

Transcript of investigacion del atomo

Page 1: investigacion del atomo

 Introducción

Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto, que tales partículas, fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego átomos, indivisible).

 En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.

 Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.

 El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas, se dedujo la distribución de la carga eléctrica al interior de los átomos.

 Descubrimiento de partículas subatómicas

   El verdadero desarrollo se alcanzo con el estudio de las descargas eléctricas a través de gases erarecidos (a baja presión).

 En 1964 Willian Crookes descubre una radiación luminosa que se produce en un tubo de vidrio que contenía un gas a baja presión, después de una descarga de bajo voltaje. Esta observación origino la curiosidad necesaria para el descubrimiento de otros tipos de radiaciones, tales como los rayos catódicos, rayos canales, rayos X, radio actividad.

  Los rayos catódicos son una radiación originada en el cátodo, después de aplicada una descarga de alto voltaje. Viaja en línea recta hasta el ánodo, es altamente energética, puede producir efectos mecánicos, y se desvían hacia la placa positiva de un campo eléctrico, lo que demuestra su carga negativa.

  Las Partículas que componen esta radiación se originan en cualquier gas, lo que demuestra que son componentes atómico y se les llamo electrones.

Page 2: investigacion del atomo

  Los rayos canales son una luminosidad que viaja en línea de recta en dirección hacia el cátodo.

  Se desvía hacia la placa negativa del campo eléctrico, lo que demuestra que son de Naturaleza positiva. Tiene un tamaño mayor que el haz de los rayos catódicos. Se originan cuando el átomo pierde electrones para dirigirse hacia el ánodo. Las partículas producidas en el gas Hidrogeno, recibieron la denominación de protones.

  Rayos X, descubiertos por Roentgen en 1895, se producen en forma simultanea con los catódicos y canales. Esta radiación impresiona una placa fotográfica atravesando una cartulina negra, viaja en línea recta y puede ionizar los gases demuestra una naturaleza neutra desde el punto de vista eléctrico, debido a que permanece inalterable frente a un campo de naturaleza eléctrica.

Esta radiación ha sido ampliamente utilizada en la medicina y en el estudio de la disposición de las partículas en los sólidos.

  La Radioactividad es el alto contenido energético, capaz de ionizar un gas, impresionar capaz fotográficas, destellos de luz al incidir en elementos como el sulfuro de zinc (ZnS). A ser sometido a la acción de un campo magnético se distinguen tres tipos: positivas, negativas y neutras. A finales del siglo XIX se intensifico su estudio por Bequerel y los esposos curie.

  Características del electrón

 El conocimiento del electrón no pasó del obtenido con los rayos catódicos. Es una partícula que se encuentran en los elementos químicos, que su salida implica un contenido energético grande, con carga negativa. Utilizando los conocimientos que se conocen acerca del campo electrónico y magnético, Thomson logra descubrir una característica cuantitativa del electrón: La carga especifica, es decir la carga en una unidad de masa (e/m), el valor es 1,76.108 coul/g.

 Hasta 1909 no se conoció la masa ni la carga de esta partícula, en ese año, A. Millikan ideó un aparato bastante sencillo para la determinación de la carga.

 Consiste en un envase de vidrio, con dos anillos mecánicos dispuestos horizontalmente, que servirán de electrodos para generar campos magnéticos entre ellos. En la parte superior se encuentra un gotero con aceite; y en el orificio, una malla que se encargara de dividir la gota de aceite en otras mas pequeñas. Además, con el frotamiento, se cargaran electrónicamente. La observación de la caída de las gotas se hará con un lente que se coloca en la zona intermedia a los anillos. Mientras no se conecte el campo magnético, la caída de las gotas la gobernara a la fuerza de gravedad.

 Sin embargo, al generar el campo, las partículas que se encuentren cargadas negativamente se sentirían atraídas por la placa positiva, y esta carga eléctrica con sentido eléctrico a la fuerza de gravedad, frenara la caída, incluso al igualarse la gota permanecerá suspendida en el aire.

 Igualando las dos fuerzas se pueden obtener las cargas de las micro gotas de aceite.

Page 3: investigacion del atomo

Se obtuvo el valor de 1.6x10-19 coulombios, o un múltiplo de este número lo que se explica con la adquisición de más de una carga negativa.

 Una vez conocida la carga del electrón, la masa resulto fácil de calcular a partir del valor de la carga especifica (e/m) logrado por Thomson. 

Modelo Atómico de Dalton

 Aproximadamente por el año 1808, Dalton define a los átomos como la unidad constitutiva de los elementos (retomando las ideas de los atomistas griegos). Las ideas básicas de su teoría, publicadas en 1808 y 1810 pueden resumirse en los siguientes puntos:

La materia está formada por partículas muy pequeñas para ser vistas, llamadas átomos.

Los átomos de un elemento son idénticos en todas sus propiedades, incluyendo el peso.

Diferentes elementos están formados por diferentes átomos. Los compuestos químicos se forman de la combinación de átomos de dos o más

elementos, en un átomo compuesto; o lo que es lo mismo, un compuesto químico es el resultado de la combinación de átomos de dos o más elementos en una proporción numérica simple.

Los átomos son indivisibles y conservan sus características durante las reacciones químicas.

En cualquier reacción química, los átomos se combinan en proporciones numéricas simples.

La separación de átomos y la unión se realiza en las reacciones químicas. En estas reacciones, ningún átomo se crea o destruye y ningún átomo de un elemento se convierte en un átomo de otro elemento.

A pesar de que la teoría de Dalton era errónea en varios aspectos, significó un avance cualitativo importante en el camino de la comprensión de la estructura de la materia. Por supuesto que la aceptación del modelo de Dalton no fue inmediata, muchos científicos se resistieron durante muchos años a reconocer la existencia de dichas partículas.

 Además de sus postulados Dalton empleó diferentes símbolos para representar los átomos y los átomos compuestos, las moléculas.

 Sin embargo, Dalton no elabora ninguna hipótesis acerca de la estructura de los átomos y habría que esperar casi un siglo para que alguien expusiera una teoría acerca de la misma.

Otras Leyes que concordaban con la teoría de Dalton:

Ley de la Conservación de la Masa: La Materia no se crea ni se destruye, sólo se transforma.

Ley de las Proporciones Definidas: Un Compuesto Puro siempre contiene los mismos elementos combinados en las mismas proporciones en masa.

Page 4: investigacion del atomo

Ley de las Proporciones Múltiples: Cuando dos elementos A y B forman más de un compuesto, las cantidades de A que se combinan en estos compuestos, con una cantidad fija de B, están en relación de números pequeños enteros. 

Modelo Atómico de Thomson

 Thomson sugiere un modelo atómico que tomaba en cuenta la existencia del electrón, descubierto por él en 1897. Su modelo era estático, pues suponía que los electrones estaban en reposo dentro del átomo y que el conjunto era eléctricamente neutro. Con este modelo se podían explicar una gran cantidad de fenómenos atómicos conocidos hasta la fecha. Posteriormente, el descubrimiento de nuevas partículas y los experimentos llevado a cabo por Rutherford demostraron la inexactitud de tales ideas.

Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas.

Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva.

 En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones. 

Modelo Atómico de Rutherford

 Basado en los resultados de su trabajo, que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.

 El modelo de Rutherford tuvo que ser abandonado, pues el movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.

 Ernest Rutherford estudió los componentes de la radiación que ocurre espontáneamente en la Naturaleza. A continuación se presenta una tabla resumiendo las características de estos componentes:

 En 1900 Rutherford, con la colaboración de Geiger Marsden, soporta y verifica su teoría con el experimento, hoy muy famoso, de la lámina de oro. El experimento era simple, bombardearon una placa de oro muy delgada con partículas (ALFA) procedentes de una fuente radioactiva. Colocaron una pantalla de Sulfuro de Zinc

Page 5: investigacion del atomo

fluorescente por detrás de la capa de oro para observar la dispersión de las partículas alfa en ellas. Según se muestra en la siguiente figura:

 Lo anterior demostró, que la dispersión de partículas alfa con carga positiva, era ocasionada por repulsión de centros con carga positiva en la placa de oro, igualmente se cumplía con placas de metales distintos, pudiéndose concluir que cada átomo contenía un centro de masa diminuto con carga positiva que denomino núcleo atómico. La mayoría de las partículas alfa atraviesan las placas metálicas sin desviarse, porque los átomos están constituidos, en su mayoría, por espacios vacíos colonizado tan sólo por electrones muy ligeros. Las pocas partículas que se desvían son las que llegan a las cercanías de núcleos metálicos pesados con cargas altas (Figura N° 03).

 Gracias a estos desarrollos experimentales de Rutherford, éste pudo determinar las magnitudes de las cargas positivas de los núcleos atómicos. Los cálculos que se basan en los resultados del experimento indican que el diámetro de la "porción desocupada" del átomo es de 10.000 a 100.000 veces mayor que el diámetro del núcleo.

 Aspectos más importantes del Modelo atómico de Ernest Rutherford:

El átomo posee un núcleo central en el que su masa y su carga positiva. El resto del átomo debe estar prácticamente vacío, con los electrones formando

una corona alrededor del núcleo. La neutralidad del átomo se debe a que la carga positiva total presente en el

núcleo, es igualada por el número de electrones de la corona. Cuando los electrones son obligados a salir, dejan a la estructura con carga

positiva (explica los diferentes rayos). El átomo es estable, debido a que los electrones mantienen un giro alrededor del

núcleo, que genera una fuerza centrifuga que es igualada por la fuerza eléctrica de atracción ejercida por el núcleo, y que permite que se mantenga en su orbita.

El valor de la cantidad de energía contenida en un fotón depende del tipo de radiación (de la longitud de onda). En la medida que la longitud de onda se hace menor, la cantidad de energía que llevan es mayor.

En la región 7.5x1014 hasta 4.3x10-14 , se encuentra el espectro visible, con los colores violeta, azul, verde, amarillo y rojo.

Las regiones donde las frecuencias es mayor (longitud de onda es menor), el contenido energético de los fotones, es grande en comparación con otras zonas.

En el caso de la luz ultravioleta (U.V.) sus radiaciones no se perciben a simple vista, pero conocemos su alto contenido energético al actuar como catalizador en numerosos procesos químicos.

 = Longitud de onda: Distancia entre dos crestas en una onda (Longitud de un ciclo)

 C = Velocidad de la luz (2.998 x 108 cm/seg)

 = Frecuencia: Número de ondas que pasan por un punto en un segundo.

Modelo Atómico de Bohr

Page 6: investigacion del atomo

 El físico danés Niels Bohr ( Premio Nobel de Física 1922), postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida ( por ejemplo en forma de radiación). Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear. Este propuso una Teoría para describir la estructura atómica del Hidrógeno, que explicaba el espectro de líneas de este elemento. A continuación se presentan los postulados del Modelo Atómico de Bohr:

 El Atomo de Hidrógeno contiene un electrón y un núcleo que consiste de un sólo protón. · El electrón del átomo de Hidrógeno puede existir solamente en ciertas órbitas esféricas las cuales se llaman niveles o capas de energía. Estos niveles de energía se hallan dispuestos concéntricamente alrededor del núcleo. Cada nivel se designa con una letra (K, L, M, N,...) o un valor de n (1, 2, 3, 4,...).

El electrón posee una energía definida y característica de la órbita en la cual se mueve. Un electrón de la capa K (más cercana al núcleo) posee la energía más baja posible. Con el aumento de la distancia del núcleo, el radio del nivel y la energía del electrón en el nivel aumentan. El electrón no puede tener una energía que lo coloque entre los niveles permitidos.

Un electrón en la capa más cercana al núcleo (Capa K) tiene la energía más baja o se encuentra en estado basal. Cuando los átomos se calientan, absorben energía y pasan a niveles exteriores, los cuales son estados energéticos superiores. Se dice entonces que los átomos están excitados.

Cuando un electrón regresa a un Nivel inferior emite una cantidad definida de energía a la forma de un cuanto de luz. El cuanto de luz tiene una longitud de onda y una frecuencia características y produce una línea espectral característica.

La longitud de onda y la frecuencia de un fotón producido por el paso de un electrón de un nivel de energía mayor a uno menor en el átomo de Hidrógeno esta dada por:

Para Bohr el átomo sólo puede existir en un cierto número de estados estacionarios, cada uno con una energía determinada.

La energía sólo puede variar por saltos sucesivos, correspondiendo cada salto a una transición de un estado a otro. En cada salto el átomo emite luz de frecuencia bien definida dada por:

hv = | Ei - Ei |

De esta manera se explican los espectros atómicos, que en el caso del Hidrógeno los niveles de energía posibles están dados por la fórmula:

E = - (h/R)/n2 , ( n = 1, 2, 3, . . . infinito)

h = 60625 x 10-34 Joule - seg, Const. de Plank

R = 1.10 x 107 m-1 , Const. de Rydberg

Page 7: investigacion del atomo

El modelo de Niels Bohr, coincide con el propuesto por Rutherford, admite la presencia de un núcleo positivo que contiene, prácticamente, toda la masa del átomo, donde se encuentran presentes los protones y los neutrones.

Los electrones con carga negativa, se mueven alrededor del núcleo en determinados niveles de energía, a los que determinó estados estacionarios, y les asignó un número entero positivo. El nivel más cercano tiene el número 1, le sigue el 2, como se citó en párrafo de éste mismo enunciado (Modelo atómico de Bohr).

Siempre que el electrón se mantenga en la órbita que le corresponde, ni gana ni pierde energía.

Si un electrón salta de una órbita a otra capta o libera energía en forma de fotones. La cantidad viene dada por la diferencia de energía entre los dos (02) niveles.

La energía de cada nivel es mayor en la medida que se aleja del núcleo; sin embargo, las diferencias entre los niveles va disminuyendo, lo que permite que las transiciones electrónicas se produzcan con facilidad.

El número de electrones de cada elemento en su estado natural es característico, puesto que depende de su número atómico. Estos electrones estarán distribuidos en diferentes niveles energéticos que pueden funcionar como estaciones de paso para aquellos que reciben suficiente energía para saltar de un nivel a otro. Al devolverse, la luz que, difractada, produce el espectro característico.

 Principios de incertidumbre

  Para poder estudiar las propiedades de un átomo y de sus partículas constituyentes, es necesario iluminarlo; es decir lograr la incidencia de luz sobre el; esto trae un cambio en su contenido energético y, a s vez en la posición. En otra palabras: el estudio del átomo lleva un error necesario que nos impide hablar con certeza de la posición o contenido energético del mismo.

  Esto imposibilita presentar un átomo como hasta el momento se ha hecho, puesto que se puede describir un espacio donde es muy probable encontrar un electrón, pero no se pude excluir la posibilidad de que se encuentre en otro lugar.

  Según el principio de incertidumbre no se puede conocer con exactitud la posición del electrón ni su contenido energético. Esto obliga a usar un nuevo termino "probabilidad", para la descripción del átomo.

  Modelo Atómico actual

  Entre los conocimientos actuales o no sobre el átomo, que han mantenido su veracidad, se consideran los siguientes:

 1.                La presencia de un núcleo atómico con las partículas conocidas, la casi totalidad de la masa atómica en un volumen muy pequeño.

Page 8: investigacion del atomo

2.                Los estados estacionarios o niveles de energía fundamentales en los cuales se distribuyen los electrones de acuerdo a su contenido energético.

3.                La dualidad de la materia (carácter onda-partícula), aunque no tenga consecuencias prácticas al tratarse de objetos de gran masa. En el caso de partículas pequeñas (electrones) la longitud de onda tiene un valor comparable con las dimensiones del átomo.

4.                La probabilidad en un lugar de certeza, en cuanto a la posición, energía y movimiento de un electrón, debido a la imprecisión de los estudios por el uso de la luz de baja frecuencia.

 Fue Erwin Schodinger, quien ideó el modelo atómico actual, llamado "Ecuación de Onda", una fórmula matemática que considera los aspectos anteriores. La solución de esta ecuación, es la función de onda (PSI), y es una medida de la probabilidad de encontrar al electrón en el espacio. En este modelo, el área donde hay mayor probabilidad de encontrar al electrón se denomina orbital.

<> El valor de la función de onda asociada con una partícula en movimiento esta relacionada con la probabilidad de encontrar a la partícula en el punto (x,y,z) en el instante de tiempo t.

<> En general una onda puede tomar valores positivos y negativos. una onda puede representarse por medio de una cantidad compleja.

 Piense por ejemplo en el campo eléctrico de una onda electromagnética. Una probabilidad negativa, o compleja, es algo sin sentido. Esto significa que la función de onda no es algo observable. Sin embargo el módulo (o cuadrado) de la función de onda siempre es real y positivo. Por esto, a se le conoce como la densidad de probabilidad.

 La función de onda depende de los valores de tres (03) variables que reciben la denominación de números cuánticos. Cada conjunto de números cuánticos, definen una función específica para un electrón. <> 

Números Cuánticos

 Son cuatro (04) los números encargados de definir la función de onda (PSI) asociada a cada electrón de un átomo: el principal, secundario, magnético y de Spin. Los tres (03) primeros resultan de la ecuación de onda; y el último, de las observaciones realizadas de los campos magnéticos generados por el mismo átomo.

 Número cuántico principal

<> Es un criterio positivo, representado por la letra "n", indica los niveles energéticos principales. Se encuentra relacionado con el tamaño. En la medida que su valor aumenta, el nivel ocupa un volumen mayor y puede contener más electrones, y su contenido energético es superior. Sus valores pueden ser desde 1 hasta infinito.

 Número cuántico secundario

Page 9: investigacion del atomo

 Representado por la letra "I", nos indica la forma que pueden tener el espacio donde se encuentra el electrón. El valor que se le asigna depende del número principal; va desde cero (0) hasta n-1.

Se ha conseguido que para dos (02) electrones que pertenecen al mismo nivel energético (igual "n"), las diferencias en valores de "I", se expresan en diferencias de contenidos energéticos, debido a esto reciben la denominación de subniveles de energía con un aumento progresivo en la medida que "I" aumenta de valor.  

I = 0 I = 1 I = 2 I = 3

Orbital s Orbital p Orbital d Orbital f

I = 0 I = 1 I = 2 I = 3 Comparación

Orbital <           Orbital <           Orbital <           Orbital Desde el punto de

s p d f Vista energético

 Número cuántico magnético

<> Representa las orientaciones que pueden asumir los diferentes orbitales frente a un campo magnético; el símbolo utilizado es "m"; y los valores que tienen son los números orbitales enteros que van desde -1 hasta +1. El números de valores que pueden tener "m" indican el números de órbitas que puede contener un sub-nivel de energía.

 Número cuántico de Spin

 Tiene dos(02) valores permitidos +1/2 y -1/2. Estos valores representan el movimiento del electrón, tipo de rotación sobre su eje, con dos (02) únicas posibilidades y opuestas entre sí, hacía la derecha o hacía la izquierda. Cada uni de los orbitales puede contener dos (02) electrones, uno con cada spin. De estar los dos (02), el momento magnético se anula, es cero, esto sucede debido a lo apuesto. 

Isótopos e isóbaros

 Los Isótopos:

  Son átomos que tienen el mismo número atómico, pero diferentes masas. Al pertenecer al mismo elemento químico presentan las mimas propiedades, pero no son reconocibles por su masa diferente La diferencia se encuentra en el número de neutrones presentes en el núcleo.

 Los Isóbaros:

  Son átomos que, a pesar de presentar diferentes número atómico, tiene masas iguales. Sus propiedades químicas son diferentes puesto que se trata de elementos químicos también diferentes.  

Fusión y Fisión nuclear

Page 10: investigacion del atomo

Fusión Nuclear:

  Es la unión de dos núcleos ligeros, para producir uno más pesado.

Dos Isótopos de Hidrógeno se unen formando un núcleo con dos protones y dos neutrones que corresponden a un átomo de Helio.

Sin embargo esta reacción requiere de una alta energía de activación, para que los núcleos se acerque y se fundan en uno. Una vez comenzada la reacción, la energía liberada es enorme, del orden de 1700GJ (Gigajoule).

 Fisión Nuclear:

  Es la ruptura de un núcleo atómico en dos partes parecidas en el contenido de protones, originado con el bombardeo de neutrones.

  Al chocar un neutro con un átomo de Uranio, se crea un núcleo provisional que posteriormente se divide en dos núcleos.

  Con respecto a la energía que se produce, para la fisión de un gramo de Uranio, es de 85 Gigajoule (Gj) 109 J, aproximadamente a la misma que se produce al quemar tres toneladas de Carbón. Debido a este enorme despedimiento de energía fue usado como bomba el la segunda guerra mundial.

 Conclusión

La evolución de los modelos físicos del átomo se vio impulsada por los datos experimentales. El modelo de Rutherford, en el que los electrones se mueven alrededor de un núcleo positivo muy denso, explicaba los resultados de experimentos de dispersión, pero no el motivo de que los átomos sólo emitan luz de determinadas longitudes de onda (emisión discreta).

Bohr partió del modelo de Rutherford pero postuló además que los electrones sólo pueden moverse en determinadas órbitas; su modelo explicaba ciertas características de la emisión discreta del átomo de hidrógeno, pero fallaba en otros elementos.

El modelo de Schrödinger, que no fija trayectorias determinadas para los electrones sino sólo la probabilidad de que se hallen en una zona, explica parcialmente los espectros de emisión de todos los elementos; sin embargo, a lo largo del siglo XX han sido necesarias nuevas mejoras del modelo para explicar otros fenómenos espectrales.

.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Page 11: investigacion del atomo

La tercera partícula fundamental: el neutrón descubierta por James Chadwick en 1.932

El descubrimiento de esta tercera partícula fundamental no fue descubierta hasta el 1.932 por el físico inglés James Chadwick, la dificultad de su descubrimiento debía a que ésta partícula carecía de carga eléctrica. Su descubrimiento resolvió el problemas de la radiación alfa y una mejora del modelo atómico de Rutherford, que quedó completado en los siguientes términos:

Los átomos constan de núcleos muy pequeños y sumamente densos, rodeados de una nube de electrones a distancias relativamente grandes de los núcleos.

1. Todos los núcleos contienen protones.2. los núcleos de todos los átomos, con excepción de la forma más común

de hidrógeno, también contienen neutrones.

El modelo atómico de Schrödinger es un modelo cuántico no relativista se basa en la solución de la ecuación de Schrödinger para un potencial electrostático con simetría esférica, llamado también átomo hidrogenoide.

Densidad de probabilidad de ubicación de un electrón para los primeros niveles de energía.

El modelo de Bohr funcionaba muy bien para el átomo de hidrógeno. En los espectros realizados para otros átomos se observaba que electrones de un mismo nivel energético tenían distinta energía. Algo andaba mal. La conclusión fue que dentro de un mismo nivel energético existían subniveles.

En 1916, Arnold Sommerfeld modifica el modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en orbitas elipticas.

Todavía Chadwick no había descubierto los neutrones, por eso en los dibujos de representación de los atomos sólo se representaban, en rojo, los protones.

Solución de la ecuación de Schrödinger [editar]

Artículo principal: átomo hidrogenoide

Las soluciones estacionarias de la ecuación de Schrödinger en un campo central electrostático, están caracterizadas por tres números cuánticos (n, l, m) que a su vez están relacionados con lo que en el caso clásico corresponderían a las tres integrales del movimiento independientes de una partícula en un campo central. Estas soluciones o funciones de onda normalizadas vienen dadas en coordenadas esféricas por:

Page 12: investigacion del atomo

donde:

a0 es el radio de Bohr.

son los polinomios generalizados de Laguerre de grado n-l-1.

es el armónico esférico (l, m).

Los autovalores son:

Para el operador momento angular:

Para el operador hamiltoniano:

donde:

α es la constante de estructura fina con Z=1.Hipótesis de Louis De Broglie, publicada en 1.923.

La naturaleza de la luz no es fácilmente analizable  a no ser que la consideremos de tipo ondulatorio a fin de explicar ciertos fenómenos (como reflexión, refracción, difracción, etc.) o de tipo corpuscular al pretender hacerlo con otros (como el efecto fotoeléctrico, etc), ¿es posible que las partículas tengan también propiedades de onda?.

En 1.924 Louis De Broglie extendio el carácter dual de la luz a los electrones, protones, neutrones, átomos  y moléculas, y en general a todas las partículas materiales. Basandose en consideraciones relativostas y en la teoría cuántica pensó que si la luz se comportaba como onda y como partícula la materia debería poseer este carácter dual.

El movimiento de una partícula puede considerarse como el movimiento de un paquete de ondas, algo así como la superposición de varias ondas de longuitudes de onda poco diferentes, cuyas oscilaciones se intensifican al máximo en el punto del espacio ocupado popr la partícula. No hay nada de imaginario en estas ondas de materia, son tan reales como las ondas luminosas y las del sonido, aunque no sean observables en todos los

Page 13: investigacion del atomo

casos, copmo ocurre con las ondas electromagnéticas, los aspectos ondulatorios y de partículas de los cuerpos en movimiento nunca se pueden observar al mismo tiempo.

En ciertas situaciones una partícula en movimiento presenta propiedades ondulatorias y en otras situaciones presenta propiedades de partícula

2.1 RADIACION CUERPO NEGRO Y TEORIA DE PLANCK

RADIACION CUERPO NEGRO

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida.

No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.

La radiación del cuerpo negro Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.

A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas.

Si se abre un pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.

Históricamente, el nacimiento de la Mecánica Cuántica, se sitúa en el momento en el que Max Panck explica el mecanismo que hace que los átomos radiantes produzcan la distribución de energía observada. Max Planck sugirió en 1900 que

La radiación dentro de la cavidad está en equilibrio con los átomos de las paredes que se comportan como osciladores armónicos de frecuencia dada f . Cada oscilador puede absorber o emitir energía de la radiación en una cantidad proporcional a f. Cuando un oscilador absorbe o emite radiación electromagnética, su energía aumenta o disminuye en una cantidad hf . La segunda hipótesis de Planck, establece que la energía de los osciladores está cuantizada. La energía de un oscilador de frecuencia f sólo puede tener ciertos valores que son 0, hf , 2hf ,3hf ….nhf .

La distribución espectral de radiación es continua y tiene un máximo dependiente de la temperatura. La distribución espectral se puede expresar en términos de la longitud de onda o de la frecuencia de la radiación.

dEf /df es la densidad de energía por unidad de frecuencia para la frecuencia f de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·s.

Page 14: investigacion del atomo

donde k es la constante de Boltzmann cuyo valor es k=1.3805·10–23 J/K.

dEl /dl es la densidad de energía por unidad de longitud de onda para la longitud de onda l de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m-3)·m-1.

TEORIA DE PLANCK

En 1900 emitió una hipótesis que interpretaba los resultados experimentales satisfactoriamente como los cuerpos captaban o emitían energía. Según Planck, la energía emitida o captada por un cuerpo en forma de radiación electromagnética es siempre un múltiplo de la constante h, llamada =nhvposteriormente constante de Planck por la frecuencia v de la radiación. h=6,62 10–34 J•s, constante de Planck v=frecuencia de la radiación A hv le llamó cuanto de energía. Que un cuanto sea más energético que otro dependerá de su frecuencia. l terminar.

Max Planck y la teoría cuántica

Max Karl Ernest Ludwig Planck nació el 23 abril de 1858, en Kiel, Schleswig-Holstein, Alemania y falleció el 4 de octubre de 1947, en Göttingen. Fue premiado con el Nobel y considerado el creador de la teoría cuántica. Albert Einstein dijo: “Era un hombre a quien le fue dado aportar al mundo una gran idea creadora”. De esa idea creadora nació la física moderna.

Planck estudió en las universidades de Munich y Berlín. Fue nombrado profesor de física en la Universidad de Kiel en 1885, y desde 1889 hasta 1928 ocupó el mismo cargo en la Universidad de Berlín. En 1900 Planck formuló que la energía se radia en unidades pequeñas separadas denominadas cuantos.

Avanzando en el desarrollo de esta teoría, descubrió una constante de naturaleza universal que se conoce como la constante de Planck. La ley de Planck establece que la energía de cada cuanto es igual a la frecuencia de la radiación multiplicada por la constante universal. Sus descubrimientos, sin embargo, no invalidaron la teoría de que la radiación se propagaba por ondas. Los físicos en la actualidad creen que la radiación electromagnética combina las propiedades de las ondas y de las partículas.

Los descubrimientos de Planck, que fueron verificados posteriormente por otros científicos, fueron el nacimiento de un campo totalmente nuevo de la física, conocido como mecánica cuántica y proporcionaron los cimientos para la investigación en campos como el de la energía atómica. Reconoció en 1905 la importancia de las ideas sobre la cuantificación de la radiación electromagnética expuestas por Albert Einstein, con quien colaboró a lo largo de su carrera.

El propio Planck nunca avanzó una interpretación significativa de sus quantums. En 1905 Einstein, basándose en el trabajo de Planck, publicó su teoría sobre el fenómeno conocido como efecto fotoeléctrico. Dados los cálculos de Planck, Einstein demostró que las partículas cargadas absorbían y emitían energías en cuantos finitos que eran proporcionales a la frecuencia de la luz o radiación. En 1930, los principios cuánticos formarían los fundamentos de la nueva física.

Planck recibió muchos premios, especialmente, el Premio Nobel de Física, en 1918. En 1930 Planck fue elegido presidente de la Sociedad Kaiser Guillermo para el Progreso de la Ciencia, la principal asociación de científicos alemanes, que después se llamó Sociedad Max Planck. Sus críticas abiertas al régimen nazi que había llegado al poder en Alemania en 1933 le forzaron a abandonar la Sociedad, de la que volvió a ser su presidente al acabar la II Guerra Mundial. La oposición de Max Planck al régimen nazi, lo enfrentó con Hitler. En varias ocasiones intercedió por sus colegas judíos ante el régimen nazi.

Max Planck sufrió muchas tragedias personales después de la edad de 50 años. En 1909, su primera esposa murió después de 22 años de matrimonio, dejando dos hijos y dos hijas gemelas. Su hijo mayor murió en el frente de combate en la Primera Guerra Mundial en 1916; sus dos hijas murieron

Page 15: investigacion del atomo

de parto. Durante la Segunda Guerra Mundial, su casa en Berlín fue destruida totalmente por las bombas en 1944 y su hijo más joven, Erwin, fue implicado en la tentativa contra la vida de Hitler que se efectuó el 20 de julio de 1944 i murió de forma horrible en manos de la Gestapo en 1945.

Todo este cúmulo de adversidades, aseguraba su discípulo Max von Laue, las soportó sin una queja. Al finalizar la guerra, Planck, su segunda esposa y el hijo de ésta, se trasladaron a Göttingen donde él murió a los 90 años, el 4 de octubre de 1947.

Max Planck hizo descubrimientos brillantes en la física que revolucionaron la manera de pensar sobre los procesos atómicos y subatómicos. Su trabajo teórico fue respetado extensamente por sus colegas científicos. Entre sus obras más importantes se encuentran Introducción a la física teórica (5 volúmenes, 1932–1933) y Filosofía de la física (1936).

 

2.2 TEORIA ATOMICA DE BOHR

Basándose en la teoría cuántica del físico alemán Max Planck, que propuso en 1900 para explicar que la energía radiante, como la luz y el calor, no es emitida continuamente, sino en cantidades definidas de energía llamados cuantos o fotones, Niels Bohr creyó que los electrones no giran alrededor del núcleo como lo hacen los planetas alrededor del Sol, y en el año 1913 afirmó que un electrón, para mantenerse en una órbita dada, debe conservar durante su movimiento una energía constante y explicaba que un electrón no disipa energía continuamente, sino que la emite por pausas o paquetes de energía (cuantos).

Este modelo se fundamenta en cuatro postulados básicos:

1. - Los electrones en los átomos están localizados en órbitas o niveles de energía,

alrrededor del Núcleo.

2. - Los electrones en las órbitas más cercanas al Núcleo tienen menor energía que

aquellos ubicados en órbitas mas alejadas del Núcleo.

3. - Cualquier electrón en un átomo puede tener solo ciertos valores de energía permitidos. Esta energía determina que órbita ocupa el electrón.

4. - Los electrones pueden moverse de una órbita a otra. Para esta un electrón debe ganar o perder una cantidad exacta de energía, un cuanto de energía.

Bohr describió al átomo como un núcleo central muy pequeño, cargado positivamente, con electrones girando alrededor de las órbitas circulares definidas, a cierta distancia fija del núcleo. Cuando un átomo es excitado con una fuente de energía externa, los electrones orbitales elevan su energía en forma de una radiación cuya frecuencia corresponde a la diferencia de energía entre los dos niveles considerados. Este cambio de energía se define con la relación E – E =nhv.

En éste modelo los electrones giran en órbitas alrededor del núcleo como centro, debido a la fuerza de atracción eléctrica entre las cargas del núcleo, que es positivo y los electrones, que tienen carga negativa. Los orbitales son niveles de energía y se numeran del núcleo hacia fuera, también se designan con las letras K, L, M, N, O, P. Mientras un electrón gira alrededor del núcleo en una órbita fija, no emite ni absorbe energía. Pero cuando salta o baja de una órbita a otra, se absorbe o se emite

Page 16: investigacion del atomo

un cuanto de energía. Esta radiación produce un espectro visible en caso de elementos ligeros, y en forma de radiación con rayos X, si el elemento es pesado.

 

2.3 TEORIA ATOMICA DE SOMMERFELD

Sommerfeld perfecciono el modelo atómico de Bohr intentando paliar los dos principales defectos de este.

Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postula que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo.

Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las orbitas del electrón pueden ser circulares y elípticas. Introduce el numero cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,...(n-1), e indica el momento angular del electrón en la orbita en unidades de h/2π, determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la orbita.

Page 17: investigacion del atomo

 

2.4 ESTRUCTURA ATOMICA

La experiencia de Rutherford fue crucial en la determinación de la estructura atómica. Los párrafos que siguen son un extracto de su propia comunicación (1911):

“Es un hecho bien conocido que las partículas alfa y beta sufren desviaciones de sus trayectorias rectilíneas a causa de las interacciones con los átomos de la materia.

Parece indudable que estas partículas de movimiento veloz pasan en su recorrido a través de los átomos, y las desviaciones observadas son debidas al campo eléctrico dentro del sistema atómico.

Las observaciones de Geiger y Mardsen sobre la dispersión de partículas alfa, indican que algunas de estas partículas deben de experimentar en un solo encuentro desviaciones superiores a un ángulo recto.

Un cálculo simple demuestra que el átomo debe de ser asiento de un intenso campo eléctrico para que se produzca una gran desviación en una colisión simple…”

En aquella época Thomson había elaborado un modelo de átomo consistente en un cierto número N de corpúsculos cargados negativamente, acompañados de una cantidad igual de electricidad positiva distribuida uniformemente en toda una esfera. Rutherford pone a prueba este modelo y sugiere el actual modelo de átomo.

“La teoría de Thomson está basada en la hipótesis de que la dispersión debida a un simple choque atómico es pequeña y que la estructura supuesta para el átomo no admite una desviación muy grande de una partícula alfa que incida sobre el mismo, a menos que se suponga que el diámetro de la esfera de electricidad positiva es pequeño en comparación con el diámetro de influencia del átomo. Puesto que las partículas alfa y beta atraviesan el átomo, un estudio riguroso de la naturaleza de la desviación debe proporcionar cierta luz sobre la constitución del átomo, capaz de producir los efectos observados. En efecto, la dispersión de partículas cargadas de alta velocidad por los átomos de la materia constituyen uno de los métodos más prometedores de ataque del problema..”

En la simulación de la experiencia de Rutherford, consideramos una muestra de un determinado material a elegir entre varios y la situamos en el centro de un conjunto de detectores dispuestos a su alrededor. El blanco es bombardeado por partículas alfa de cierta energía producidas por un material radioactivo. Se observa que muy pocas partículas son desviadas un ángulo apreciable, y se producen muy raramente sucesos en los que la partícula alfa retrocede.

Descripción

Como hemos visto al estudiar el fenómeno de la dispersión, la interacción entre partículas cargadas positivamente corresponde a una fuerza central y conservativa. La energía total es siempre positiva por lo que la trayectoria es siempre una hipérbola.

Se denomina parámetro de impacto a la distancia existente entre la dirección de la partícula incidente y el centro de fuerzas.

Una vez que la partícula ha sido dipersada por el núcleo se aleja del centro de fuerzas siguiendo una trayectoria que tiende asintóticamente a una línea recta. El ángulo F que forma dicha recta con el eje horizontal se denomina ángulo de dispersión.

Page 18: investigacion del atomo

La fórmula que relaciona el parámetro de impacto b con el ángulo de dispersión F para una energía E dada de la partícula alfa, como hemos visto, es la siguiente.

 

2.5 PRINCIPIO DUALIDAD ELECTRON ONDA PARTICULA

El descubrimiento de la dualidad onda-particula tuvo su origen con la sugerencia del cientifico frances Louis de Broglie. Este fue el primero en pensar que esta dualidad tambien podia aplicarse a otras particulas como el electron. Antes se pensaba que los electrones debian comportarse como particulas tipicas, excepto que debian ubicarse en los distintos niveles de energia dentro del atomo. el hecho que solo existieran orbitas definidas por numeros enteros, lo qu epodia interprestarse como una caracteristica ondulatoria, esto llevo a Broglie a relacionarlos con la interferencia y los relativos a modos normales de vibraciones (moviento de particulas que trasnportan una onda) que eran fenomenos fisicos y estaban relacionados con propiedades ondulatorias.

 

2.6 PRINCIPIO INSERTIDUMBRE HEISSENBERG

Este principio simplemente establece que hay un límite en la precisión de cualquier observación que hagamos del mundo atómico o subatómico. En este sentido, podemos conocer con bastante precisión la posición actual de una partícula subatómica, pero a costa de perder precisión en el conocimiento de otras variables (por ejemplo su velocidad), ya que nuestra observación de su posición afecta de manera no controlable el equilibrio atómico (incluso una observación demasiado precisa podría destruirlo). En forma inversa, podemos establecer con gran aproximación la velocidad de, por ejemplo, un electrón (el electrón es la partícula que transporta la electricidad), pero renunciando a conocer con precisión su posición actual o futura. En este sentido, las trayectorias objetivas a las que estamos acostumbrados en nuestra vida diaria, pierden validez en el mundo del átomo.

Page 19: investigacion del atomo

 

2.7 NIVELES DE ENERGIA DE LOS ORBITALES

Nivel: Es la región en el espacio donde se encuentran los electrones con energía similar.

Subnivel: División de un nivel de energía en el cual se encuentran electrones con el mismo contenido energético.

Orbital: (REEMPE) Es la región o espacio de energía de máxima probabilidad electrónica.

 

2.8 PRINCIPIOS DE EXCLUSION DE PAULI

Es un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925 que establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual). Hoy en día no tiene el estatus de principio, ya que es derivable de supuestos más generales (de hecho es una consecuencia del Teorema de la estadística del spin).

El principio de exclusión de Pauli sólo se aplica a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los protones, los neutrones, y los electrones, los tres tipos de partículas subatómicas que constituyen la materia ordinaria. El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.

"Un átomo no existe con los mismos números cuánticos".

Page 20: investigacion del atomo

 

2.9 PRINCIPIO MULTIPLICIDAD DE HUND

El principio de máxima multiplicidad de Hund establece que cuando en un subnivel existen varios orbitales (por ejemplo, en el subnivel l =1, existen los orbitales px, py y pz), en primer lugar se semiocupan todos los orbitales para después completarlos emparejando los spines de los electrones

Esto tiene importancia porque las propiedades químicas de los átomos dependen fundamentalmente de la estructura electrónica más externa y el que pueda haber en ella orbitales con electrones desapareados debe tenerse en cuenta de forma muy especial.

Ejemplo: La estructura del O conviene expresarla: 1s2 2s2 2px2 2py1 2pz1 , indicando la existencia de 2 orbitales externos con electrones desapareados.

 

2.10 CONFIGURACION ELECTRONICA DE LOS ELEMENTOS

La configuración electrónica del átomo de un elemento corresponde a la ubicación de los electrones en los orbitales de los diferentes niveles de energía. Aunque el modelo de Scrödinger es exacto sólo para el átomo de hidrógeno, para otros átomos es aplicable el mismo modelo mediante aproximaciones muy buenas.

La manera de mostrar cómo se distribuyen los electrones en un átomo, es a través de la configuración electrónica. El orden en el que se van llenando los niveles de energía es: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p. El esquema de llenado de los orbitales atómicos, lo podemos tener utilizando la regla de la diagonal, para ello debes seguir atentamente la flecha del esquema comenzando en 1s; siguiendo la flecha podrás ir completando los orbitales con los electrones en forma correcta.

Page 21: investigacion del atomo

Para escribir la configuración electrónica de un átomo es necesario:

Saber el número de electrones que el átomo tiene; basta conocer el número atómico (Z) del átomo en la tabla periódica. Recuerda que el número de electrones en un átomo neutro es igual al número atómico (Z = p+).

Ubicar los electrones en cada uno de los niveles de energía, comenzando desde el nivel más cercano al núcleo (n = 1).

Respetar la capacidad máxima de cada subnivel (s = 2e-, p = 6e-, d = 10e- y f = 14e-).