Maquinas de Transporte

27
Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A MAQUINAS DE TRANSPORTE INSTALACIONES INDUSTRIALES INGENIERIA MECANICA F.I.U.N.A

Transcript of Maquinas de Transporte

Page 1: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

MAQUINAS DE TRANSPORTE

INSTALACIONES INDUSTRIALES

INGENIERIA MECANICA

F.I.U.N.A

Page 2: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

INTRODUCCIÓN

Ya en la antigüedad se llevaban a cabo trabajos de construcción vinculados con la elevación y desplazamiento de grandes cargas, por ejemplo, la construcción de las pirámides egipcias (pirámide de Cheops de 147 m de altura, compuesta de prismas de piedra, cada uno de 9 x 2 x 2 m de tamaño y 90 tn de peso aproximadamente, fue construida en el siglo XXII antes de NE). Los primeros medios de mecanización fueron las palancas, los rodillos y los planos inclinados. La realización de grandes trabajos de la construcción con este equipamiento exigía enorme cantidad de gente. En el siglo VII antes de NE aparecieron las poleas, y en el siglo II antes de NE, los tornos (cabrestantes) con transmisiones por engranajes y tornillos sin fin con accionamiento manual. El desarrollo del comercio, navegación y de la industria minera y metalúrgica en los siglos XI-XII de NE contribuyó a perfeccionar las máquinas de elevación y a ampliar la esfera de su aplicación. Aparecieron los primeros prototipos de las grúas modernas que tenían el accionamiento manual y accionamiento con ayuda de ruedas de malacate (del tipo “jaula de ardilla”) e hidráulicas (Fig. 1). Figura 1 Los aparatos y máquinas de elevación y transporte modernos de alta productividad que trabajan a elevadas velocidades y que poseen gran capacidad de carga aparecieron como resultado de la perfección gradual de las maquinas en el curso de mucho tiempo. Sin aplicar el estilo complejo de aparatos y máquinas de elevación y transporte serian inconcebibles la liquidación de los trabajos manuales de carga y descarga, la supresión del trabajo pesado a mano, al efectuar las operaciones fundamentales y auxiliares, la automatización y mecanización compleja de los procesos de elaboración en todos los terrenos de la economía nacional. Las modernas líneas tecnológicas de producción en cadena y automatizadas, el transporte interior del taller y entre los talleres, las operaciones de carga y descarga en los almacenes y puestos de trasbordo se encuentran orgánicamente vinculados con el empleo de los distintos tipos de aparatos y máquinas de elevación y transporte que permiten ejecutar eficazmente la continuidad y el ritmo de los procesos de elaboración. Por eso, el empleo de estos equipos determina

Page 3: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

en mucho la eficacia de la producción moderna, y el nivel de la mecanización del procedimiento tecnológico determina el grado de perfección y la productividad de la empresa. A una intensidad moderna de producción no puede asegurarse su ritmo estable sin el funcionamiento concertado e impecable de los medios para transportar las materias primas, productos semiacabados y la producción terminada en todas las fases de tratamiento y almacenamiento. La producción moderna de aparatos y máquinas de elevación y transporte se basa en la creación de construcciones unificadas y en bloques que permiten obtener el efecto más alto técnico-económico al fabricar y explotar aparatos y máquinas. Se llama construcción de bloques la que consta de conjuntos independientes, es decir, unidos entre si por medio de elementos fácilmente separables. La construcción en bloques de montajes normalizados permite con facilidad separar de la máquina el conjunto que necesita reparación o mantenimiento, sin desmontar los demás conjuntos contiguos. Los aparatos y máquinas de elevación y transporte son tan diversos por su destinación, principios de acción y construcción que no es posible dar una descripción detallada y los cálculos en detalle, incluso para los tipos principales. Estos equipos de elevación y transporte suelen clasificarse, en general, por su recorrido en horizontales, inclinados o mixtos y verticales. Entre los de recorrido horizontal podemos mencionar: a) Cintas transportadoras; b) Cadenas de tablillas; c) Cadenas de empuje; d) Rodillos motrices; e) Roscas transportadoras (tornillo de Arquímedes); f) Transportadores aéreos de cable o cadena: g) Transportadores de flujo continuo (Redler o Bulk Flow); h) Grúas. Entre los de recorrido mixto o inclinado: a) Cintas; b) Cadenas; c) Transportadores aéreos; d) Transportadores de flujo continuo; e) Rodillos de gravedad. Entre los de recorrido vertical: a) Ascensores y montacargas; b) Elevadores a cangilones de correa o cadena; c) Elevadores de bandeja colgante. También se los puede clasificar por “el tiempo de duración de la marcha” en: • Transportadores de acción continua: por ejemplo, las cadenas de montajes • Transportadores de acción discontinua o periódica: podemos citar, los puente grúas. Todos los transportadores mencionados hasta aquí son los llamados “mecánicos”, pero corresponde mencionar así mismo a los llamados “neumáticos” que transportan el material suspendido dentro de una corriente de aire, por medio de cañerías, recorriendo trayectorias rectas o curvadas, horizontales, inclinadas o verticales. Su

Page 4: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

aplicación es común en materiales de peso específico bajo, tamaño reducido y baja abrasividad, pudiendo citar como ejemplo el transporte de cereales. ELEVADORES DE CANGILONES Los elevadores de correa a cangilones son los equipos más comunes y económicos para el movimiento vertical de materiales a granel. Los cangilones son los recipientes que contienen el material, tomándolo en la parte inferior del sistema y volcándolo en la parte superior, para este cometido deben tener una configuración adecuada. Los cangilones van montados sobre la correa que es la que trasmite el movimiento del tambor de accionamiento y la que debe absorber los esfuerzos provocados por esta transmisión además del peso efectivo del material elevado y el peso propio de los cangilones. Las correas utilizadas deben poseer una gran resistencia transversal para garantizar la sujeción de los bulones del cangilón. Las mismas deben ser seleccionadas en función del cálculo a realizar de acuerdo a las características de cada elevador.

DESCRIPCION DE LOS COMPONENTES

Unidad de Accionamiento

Se encuentra localizada en la parte superior del elevador, está constituida por un motor y un reductor que puede estar ligado directamente al eje del tambor de accionamiento o a través de un acople elástico. Toda la unidad se sustenta por una plataforma construida a tal fin.

Page 5: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Tambor de Accionamiento Es el encargado de transmitir el movimiento a la correa, normalmente fabricado en fundición o chapa de acero. Pueden tener una pequeña biconicidad a los efectos de centrar la correa y siempre y cuando el cangilón lo permita. Es altamente recomendable el recubrimiento del mismo con caucho a los efectos de protegerlo del desgaste producido por la gran cantidad de polvo que genera el sistema. Este recubrimiento evita también el desgaste prematuro de la correa y eficientiza el uso de la potencia ahorrando energía. También aumenta el coeficiente de rozamiento haciendo más difícil un eventual patinamiento. El diámetro del mismo se calcula en función de la descarga y la velocidad para lograr una operación eficiente.

Cabeza del Elevador También localizada en la parte superior del elevador y es una estructura metálica que contiene al tambor de accionamiento, formando parte de la misma la unidad de accionamiento, el freno y la boca de descarga. El capot de la cabeza o sombrero debe tener el perfil adecuado para adaptarse lo más posible a la trayectoria del material elevado en el momento de producirse la descarga. Esta trayectoria depende de varios factores como ser el tipo de cangilón, la velocidad de la correa y el diámetro del tambor de accionamiento Freno Es un sistema ligado al eje del tambor de accionamiento. Permite el libre movimiento en el sentido de elevación. Cuando por cualquier motivo el elevador se detiene con los cangilones cargados, este sistema impide el retroceso de la correa, evitando así que el material contenido en los mismos sea descargado en el fondo del elevador. Los dispositivos más usados son: el de malacate o el de cinta.

Page 6: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Ramal de Subida Junto con el ramal de bajada une la cabeza con el pie del elevador. Normalmente fabricado en chapa plegada y soldada de construcción modular. Cada cuerpo se une al siguiente con bulones. Su largo depende de la altura del elevador. Sus dimensiones deben ser tales que permitan el paso de la correa y los cangilones con holgura. Este ramal (también denominado "pantalón") contiene a la correa y cangilones cargados en su movimiento ascendente. Sobre el mismo normalmente se encuentra ubicada la puerta de inspección. Ramal de Bajada Caben las consideraciones generales indicadas para el ramal de subida. Este ramal (también denominado "pantalón") contiene a la correa y cangilones vacíos en su movimiento descendente. Tambor de reenvío Se localiza en la parte inferior del elevador. Sobre el eje del mismo se encuentra montado normalmente el dispositivo de estiramiento. Su construcción se recomienda que sea aleteada o tipo "jaula de ardilla" para evitar que el material derramado se introduzca entre el tambor y la correa provocando daños a la misma. Su diámetro es generalmente igual al tambor de accionamiento o menor que el mismo.

Dispositivo de Estiramiento Como su nombre lo indica este dispositivo permite el tensado de la correa para lograr un perfecto funcionamiento del sistema. Este dispositivo puede ser de dos tipos: a tornillo (el más usual) o automático (para elevadores de grandes capacidades).

Page 7: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Pie del Elevador Se encuentra ubicado en la parte inferior del elevador y contiene al tambor de reenvío. Son partes integrantes del mismo la tolva de alimentación y el dispositivo de estiramiento. Esta parte de la estructura se encuentra regularmente provista de puertas de inspección y de limpieza.

Correa Estructuralmente y en términos generales las correas utilizadas en elevación son iguales a las utilizadas en transporte. No obstante debe tenerse muy en cuenta al momento de su selección, la mayor robustez que deben poseer. No olvidemos que su resistencia longitudinal se va a ver afectada por el perforado al que es sometida para lafijación de los cangilones a través de los bulones y debe poseer mayor resistencia transversal para lograr una correcta sujeción de los mismos. A la hora de la selección de una correa elevadora y por lo expresado en el párrafo anterior, no solo es importante realizar el cálculo de tensión de la correa sino que la misma deberá dimensionarse en función de su robustez, de su capacidad para soportar el arrancamiento de los cangilones, de su porcentaje de estiramiento como así también la forma de estirarse en función del tiempo de uso, sus resistencias químicas y físicas, su capacidad para disipar la energía estática siempre presente en estos sistemas de elevación, su necesidad de ignifugancia, y cualquier otro factor particular del sistema en estudio y que pueda influir de un modo determinante en la selección de la correa. Cada modelo de correa posee una resistencia nominal al arrancamiento de los cangilones que se expresa en una proyección máxima que los mismos deben tener. Este es un dato que aporta el fabricante como así también el de porcentaje máximo de estiramiento y la forma de producirse el mismo a través del tiempo de uso. En función de este último punto es siempre recomendable la utilización de correas con urdimbre (sentido longitudinal) de poliéster, fibra que tiene un menor porcentaje de estiramiento (normalmente no mayor de un 1,5%) y el mismo se produce en los primeros meses de uso, luego del cual la correa ya no se estira.

Page 8: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Respecto a las dimensiones de la correa se recomienda observar los siguientes requisitos en cuanto al ancho de la misma: debe ser de 10 mm. a 25 mm. más ancha que el cangilón de cada lado. (Entre 20 mm a 50 mm más ancha en total que el largo del cangilón). La distancia del borde de la correa al lateral del pantalón debe ser como mínimo de 50 mm para elevadores de hasta 30 metros de altura y de 75 mm para los de mayor altura, a fin de evitar rozamiento lateral. Es también importante tener en cuenta el diámetro mínimo de tambor que la correa soporta como elevadora y que también es un dato aportado por el fabricante para cada modelo. Durante el proceso de perforado de la correa para el alojamiento de los bulones del cangilón, es importante tener en cuenta que los agujeros deben ser del mismo diámetro que los bulones a utilizar y que deben estar alineados y escuadrados (ángulo de 90º) respecto a la línea central de la correa, para evitar distorsiones en el funcionamiento (vaivén).

Cangilones Dentro del sistema de elevación son los elementos que alojan a la carga en su carrera ascendente. Según su construcción, pueden ser metálicos de chapa soldada o estampados, de material plástico, de fibra, de acero inoxidable o de fundición. Existen infinidad de formatos y dimensiones, cada fabricante de elevadores normalmente cuenta con un diseño particular. Existen también grandes fábricas de cangilones de diferentes materiales y con diseño estandarizado. Las medidas básicas con las cuales se define un cangilón, son tres: Largo, profundidad y proyección (ver Figura 2). En el proceso de selección de los mismos, se aconseja seguir las indicaciones del fabricante respecto a la velocidad de la correa y al diseño del capot o sombrero del elevador, fundamentalmente en los elevadores centrífugos donde el "momento" de descarga del cangilón es factor determinante de la eficiencia del sistema y está íntimamente ligado a la velocidad de la correa y diseño del capot indicado Los cangilones son fijados a la correa a través de bulones especiales de cabeza plana y de gran diámetro (ver Figura 3). Es aconsejable el uso de arandela bombeada y

Page 9: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

tuerca autofrenante. El cangilón debe poseer un porción embutida anular a la perforación y que permita el alojamiento de la cabeza del bulón y de la correa para que dicha cabeza no sobresalga de la superficie interna de la correa (ver Figura 4), hecho que puede provocar aflojamiento de los mismos como así también pérdida de adherencia al tambor de mando cuando el mismo no se encuentra recubierto. De acuerdo a como se monten los cangilones, diseño de los mismos y velocidad del sistema, los elevadores se pueden clasificar en: a) Elevadores de descarga centrífuga: Como su nombre lo indica la descarga del cangilón se efectúa por fuerza centrífuga al momento de girar la correa sobre el tambor de mando. Los cangilones van montados en una o varias filas según su diseño. La carga se efectúa normalmente por dragado del material depositado en el pie del elevador. La velocidad de la correa es alta (entre 1,2 a 4 m/seg.). El "paso" entre cangilones normalmente es de 2 a 3 veces su proyección. Existe una variante a este sistema, donde los cangilones son "sin fondo" y el espaciamiento es mínimo (entre el 10% y el 11% de su profundidad); cada un número determinado de cangilones sin fondo se intercala uno de igual perfil pero con fondo. Con este último sistema se logra una verdadera "columna" de material que permite diseñar elevadores de menores dimensiones para una misma capacidad de elevación. Estos elevadores se utilizan en materiales que fluyen libremente y secos (granos, azúcar). b) Elevadores de descarga por gravedad Los cangilones están instalados en forma continua, sin espaciamiento entre ellos y la descarga se efectúa por gravedad utilizando la parte inferior del cangilón precedente como tolva de descarga. La carga se realiza directamente desde tolva (no por dragado). La velocidad de la correa es baja (entre 0,5 a 1,0 m/seg.). Estos elevadores se utilizan en materiales frágiles, muy húmedos o de alta granulometría (café, arcilla, piensos).

Page 10: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

La descarga por gravedad del tipo central (fig. 19) se realiza, en la parte interna de la carcasa, a velocidades bajas (0,4 a 0,5 m/s). En este caso, la fijación de los cangilones se realiza sobre cadenas y posee un sistema de volteo. Alineación de la Correa En un sistema de elevación, la falta de alineación de la correa provocará problemas tales como rotura y arrancamiento de cangilones, rotura de correa y daños estructurales en el elevador. Las causas de desalineación de correa más comunes en un sistema de elevación son: - Uniones de correa fuera de escuadra. - Fijación de cangilones fuera de escuadra. - Carga del elevador descentralizada. La doble conicidad de tambores de mando puede ser un auxiliar importante en la alineación de la correa, pero podrá ser utilizada solamente en aquellos casos donde el cangilón lo permita. Uniones de Correa Según su forma, definiremos tres tipos de uniones básicas: - En ángulo (ver Figura 5). - Por superposición (ver Figura 6).

Page 11: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

- Por yuxtaposición ("poncho") (ver Figura 7).

Selección de una correa elevadora En función de todo lo expuesto, a continuación detallamos los datos a obtener para la correcta selección de una correa elevadora: 1) Material Transportado - Denominación del Producto - Descripción - Densidad - Granulometría - Presencia de aceite o grasas y químicos - Temperatura del producto - Necesidad de resistencia al fuego y antiestaticidad - Humedad - Grado de Abrasión - Temperatura Ambiente 2) Capacidad Máxima de Elevación 3) Ancho de la Correa 4) Distancia entre Centros de Tambores 5) Diámetro de Tambores (Mando y Reenvío) 6) Superficie del Tambor de Mando (Recubierta o no) 7) Tipo de Sistema Tensor 8) Cangilones - Largo - Profundidad - Proyección - Peso - Capacidad de Carga - Número de Hileras

Page 12: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

- Número de Unidades por Metro 9) Velocidad de la Correa 10) Potencia Instalada 11) Sistema de Carga - Directo de Tolva - Dragado - Dragado + Tolva 12) Horas de Trabajo al Día 13) Sistema de Unión de la Correa 14) Mínima Temperatura Ambiente Promedio FUNCIONAMIENTO Y MANTENIMIENTO El funcionamiento satisfactorio y seguro depende de la tensión del a banda, del desgaste y rotura de los cangilones, del control de alimentación, de las descargas sin obstrucciones y de la limpieza. Muchos problemas de funcionamiento provocan descargas poco eficientes. Esto da como resultado sobrecargas para el motor, portillos de descarga obstaculizados, bandas del elevador estiradas, baja capacidad, daño a los cangilones, cangilones arrancados de la banda, quemaduras en la polea de cabeza y problemas asociados con las maquinas. Lista de control para la inspección de mantenimiento - Banda: se esta resbalando, se sale del centro, esta muy desgastada, desgarrada por pernos? - Cangilones: hay algún cangilón gastado, deformado, suelto o se atora en la cubierta. - Poleas: asegúrese de que el eje este horizontal y que la polea este en la posición correcta. Examine los cojinetes y sus tornillos de montaje. - Cubierta de la cabeza: controle el desgaste y la salida de polvo del ducto de descarga. - Motor propulsor: se mantiene limpio? Inspeccione la caja de engranajes, los engranajes, los acoplamientos, el freno que impide la rerversa, pernos de montaje puntos de lubricación. - Electricidad: controle el abastecimiento de energía, conexiones a tierra, controles, aparatos de seguridad (por ejemplo, interruptores, sensores térmicos, protecciones de sobrecarga e interruptores del motor en movimiento.) - Pie del elevador: examine los claros, el desgaste del ducto de entrada, placas deslizantes de control, paneles de acceso, limpieza. Ramales de subida y bajada: están distorsionadas? Busque pernos y rebordes corroídos. Controle los paneles de alivio de explosiones y paneles de acceso. - Estructura: examine los soportes, las escaleras de acceso, plataforma de servicio,guarda y rieles En los lugares donde el desgaste es causado por el deslizamiento del producto, se pueden colocar revestimientos de acero especial o de plástico duro resistentes a la abrasión. Donde el desgate es causado por el impacto del grano se tiene como posibles soluciones: poner un colchón de grano (esto es barato, pero produce mezclas si se maneja un tipo diferente de grano), o coloque colchones de hule o losetas de cerámica.

Page 13: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Una banda debe reemplazarse antes de que su trama de soporte este expuesta por el desgaste se deba cambiar antes de que se caiga por la pierna del elevador; debido al peligro de que se produzcan chispas y una explosión de polvo. La causa mas común de que la banda se caiga es la falla de la junta de la banda. Las juntas con traslapos y las juntas de extremos empalmados son igualmente resistentes, pero las instrucciones del fabricante deben seguirse cuidadosamente. Mantenga la polea en servicio limpia. El grano aplastado sobre ella puede crear una nueva corona fuera del centro, que fuerce la banda hacia afuera de su alineamiento y fricciona las guardas de acero. Los aceites en el grano aplastado también corroen la cubierta de la banda. Si se nota cualquier hundimiento en un silo o techumbre adyacente, verifique que el elevador continúe completamente vertical.

CINTAS TRANSPORTADORAS Introducción En la actualidad, el procesamiento de un producto industrial, agroindustrial, agrícola y minero están sujetos a diferentes movimientos, ya sean en sentido vertical, horizontal e inclinados. Para cumplir este objetivo, son utilizados equipos con el nombre de Cintas Transportadoras. Las Cintas Transportadoras, vienen desempeñando un rol muy importante en los diferentes procesos industriales y esta se debe a varias razones entre las que destacamos; las grandes distancias a las que se efectúa el transporte, su facilidad de adaptación al terreno, su gran capacidad de transporte, la posibilidad de transporte diversos materiales (minerales, vegetales, combustibles, fertilizantes, materiales empleados en la construcción etc.) El transportador de cinta (fig. 164) consta del órgano de tracción 2 ejecutado en forma de cinta sin fin que es a la vez el elemento portador del transportador; de la estación accionadora que pone en movimiento el tambor impulsor 1; de la estación tensora con el tambor tensor extremo 6 y el dispositivo tensor 7; de los rodillos de apoyo en los ramales de trabajo 4 y libres 8 de la cinta (en muchos casos, en lugar de los rodillos de apoyo se utiliza un revestimiento continuo de madera o metálico); del dispositivo cargador 5 y del descargador 3; del tambor inclinador 10 y del dispositivo 11 para limpiar la cinta. Todos los elementos del transportador van montados en el bastidor metálico 9.

Los transportadores de cinta son los aparatos más difundidos que se emplean en distintas ramas de la industria para desplazar diversas cargas por unidades y a granel. Los esquemas de los transportadores (fig. 165) son muy diversos que se determinan por la designación del transportador en el proceso dado tecnológico. La gama de la productividad de los transportadores es extraordinariamente amplia y alcanza 20 000 t/h. La extensión de los transportadores de cinta alcanza 5 e incluso 10 km. La línea (camino) de este tipo de transportadores en el plano horizontal puede ser muy compleja.

Page 14: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Ventajas • Bajo consumo de energía y necesidades de mantenimiento. • Gran capacidad de transporte. • Bajo costo por tonelada de material manejado. • Baja producción de ruidos.

Page 15: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Inconvenientes • Dificultad de transportar productos a elevada temperatura. • Dificultad para el transporte en cámara cerrada. • Limitación de transporte de productos según pendiente y características. • Dificultad para transportar productos pulverulentos y muy fluidos. • Cambios de dirección en el plano horizontal. • Descarga en sentido perpendicular al eje del transportador. Generalidades de las cintas transportadoras. Materiales a Transportar, Tamaños y Temperaturas. Los primeros materiales que se transportan por cinta y de los que se tiene noticia histórica, fueron los cereales y las harinas y salvados derivados de los mismos. Con posterioridad, el otro producto más transportado fue el carbón. Las capacidades a transportar y las distancias eran pequeñas desde el punto de vista actual. Las cintas transportadoras Transportan materiales diversos por ejemplo: • Materiales empleados en la construcción. Arcilla (fina, seca), arena (seca, húmeda), asfalto (para pavimentos), caliza (molida, triturada, agrícola, hidratada), Cemento, cenizas, granito, hormigón, grava, tierras, etc. • Combustibles. Antracita, coke (de petróleo calcinado y metalúrgico salido del horno), carbón, hulla, lignito, etc. • Fertilizantes. Fosfato (granulado, pulverizado), guanos, nitratos, sulfatos, sales, urea, etc. • Minerales. Aluminio, alumbre, azufre, cobre, hierro, grafito, magnesio, plomo, yeso, etc. • Alimentos y Productos de Origen Vegetal. Azúcar, aceitunas, algodón, café, cacao, guisantes, harinas, papas, maíz, nueces, remolachas, etc. Empleos de las Cintas Transportadoras. El empleo de las Cintas Transportadoras es muy diverso entre las cuales podemos destacar los siguientes: • Las industrias extractivas (minas subterráneas y a cielo abierto, canteras). • Las Industrias Siderúrgicas (parques de carbón y minerales). • Instalaciones portuarias de almacenamiento, carga y descarga de barcos. • Centrales Térmicas ( parques de almacenamiento y transporte a quemadores de carbón, así como la evacuación de las cenizas producidas)

Page 16: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

• Agroindustrias azucareras (Transporte de bagazo, cachaza). • Industria Automotriz. • Industria Químico - Farmacéutica. Ventajas ambientales y de seguridad. Efectuando la cubrición de las cintas, es posible evitar la dispersión del polvo producido durante el transporte, contribuyendo a mantener una atmósfera limpia. En la actualidad es posible reducir por completo la emisión de polvo al exterior mediante la instalación de cintas tubulares, esto es importante si la cinta está próxima a núcleos urbanos. Facilidad de carga y descarga. Aunque en general las cintas transportadoras se cargan en un extremo de las mismas, es posible efectuar la carga en un punto cualquiera de las mismas, mediante dispositivos diversos (Tolvas, descarga directa desde otra cinta, etc.). La descarga de las cintas transportadoras se efectúa generalmente en cabeza, pero es posible hacerla también en cualquier punto fijo de las mismas, o de una forma continua, empleando disposiciones constructivas adecuadas, (Carros descargadores, llamados comúnmente Trippers).

Partes principales de una cinta transportadora.

Bandas Transportadoras. Definición y Funciones. La función principal de la banda es soportar directamente el material a transportar y desplazarlo desde el punto de carga hasta el de descarga, razón por la cual se la puede considerar el componente principal de las cintas transportadoras; también en el aspecto económico es, en general, el componente de mayor precio. Se sabe que conforme aumenta la longitud, también crece el costo de la banda respecto del total.

Page 17: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Cintas de Aramida Con Telas De Cordones Tipos principales. Pueden llevarse a cabo las siguientes clasificaciones de las bandas: - Según el tipo de tejido: • De algodón. • De tejidos sintéticos. • De cables de acero. - Según la disposición del tejido: De varias telas o capas. De tejido sólido. - Según el aspecto de la superficie portante de la carga: Lisas (aspecto más corriente). Rugosas. Con nervios, tacos o bordes laterales vulcanizados. Constitución de la banda La cinta transportadora deberá reunir los siguientes requisitos: alta resistencia mecánica longitudinal, flexibilidad en direcciones longitudinal (en tambores) y transversal (en apoyo de rodillos) elevada resistencia al desgaste y a la destratificacion a reiterados dobleces, poca elasticidad y alargamiento residual, poca higroscopicidad y alta resistencia a la humedad. Para cumplir con las exigencias anteriores, la banda está formada por dos componentes básicos: 1. El tejido o Carcasa, que transmite los esfuerzos. 2. Los recubrimientos, que soportan los impactos y erosiones. El tejido consta de la urdimbre o hilos longitudinales, y de la trama o hilos transversales; las posiciones relativas de urdimbre y trama. La urdimbre, que soporta los esfuerzos de tracción longitudinales, es en general bastante más resistente que la trama, la cual solo soporta esfuerzos transversales secundarios, derivados de la adaptación a la forma de artesa y de los producidos por los impactos. La rigidez transversal de la trama, no debe ser excesiva, con el fin de que la banda pueda adaptarse bien a la artesa formada por la terna de rodillos. Los recubrimientos o partes externas están formados por elastómeros (caucho natural), plastómeros (pvc), u otros materiales. Los tejidos empleados en la actualidad son: algodón, rayón, poliéster, poliamida, cables de acero. Los recubrimientos de goma sirven para unir los elementos constitutivos de la carcasa y constan de dos partes, la superior y la inferior. El espesor del recubrimiento de la carcasa esta en función del tipo de aplicación de la banda y de la anchura de esta. Cintas Con Recubrimiento Especial.

Page 18: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Rodillos y Soportes. Generalidades De Los Rodillos. Los rodillos son uno de los componentes principales de una cinta transportadora, y de su calidad depende en gran medida el buen funcionamiento de la misma. Si el giro de los mismos no es bueno, además de aumentar la fricción y por tanto el consumo de energía, también se producen desgastes de recubrimientos de la banda, con la consiguiente reducción de la vida de la misma. La separación entre rodillos se establece en función de la anchura de la banda y de la densidad del material transportado. El diámetro del rodillo se elige según sea el ancho de la cinta, su velocidad de movimiento, tipo de carga, y en particular de las dimensiones de los trozos. Funciones De Los Rodillos Las funciones a cumplir son principalmente tres:

1. Soportar la banda y el material a transportar por la misma en el ramal superior, y soportar la banda en el ramal inferior; los rodillos del ramal superior situados en la zona de carga, deben soportar además el impacto producido por la caída del material.

2. Contribuir al centrado de la banda, por razones diversas la banda

esta sometida a diferentes fuerzas que tienden a decentarla de su posición recta ideal. El centrado de la misma se logra en parte mediante la adecuada disposición de los rodillos, tanto portantes como de retorno.

3. Ayudar a la limpieza de la banda ,aunque la banda es limpiada por los rascadores, cuando el material es pegajoso pueden quedar adheridos restos del mismo, que al entrar en contacto con los rodillos inferiores pueden originar desvíos de la misma; para facilitar el desprendimiento de este material se emplean rodillos con discos de goma (rodillos autolimpiadores).

Tambores. Definición. Los tambores están constituidos por un eje de acero, siendo el material del envolvente acero suave y los discos, ya sea de acero suave o acero moldeado. La determinación de los diámetros del tambor depende del tipo de banda empleado, el espesor de las bandas o el diámetro del cable de acero, según sea el caso; a su vez estos espesores o diámetros dependen de la tensión máxima en la banda. Por lo tanto el diámetro exterior depende de la tensión en la banda.

Page 19: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Acoplamientos. Funciones. Entre el motor eléctrico y el reductor se dispone de un acoplamiento que sirve para amortiguar las vibraciones y sobrecargas y asegurar un arranque progresivo. Existen acoplamientos de alta y baja velocidad, a continuación se presentan algunos tipos de acoplamientos. Reductores. Generalidades. Se emplean dos tipos de reductores en las cintas de gran potencia: Reductores Suspendidos: Son de montaje flotante. Esta disposición presenta la ventaja de precisar un espacio reducido, suprimiendo la alineación entre el ambor y reductor, el inconveniente es el de tener que desmontar el conjunto cuando se tiene que sustituir el tambor. Reductores Clásicos: Estos reductores son utilizados en las grandes instalaciones. La variante en reducción planetaria presenta la ventaja de un espacio mas reducido. Esta disposición con acoplamiento de dientes mecanizados permite, mediante el desacoplamiento, la intervención rápida sobre un grupo y la marcha a bajo régimen del otro grupo, en el caso de un tambor motriz con grupos dobles de accionamiento. Generalidades del diseño Es evidente que lo primero que debe conocerse al proyectar una Cinta Transportadora, son las características del material a transportar. Teniendo en cuenta la gran diversidad de materiales existentes, es por tal razón que se explicara de forma clara y sencilla las principales características de los materiales.

Page 20: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Calculo de capacidad de transporte de una cinta transportadora La capacidad (Q) de un transportador depende del área de su sección transversal, de la velocidad de la correa (V) y del peso especifico del material (γ). El área de sección transversal se asemeja al área de una sección trapezoidal de un segmento circular, en función del ancho de la correa(B), del numero de rodillos y su inclinación(β) y del Angulo de acomodo del material en la correa(α). El Angulo de acomodo es una característica del material en movimiento, siendo aproximadamente de 10 a 15 º menor que su Angulo de reposo, debido a la tendencia de nivelamiento del material causada por el temblor de los rodillos. La tabla 1.04 nos da las capacidades volumétricas de un transportador horizontal a una velocidad de 1m/s considerándose una distancia patrón (dp) del borde del material al borde de la correa, siendo: dp= 0.005*B+0.9 C= Ct*V*K Donde dp= distancia patrón del borde del material al borde de la correa (pulg). B= ancho de la correa. C= capacidad volumétrica de un transportador a una velocidad V en m/s (t/m3). Ct= capacidad volumétrica de un transportador a una velocidad de 1m/s. V= velocidad de la cinta transportadora (m/s)

Page 21: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

La capacidad de carga (Q) se obtiene a través de: Q= C* γ Q= capacidad de carga (t/h). γ= peso especifico del material (t/m3). C= capacidad volumétrica a una velocidad V (m/s). (m3/h) Selección de la velocidad de la correa La velocidad de la correa (V) depende de las características del material a transportar y del ancho de la correa (B). Las velocidades aquí representadas son de uso general y no son absolutas. Cuando hay limitaciones de espacio o de capacidad, las velocidades indicadas en la tabla 1.04 pueden ser incrementadas un 25% más en algunos casos. Con todo, en condiciones normales, es recomendado prever un ancho de correa compatible con las velocidades tabuladas. Para material seco y fino, una velocidad elevada puede causar mucha polvareda. Para material pesado y de gran granulometría o con partículas puntiagudas, una velocidad elevada puede causar mucho desgaste en el canal de descarga.

Page 22: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Espaciamiento entre rodillos

TRANSPORTADOR A TORNILLO Se llaman transportadores de tornillo sin fin los aparatos que efectúan el desplazamiento del material por un canalón, valiéndose de un tornillo giratorio (fig. 208). Este transportador consta del canalón inmóvil 7, cuya parto inferior tiene la forma de un semicilindro, cerrado por arriba con la tapa 3, del árbol impulsor 8 con las espiras sujetas a él del tornillo transportador, de los apoyos extremos 2 y 6 y del intermedio 4, del accionamiento 1, de los dispositivos cargador 5 y descargador 9. La descarga de este transportador horizontal puede realizarse en cualquier punto a través de los agujeros descargadores de fondo. Las espiras del tornillo se fabrican estampadas de chapa de acero de 4 a 8 mm de espesor y, luego, se sueldan al árbol.

Page 23: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Los transportadores de tornillo sin fin se emplean ampliamente para desplazar cargas calientes y polvorientas que emanan evaporaciones nocivas, etc., puesto que en este caso es fácil hermetizar el conducto. Los transportadores en cuestión se utilizan no sólo para desplazar la carga por la horizontal, sino también por canalones inclinado y vertical. Valiéndose del transportador de tornillo sin fin es de conveniencia el transporte de materiales en forma de polvo, de granos finos y fibrosos. No es conveniente emplear estos transportadores para desplazar cargas de pedazos de grandes dimensiones, abrasivas o pegajosas. El canalón del transportador de tornillo sin fin se suele fabricar de chapa de acero de 2 a 8 mm de espesor. El paso del tornillo es t = (0,5-1,0) D, donde D es el diámetro del tornillo. Cuanto más ligero sea el material a transportar, tanto mayor se toma el paso. La velocidad de rotación del tornillo depende de la naturaleza de la carga a transportar y del diámetro del tornillo y se adopta tanto mayor cuanto menor es el peso a granel, la abrasividad de las cargas y el diámetro del tornillo. Para los materiales pesados, la velocidad de rotación suele ser cerca de 50 r.p.m. y para los ligeros, hasta 150 r.p.m. El diámetro del tornillo D depende del tamaño de los pedazos de la carga a desplazar. Este diámetro debe ser corno mínimo 12 veces mayor que el tamaño de los pedazos a transportar del material homogéneo por su grosor y 4 veces mayor que el grosor máximo de los trozos, al transportar material no clasificado (ordinario). Caracteristicas del transportador a tornillo: • Transporte continuo de gráneles. • Granulometría no muy gruesa. • Estructura externa no importa que sea modificada. • Sencillez y economía de construcción. • Operaciones de procesado simultáneas al transporte. – mezclado, separación sólido – líquido, calefacción o enfriado, difusión, etc. • Elevada potencia de accionamiento. • Desgaste del equipo. Mantenimiento frecuente. • No adecuado para grandes longitudes. • Fácil carga y descarga. • Problemas seguridad. Importante protección. COMPONENTES PRINCIPALES

Page 24: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Page 25: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Page 26: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

Generalidades en el diseño del tornillo transportador Longitud máxima del transportador. Esta limitada por el momento torsor que puede transmitir el árbol del tornillo. Los órganos de unión entre sectores del tornillo deberán estar dimensionados convenientemente para transmitir el momento torsor mencionado. Esta longitud se encuentra generalmente tabulada por el fabricante del tornillo. Potencia de accionamiento del árbol El área de relleno del canalón del trasportador esta dado por:

En donde D es el diámetro del tornillo y λ es el coeficiente de llenado del canalón tomado menor que la unidad, para evitar el amontonamiento de material cerca de los cojinetes intermedios. Los valores de λ toman los siguientes valores dependiendo del tipo de carga. Estos valores son meramente orientativos.

La capacidad del transportador de tornillo esta dado por:

Eficiencia por inclinación:

Page 27: Maquinas de Transporte

Instalaciones Industriales – Máquinas de Transporte -Ingeniería Mecánica – F.I.U.N.A

En tanto que la velocidad de desplazamiento por el transportador de tornillo sin fin es:

Por lo tanto la capacidad de transporte toma la forma siguiente:

Donde γ es el peso específico del material a transportar. La potencia necesaria en el árbol se determina por:

En estas formulas c0 es el coeficiente de resistencia que se determina empíricamente. Este coeficiente considera los rozamientos del material con la hélice del tornillo y el canalón y las perdidas por rozamiento que se producen en los cojinetes. Para las distintas cargas c0 toma los siguientes valores: