Leyes de Kirchhoff y Circuitos RC

8
Laboratorio de Electrónica Leyes de Kirchhoff y Circuitos RC Kirchhoff's laws and RC Circuits Resumen En esta experiencia, se realizaron dos circuitos, uno en escalera y otro e emplearon las leyes de Kirchhoff para el análisis del circuito en escalera. Se describ los aspectos básicos del circuito RC; con la experiencia se muestra la dependencia del voltae con respecto al tiempo en los procesos de car!a y descar!a de un capacitor a trav"s de una resistencia, se obtuvo la constante de tiempo de circuito RC. Palabras claves: #eyes de Kirchhoff, circuito RC, constante de tiempo. Abstract $n this experiment, t%o circuits, one ladder and one %as RC %ere performed. Kirchhoff& la%s to analyze the ladder circuit %ere used. 'he basic aspects of the RC described, %ith the volta!e dependence experience sho%n %ith respect to time in the processes of char!in! and dischar!in! a capacitor throu!h a resistor, the RC time cons circuit is obtained . Keywords: Kirchhoff&s #a%s, RC circuits, time constant. 1. Introduccin (n circuito simple puede analizase utilizando la ley de )hm, pero muchas veces no es posible reducirlo a un circuito de un simple lazo, por esto hay *ue recurrir a la leyes de Kirchhoff. #a primera ley es la ley de corriente de Kirchhoff +#CK , *ue establece*ue la suma de las corrientes *ue entran en un nodo es i!ual a la suma de las corrientes *ue salen del nodo. #a se!unda ley de Kirchhoff es la ley de voltae de Kirchhoff, establece *ue la suma al!ebraica de los voltaes a trav"s de todos los elementos alrededor de cual*uier trayectoria cerrada en el circuito debe ser cero. Se llama circuito RC a la combinaci-n en serie de un capacitor y una resistencia. 1

description

En esta experiencia, se realizaron dos circuitos, uno en escalera y otro era RC. Se emplearon las leyes de Kirchhoff para el análisis del circuito en escalera. Se describieron los aspectos básicos del circuito RC; con la experiencia se muestra la dependencia del voltaje con respecto al tiempo en los procesos de carga y descarga de un capacitor a través de una resistencia, se obtuvo la constante de tiempo de circuito RC.

Transcript of Leyes de Kirchhoff y Circuitos RC

Leyes de Kirchhoff y Circuitos RCKirchhoff's laws and RC Circuits

ResumenEn esta experiencia, se realizaron dos circuitos, uno en escalera y otro era RC. Se emplearon las leyes de Kirchhoff para el anlisis del circuito en escalera. Se describieron los aspectos bsicos del circuito RC; con la experiencia se muestra la dependencia del voltaje con respecto al tiempo en los procesos de carga y descarga de un capacitor a travs de una resistencia, se obtuvo la constante de tiempo de circuito RC.

Palabras claves: Leyes de Kirchhoff, circuito RC, constante de tiempo.AbstractIn this experiment, two circuits, one ladder and one was RC were performed. Kirchhoff's laws to analyze the ladder circuit were used. The basic aspects of the RC circuit is described, with the voltage dependence experience shown with respect to time in the processes of charging and discharging a capacitor through a resistor, the RC time constant circuit is obtained.

Keywords: Kirchhoff's Laws, RC circuits, time constant.

Laboratorio de Electrnica

P. K. Dager, et al.: Espectrometra de Impedancia en la Deteccin de la Transicin de Fase Magntica de Compuestos Nd2Fe17-xMnx

1

2

4

1. IntroduccinUn circuito simple puede analizase utilizando la ley de Ohm, pero muchas veces no es posible reducirlo a un circuito de un simple lazo, por esto hay que recurrir a la leyes de Kirchhoff. La primera ley es la ley de corriente de Kirchhoff (LCK), que establece que la suma de las corrientes que entran en un nodo es igual a la suma de las corrientes que salen del nodo.La segunda ley de Kirchhoff es la ley de voltaje de Kirchhoff, establece que la suma algebraica de los voltajes a travs de todos los elementos alrededor de cualquier trayectoria cerrada en el circuito debe ser cero.Se llama circuito RC a la combinacin en serie de un capacitor y una resistencia. En su versin ms simple consiste en dos placas metlicas paralelas entre s, de rea A, separadas una distancia d, por un material aislante (figura1).

Figura 1. Un capacitor de placas planas paralelas.En este caso, el aislante entre las placas es aire, pero puede ser cualquier material tal, siempre y cuando no sea un conductor.

Consideremos el caso de un capacitor C, conectado a una fuente de voltaje directo V, como una batera, en serie con una resistencia R y un interruptor S. Al cerrar el interruptor la carga se transfiere paulatinamente hacia las placas. Como consecuencia de esta transferencia de carga, el voltaje a travs de las placas aumenta proporcionalmente hasta igualar el de la batera. Una variable muy importante en esta experiencia es el tiempo , de carga, o descarga, que en el capacitor depende del valor de la capacitancia y de la resistencia en el circuito, tal que = RC. Al tiempo se le conoce tambin como constante de tiempo, tiempo de relajacin, o tiempo caracterstico del circuito RC. En este ejercicio de laboratorio vamos a estudiar los procesos de carga y descarga de un capacitor alimentado por una fuente de voltaje directo, constante, a travs de una resistencia.

2. Procedimiento experimental

Inicialmente se monto un circuito en escalera en una protoboard, se midi las corrientes y las cadas de tensin en cada resistencia. Despus se monto un circuito RC, y se midi el voltaje en el capacitor cada diez segundo para carga y descarga hasta llegar .

3. Resultados y discusin

Leyes de KirchhoffEl montaje de la primera parte de la prctica se observa en la figura 2a, los resultados obtenidos en el laboratorio para la primera parte de la experiencia se muestran en la tabla No. 1.

(a)

(b)

(c)

(d)

Figura 2. Esquema y anlisis del circuito.Tabla No. 1 Datos experimentales.

ResistenciaVoltaje (V)Corriente (mA)

16,631,39

23,510,44

33,510,44

41,70,53

51,720,53

Se realiza el anlisis matemtico: comenzamos en el extremo derecho del circuito y combinamos las resistencias para determinar la resistencia total acompaada por la fuente de 10 v, las resistencias de 3,3 k estn en serie y pueden combinarse en una resistencia equivalente de 6,6 k (figura 2b), esta resistencia est en paralelo con la resistencia de 8,2 k, y su combinacin da una resistencia equivalente de 3,657 k (figura 2c). Esta resistencia esta en paralelo con la resistencia 8,2 k y su combinacin da una resistencia equivalente de 2,529 k (figura 2d).

Aplicando la LVK al circuito de la figura 1d se obtiene:

Se calculan los voltajes de las resistencias del circuito de la figura 2d por ley de Ohm se obtiene:

Ahora podemos determinar las corrientes y voltajes en la figura 2c. Como , la corriente la corriente puede encontrase utilizando la ley de Ohm:

Utilizando la LCK, tenemos:

Calculamos el voltaje de la resistencia tres en el circuito de la figura 2c.

Calculamos la corriente en la figura 2b.

Utilizando la LCK, tenemos:

Como las resistencias 4 y 5 en la figura 2a tienen la misma magnitud, y estn en serie sus voltajes sern iguales:

Todos los resultados del anlisis matemtico se observan en la tabla No 2.

Tabla No. 2 Datos obtenidos del anlisis matemtico.

ResistenciaVoltaje (V)Corriente (mA)

16,5011,383

23,4980,426

33,4990,426

41,7520,531

51,7520,531

Con ayuda del programa Livewire se simul el anterior circuito (figura 3), y se tom los datos de voltajes y corrientes de la simulacin, que se observan en la tabla No 3.

Figura 3. Simulacin del circuito en Livewire.

Tabla No. 3 Datos obtenidos de la simulacin en Livewire.

ResistenciaVoltaje (V)Corriente (mA)

16,491,380

23,490,426

33,490,426

41,750,529

51,750,529

Se compara los resultados obtenidos experimentalmente, matemticamente y con ayuda de la simulacin y se obtiene un error mximo de 3,28% en la medida de la corriente en las resistencias 2 y 3.Carga y descarga de un capacitorEl montaje de la segunda parte de la prctica se observa en la figura 5, los resultados obtenidos en el laboratorio para la carga y descarga del capacitor se muestran en la tabla No. 4.

Figura 4. Esquema del circuito.

Tabla No. 4 Datos experimentales de carga y descarga del capacitor.

Tiempo (s)Voltaje (V) cargaVoltaje (V) descarga

0010

101,188,84

202,177,84

303,056,96

403,886,12

504,585,41

605,174,81

705,724,26

806,193,77

906,623,34

1007,012,97

1107,322,64

1207,612,33

1307,872,08

1408,121,83

1508,321,62

1608,551,42

1708,691,27

1808,831,13

1908,990,99

2009,090,88

2109,210,79

2209,290,70

2309,380,61

2409,450,55

2509,520,48

2609,580,43

2709,640,39

2809,690,33

2909,730,31

3009,760,27

3109,800,24

3209,820,22

3309,850,19

3409,860,17

3509,870,15

3609,890,13

3709,910,12

3809,920,099

3909,930,089

4009,940,078

4109,950,069

Figura 5. Curvas de carga, descarga del capacitor y constante de tiempo del circuito.

Se realiza el anlisis matemtico: La expresin matemtica que describe la dependencia del voltaje a travs del capacitor, como funcin del tiempo, en el circuito de la figura 3 donde el voltaje de la fuente es , es la siguiente:

Donde es la base de los logaritmos naturales, y hemos asumido que el capacitor est descargado al tiempo . Similarmente, la expresin para el proceso de descarga es,

Evaluando estas dos funciones con una fuente de 10 V, se obtiene la tabla No. 5 y la figura 6.Tabla No. 5 Datos obtenidos del anlisis matemtico de carga y descarga del capacitor.

Tiempo (s)Voltaje (V) cargaVoltaje (V) descarga

0010

101,148084528,851915475

202,164359247,835640758

303,063957036,936042969

403,860273396,139726609

504,56516595,434834098

605,189130794,810869206

705,741459244,258540757

806,230375723,769624283

906,663160453,336839553

1007,046257832,953742168

1107,38537242,6146276

1207,685553752,314446252

1307,951271742,048728259

1408,186483061,813516938

1508,394690131,605309865

1608,578993281,421006724

1708,742136861,257863141

1808,886550181,11344982

1909,014383630,985616369

2009,127540720,872459279

2109,227706420,77229358

2209,316372250,683627749

2309,39485850,605141505

2409,464333850,535666145

2509,525832860,474167144

2609,580271250,419728748

2709,628459660,37154034

2809,671115630,328884369

2909,708874340,291125663

3009,742298020,257701976

3109,771884390,228115611

3209,798073990,201926011

3309,82125680,178743198

3409,841778030,158221968

3509,859943250,140056749

3609,876022950,12397705

3709,890256560,109743437

3809,902856040,097143963

3909,914008990,085991015

4009,923881480,076118519

4109,932620530,06737947

Figura 6. Curvas de carga y descarga del capacitor.Con ayuda del programa Livewire se simul el anterior circuito (figura7), y obtuvieron las grficas de carga y descarga (figura 8).

Figura 7. Simulacin del circuito en Livewire.

(a)

(b)Figura 8. Curvas de carga (a) y descarga (b) del capacitor.La constante de tiempo del circuito es

Se observa en la figura 5, la curva de color verde es la constante de tiempo , la cual corresponde al tiempo que tardara el capacitor en cagarse o descargarse totalmente si lo hiciera con la misma rapidez con la que lo hace al tiempo cero, es decir, sin reducir su rapidez de cambio al transcurrir el tiempo. Observamos que la curva , en la figura 5 corta con el eje x en el tiempo de 82,68 segundos, este es nuestra constante de tiempo hallada con los datos experimentales, pero la constante de tiempo hallada matemticamente es de 82 segundos.El error en la constante de tiempo es de 0,829%.

4. Conclusiones

Estudiamos los aspectos bsicos del circuito RC y pudimos constatar que el circuito RC estaba conformado por una resistencia en serie con un capacitor.

Se estudio el comportamiento del circuito RC, como vara el voltaje con respecto al tiempo en los procesos de carga y descarga de un capacitor; porque, en los circuitos electrnicos se utilizan para almacenar y liberar electricidad en cantidades controladas.Se comprobaron las leyes de Kirchhoff, que son muy tiles para la solucin de circuitos elctricos.

Referencias[1] Anlisis bsico de circuitos de ingeniera. J. David Irwin. 5ta edicin.[2]http://www.frro.utn.edu.ar/repositorio/catedras/basicas/fisica2/CARGA_Y_DESCARGA_DE_UN_CAPACITOR.pdf Consultada el 09-03-14[3] http://www.unicrom.com/Tut_circuitoRC.asp Consultada el 10-03-14