La Electrodinámica José Antonio e

8
Texto e ilustraciones José Antonio E. García Álvarez LA ELECTRODINÁMICA La electrodinámica consiste en el movimiento de un flujo de cargas eléctricas que pasan de una molécula a otra, utilizando como medio de desplazamiento un material conductor como, por ejemplo, un metal. Para poner en movimiento las cargas eléctricas o de electrones, podemos utilizar cualquier fuente de fuerza electromotriz (FEM), ya sea de naturaleza química (como una batería) o magnética (como la producida por un generador de corriente eléctrica), aunque existen otras formas de poner en movimiento las cargas eléctricas. Cuando aplicamos a cualquier circuito eléctrico una diferencia de potencial, tensión o voltaje, suministrado por una fuente de fuerza electromotriz, las cargas eléctricas o electrones comienzan a moverse a través del circuito eléctrico debido a la presión que ejerce la tensión o voltaje sobre esas cargas, estableciéndose así la circulación de una corriente eléctrica cuya intensidad de flujo se mide enamper (A). A.- Cable o conductor de cobre sin carga eléctrica aplicada, es decir, sin cargas o electrones en movimiento. Los electrones de los átomos que constituyen las moléculas de ese metal (al igual que de cualquier otro material o elemento) giran constantemente dentro sus respectivas órbitas alrededor del núcleo de cada átomo. B.- Si se aplica ahora al cable una diferencia de potencial o fuerza electromotriz (FEM) como de una batería, un generador de corriente eléctrica, etc., el voltaje actuará como una bomba que presiona y actúa sobre los electrones de los átomos de cobre, poniéndolos en movimiento como cargas eléctricas o lo que es igual, como un flujo de corriente eléctrica a lo largo de todo el cable desde el mismo momento que se cierra el circuito. El flujo o movimiento de los electrones se establece a partir del polo negativo de la fuente de fuerza electromotriz (FEM) (1), recorre todo el cable del circuito eléctrico y se dirige al polo positivo de la propia fuente de FEM (2). MAGNETISMO E IMANES PERMANENTES

description

Nociones básicas de electrodinámica para secundaria

Transcript of La Electrodinámica José Antonio e

Page 1: La Electrodinámica José Antonio e

Texto e ilustraciones José Antonio E. García Álvarez 

LA ELECTRODINÁMICA

La electrodinámica consiste en el movimiento de un flujo de cargas eléctricas que pasan de una molécula a otra, utilizando como medio de desplazamiento un material conductor como, por ejemplo, un metal.

Para poner en movimiento las cargas eléctricas o de electrones, podemos utilizar cualquier fuente de fuerza electromotriz (FEM), ya sea de naturaleza química (como una batería) o magnética (como la producida por un generador de corriente eléctrica), aunque existen otras formas de poner en movimiento las cargas eléctricas.

Cuando aplicamos a cualquier circuito eléctrico una diferencia de potencial, tensión o voltaje, suministrado por una fuente de fuerza electromotriz, las cargas eléctricas o electrones comienzan a moverse a través del circuito eléctrico debido a la presión que ejerce la tensión o voltaje sobre esas cargas, estableciéndose así la circulación de una corriente eléctrica cuya intensidad de flujo se mide enamper (A).

A.- Cable o conductor de cobre sin carga eléctrica aplicada, es decir, sin cargas o electrones en movimiento. Los electrones de los átomos que constituyen las moléculas de ese metal (al igual que de cualquier otro material o elemento) giran constantemente dentro sus respectivas órbitas alrededor del núcleo de cada átomo.

B.- Si se aplica ahora al cable una diferencia de potencial o fuerza electromotriz (FEM) como de una batería, un generador de corriente eléctrica, etc., el voltaje actuará como una bomba que presiona y actúa sobre los electrones de los átomos de cobre, poniéndolos en movimiento como cargas eléctricas o lo que es igual, como un flujo de corriente eléctrica a lo largo de todo el cable desde el mismo momento que se cierra el circuito. El flujo o movimiento de los electrones se establece a partir del polo negativo de la fuente de fuerza electromotriz (FEM) (1), recorre todo el cable del circuito eléctrico y se dirige al polo positivo de la propia fuente de FEM (2).

MAGNETISMO E IMANES PERMANENTES

Desde el siglo VI a. C. ya se conocía que el óxido ferroso-férrico, al que los antiguos llamaron magnetita, poseía la propiedad de atraer partículas de hierro. Hoy en día la magnetita se conoce como imán natural y a la propiedad que tiene de atraer los metales se le denomina “magnetismo”.

Los chinos fueron los primeros en descubrir que cuando se le permitía a un trozo de magnetita girar libremente, ésta señalaba siempre a una misma dirección; sin embargo, hasta mucho tiempo después esa característica no se aprovechó como medio de orientación. Los primeros que le dieron uso práctico a la magnetita en función de brújula para orientarse durante la navegación fueron los árabes.

Page 2: La Electrodinámica José Antonio e

 

Como todos sabemos, la Tierra constituye un gigantesco imán natural; por tanto, la magnetita o cualquier otro tipo de imán o elemento magnético que gire libremente sobre un plano paralelo a su superficie, tal como lo hace una brújula, apuntará siempre al polo norte magnético. Como aclaración hay que diferenciar el polo norte magnético de la Tierra del Polo Norte geográfico. El Polo Norte geográfico es el punto donde coinciden todos los meridianos que dividen la Tierra, al igual que ocurre con el Polo Sur.

Sin embargo, el polo norte magnético se encuentra situado a 1 200 kilómetos de distancia del norte geográfico, en las coordenadas 78º  50´ N (latitud Norte) y 104º 40´ W (longitud Oeste), aproximadamente sobre la isla Amund Ringness, lugar hacia donde apunta siempre la aguja de la brújula y no hacia el norte geográfico, como algunas personas erróneamente creen.

La Tierra constituye un.gigantesco imán con sus.correspondientes polos.

IMANES PERMANENTESCualquier tipo de imán, ya sea natural o artificial, posee dos polos perfectamente diferenciados: uno denominado polo norte y el otro denominado polo sur.

Todos los imanes tienen dos polos: uno norte (N) y otro sur (S).

Una de las características principales que distingue a los imanes es la fuerza de atracción o repulsión que ejercen sobre otros metales las líneas magnéticas que se forman entre sus polos.

Cuando enfrentamos dos o más imanes independientes y acercamos cada uno de ellos por sus extremos, si los polos que se enfrentan tienen diferente polaridad se atraen (por ejemplo, polo norte con polo sur), pero si las polaridades son las mismas  (polo norte con norte, o polo sur con sur), se rechazan.

 

Si enfrentamos dos imanes con polos diferentes se atraen, mientras que si los polos enfrentados son iguales, se repelen.

Page 3: La Electrodinámica José Antonio e

Cuando aproximamos los polos de dos imanes, de inmediato se establecen un determinado número de líneas de fuerza magnéticas de atracción o de repulsión, que actúan directamente sobre los polos enfrentados.

Las líneas de fuerza de atracción o repulsión que se establecen entre esos polos son invisibles, pero su existencia se puede comprobar visualmente si espolvoreamos limallas de hierro sobre un papel o cartulina y la colocamos encima de uno o más imanes.

INDUCCIÓN MAGNÉTICA

Si cogemos un alambre de cobre o conductor de cobre, ya sea con forro aislante o sin éste, y lo movemos de un lado a otro entre los polos diferentes de dos imanes, de forma tal que atraviese y corte sus líneas de fuerza magnéticas, en dicho alambre se generará por inducción una pequeña fuerza electromotriz (FEM), que es posible medir con un galvanómetro, instrumento semejante a un voltímetro, que se utiliza para detectar pequeñas tensiones o voltajes.

Este fenómeno físico, conocido como "inducción magnética" se origina cuando el conductor corta las líneas de fuerza magnéticas del imán,  lo que provoca que las cargas eléctricas contenidas en el metal del alambre de cobre (que hasta ese momento se encontraban en reposo), se pongan en movimiento creando un flujo de corriente eléctrica. Es preciso aclarar que el fenómeno de inducción magnética sólo se produce cada vez que movemos el conductor a través de las líneas de fuerza magnética. Sin embargo, si mantenemos sin mover el alambre dentro del campo magnéticos procedente de los polos de los dos imanes, no se inducirá corriente alguna.

En esa propiedad de inducir corriente eléctrica cuando se mueve un conductor dentro de un campo magnético, se basa el principio de funcionamiento de los generadores de corriente eléctrica.

Ahora bien, si en vez de moverlo colocáramos el mismo conductor de cobre dentro del campo magnético de los dos imanes y aplicamos una diferencia de potencial, tensión o voltaje en sus extremos, como una batería, por ejemplo, el campo magnético que produce la corriente eléctrica alrededor del conductor al circular a través del mismo, provocará que las líneas de fuerza o campo magnético de los imanes lo rechacen. De esa forma el conductor se moverá hacia un lado o hacia otro, en dependencia del sentido de circulación que tenga la corriente, provocando que rechace el campo magnético y trate de alejarse de su influencia.

Page 4: La Electrodinámica José Antonio e

Cuando aplicamos una diferencia de potencial, tensión o voltaje a un conductor y lo situamos dentro de las líneas de fuerza de un campo magnético, como el de dos imanes, por ejemplo, éste será rechazado hacia uno u otro lado, en dependencia del sentido de dirección que tenga la corriente que fluye por el conductor.

El campo magnético que se crea alrededor del alambre de cobre o conductor cuando fluye  la corriente eléctrica, hace que éste se comporte también como si fuera un imán y en esa propiedad se basa el principio de funcionamiento de los motores eléctricos.

En la actualidad la magnetita no se emplea como imán, pues se pueden fabricar imanes permanentes artificiales de forma industrial a menor costo. 

En la actualidad se fabrican imanes permanentes artificiales, para su empleo, por ejemplo, en la fabricación de altavoces para equipos de audio, dinamos para el alumbrado en las bicicletas, pequeños motores para uso en juguetes o en equipos electrónicos, en la junta hermética de la puerta de los frigoríficos y, por supuesto, en la fabricación de brújulas.

Los altavoces de los equipos de sonido emplean, comúnmente, un imán permanente.

ELECTROMAGNETISMO

En 1820 el físico danés Hans Christian Oerted descubrió que entre el magnetismo y las cargas de la corriente eléctrica que fluye por un conductor existía una estrecha relación.

Cuando eso ocurre, las cargas eléctricas o electrones que se encuentran en movimiento en esos momentos, originan la aparición de un campo magnético tal a su alrededor, que puede desviar la aguja de una brújula.

Si cogemos un trozo de alambre de cobre desnudo, recubierto con barniz aislante y lo enrollamos en forma de espiral, habremos creado un solenoide con núcleo de aire.

Si a ese solenoide le aplicamos una tensión o voltaje, desde el mismo momento que la corriente comienza a fluir por las espiras del alambre de cobre, creará un campo magnético más intenso que el que se origina en el conductor normal de un circuito eléctrico cualquiera cuando se encuentra

Page 5: La Electrodinámica José Antonio e

extendido, sin formar espiras.

 Bobina solenoide con núcleo de aire construida con alambre.desnudo de cobre enrollado en forma de espiral y protegido con.barniz  aislante. Si  a  esta  bobina  le  suministramos  corriente.eléctrica empleando cualquier fuente de fuerza electromotriz, como.una batería, por ejemplo, el  flujo  de  la  corriente  que  circulará  a.través de la bobina propiciará la aparición de un campo magnético.de cierta intensidad a su alrededor.

Después, si a esa misma bobina con núcleo de aire le introducimos un trozo de metal como el hierro, ese núcleo, ahora metálico, provocará que se intensifique el campo magnético y actuará como un imán eléctrico (o electroimán), con el que se podrán atraer diferentes objetos metálicos durante todo el tiempo que la corriente eléctrica se mantenga circulando por las espiras del enrollado de alambre de cobre.

Bobina solenoide a la que se le ha introducido un núcleo metálico.como el hierro (Fe). Si comparamos la bobina anterior con núcleo<de aire con la bobina de  esta ilustración, veremos que ahora las<líneas  de  fuerza  magnética  se  encuentran  mucho  más<intensificadas al haberse convertido en un electroimán.

Cuando el flujo de corriente eléctrica que circula a través del enrollado de cobre cesa, el magnetismo deberá desaparecer de inmediato, así como el efecto de atracción magnética que ejerce el núcleo de hierro sobre otros metales. Esto no siempre sucede así, porque depende en gran medida de las características del metal de hierro que se haya empleado como núcleo del electroimán, pues en algunos casos queda lo que se denomina "magnetismo remanente" por un tiempo más o menos prolongado después de haberse interrumpido totalmente el suministro de corriente eléctrica.

 METALES FERROMAGNÉTICOS

La mayoría de los cuerpos existentes en la naturaleza presentan una estructura molecular en la que reina el más absoluto desorden y no se pueden magnetizar. Sin embargo existen también algunos metales en los que sus átomos pueden actuar esporádicamente como imanes elementales, alineándose como tales si se someten a la influencia de un campo magnético. Cuando eso ocurre se magnetizan, convirtiéndose en un imán temporal, o en un imán permanente.

Page 6: La Electrodinámica José Antonio e

A.- Metal de hierro en estado normal (no magnetizado), cuyos átomos se encuentran desordenados. B.- El mismo metal de hierro, ahora magnetizado, donde se puede observar que todas sus moléculas se encuentran ordenadas,  guardando una misma orientación.

Los metales que se magnetizan con facilidad reciben el nombre de “paramagnéticos” y los que no se magnetizan o son difíciles de magnetizar se denominan “diamagnéticos”.

Entre los “paramagnéticos” los metales más fáciles de magnetizar se denominan “ferromagnéticos”, debido a que fue en el hierro (ferro) el metal en el que se detectó por primera vez esa propiedad. Pero además del hierro se consideran también ferromagnéticos otros metales como el níquel, el cobalto y algunos compuestos especiales.

La fuerza magnética de un electroimán se puede incrementar de varias formas, como por ejemplo: a) añadiendo más espiras de alambre enrollado alrededor del núcleo metálico; b) incrementando el flujo de corriente; c) elevando la tensión o voltaje aplicado al propio enrollado.

Hay metales que se pueden magnetizar de forma permanente y otros que sólo lo permiten de forma transitoria cuando lo afecta un campo magnético cualquiera, ya sea procedente de un imán permanente o de un electroimán. Los electroimanes generalmente pierden el magnetismo y regresan a su estado original en cuanto se les saca del área de influencia de un campo magnético. No obstante, existen algunos metales que demoran algún tiempo en perder el magnetismo. En esos casos se dice que al metal le queda “magnetismo remanente”.

Los núcleos metálicos de los electroimanes pueden tener diferentes tamaños y formas en dependencia del dispositivo donde se vayan a  utilizar.

Los electroimanes pueden ser de diferentes tamaños y formas según el uso al que se destinen. Los más pequeños se emplean, por ejemplo, para construir timbres de aviso o alarma, relés para diferentes funciones, interruptores automáticos de corriente, altavoces, cabezales de grabadoras de audio y vídeo, cabezales de lectura-escritura de disquetes, etc. Los de mayor tamaño se emplean en grúas para levantar metales o chatarra.

En Alemania y Japón existen trenes que funcionan por levitación magnética llamados “Maglev”. Esos trenes emplean poderosos electroimanes que les permiten levantarse o “levitar” por encima de los rieles, por lo que llegan a desarrollar velocidades de unos 500 kilómetros por hora (aproximadamente 300 millas por hora) pues al no tener casi contacto directo el cuerpo del tren con los rieles, no existe prácticamente pérdidas de energía por fricción.

Page 7: La Electrodinámica José Antonio e

El electromagnetismo encuentra también aplicación en los transformadores de corriente eléctrica para elevar o disminuir la tensión o voltaje que requieren diferentes los dispositivos eléctricos que empleamos diariamente, tanto en los centros de trabajo como en el hogar.