Maquinas electricas UNMSM

15
UNMSM EXPERIMENTO N°02: EL TRANSFORMADOR MONOFÁSICO I. OBJETIVO -Analizar en forma experimental la relación de transformación y la polaridad en los transformadores monofásicos utilizando los métodos mas usuales en la determinación de la polaridad -Verificar experimentalmente ensayando en un transformador monofásico, las perdidas en el hierro y el circuito equivalente de dicho transformador. -Calcular las perdidas en el devanado y en el hierro a partir de las pruebas de corto circuito y vacío respectivamente, para luego hallar el circuito equivalente de dicho transformador monofásico. -Hallar el rendimiento de un transformador monofásico II.-FUNDAMENTO TEORICO TRANSFORMADOR El transformador, es un dispositivo que no tiene partes móviles, el cual transfiere la energía eléctrica de un circuito u otro bajo el principio de inducción electromagnética. La transferencia de energía la hace por lo general con cambios en los valores de voltajes y corrientes. Un transformador elevador recibe la potencia eléctrica a un valor de voltaje y la entrega a un valor más elevado, en tanto que un transformador reductor recibe la potencia a un valor alto de voltaje y a la entrega a un valor bajo.

description

MAQUINAS ELECTRICAS

Transcript of Maquinas electricas UNMSM

Page 1: Maquinas electricas UNMSM

UNMSM

EXPERIMENTO N°02: EL TRANSFORMADOR MONOFÁSICO

I. OBJETIVO

-Analizar en forma experimental la relación de transformación y la polaridad en los transformadores monofásicos utilizando los métodos mas usuales en la determinación de la polaridad

-Verificar experimentalmente ensayando en un transformador monofásico, las perdidas en el hierro y el circuito equivalente de dicho transformador.

-Calcular las perdidas en el devanado y en el hierro a partir de las pruebas de corto circuito y vacío respectivamente, para luego hallar el circuito equivalente de dicho transformador monofásico.

-Hallar el rendimiento de un transformador monofásico

II.-FUNDAMENTO TEORICO

TRANSFORMADOR El transformador, es un dispositivo que no tiene partes móviles, el cual transfiere la energía eléctrica de un circuito u otro bajo el principio de inducción electromagnética. La transferencia de energía la hace por lo general con cambios en los valores de voltajes y corrientes. Un transformador elevador recibe la potencia eléctrica a un valor de voltaje y la entrega a un valor más elevado, en tanto que un transformador reductor recibe la potencia a un valor alto de voltaje y a la entrega a un valor bajo.

Page 2: Maquinas electricas UNMSM

UNMSM FUNCIONAMIENTO: Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.

Transformador Monofásico:

Los transformadores, como la mayoría de las máquinas eléctricas, disponen de un circuito magnético y dos circuitos eléctricos. Sobre el núcleo magnético, formado por chapas apiladas, van arrollados dos bobinados que se denominan primarios y secundarios. Al conectar el bobinado primario de N1 espiras a una tensión alterna, se crea un flujo magnético alterno. Este flujo magnético, que se establece en todo el circuito magnético, recorre el bobinado secundario de N2 espiras induciendo en él una fuerza electromotriz produciendo la tensión en bornes V2. A la relación de tensiones entre el primario y secundario se le llama relación de transformación, para un transformador ideal se cumple:

Dónde:

m = relación de transformación V1 = tensión del primario (V) V2 = tensión del secundario (V) N1 = número de espiras del primario N2 = número de espiras del secundario

Potencia en corriente continua Cuando se trata de corriente continua (CC) la potencia eléctrica desarrollada en un cierto instante por un dispositivo de dos terminales es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Esto es,

Donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en Watts. Igual definición se aplica cuando se consideran valores promedio para I, V y P. Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivalente del dispositivo, la potencia también puede calcularse como:

Page 3: Maquinas electricas UNMSM

UNMSM

Potencia en corriente alterna Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia eléctrica desarrollada por un dispositivo de dos terminales es una función de los valores eficaces o valores cuadráticos medios, de la diferencia de potencial entre los terminales y de la intensidad de corriente que pasa a través del dispositivo. En el caso de un circuito de carácter inductivo (caso más común) al que se aplica una tensión sinusoidal v(t) con velocidad angular ω y valor de pico Vo resulta:

Esto provocará una corriente i(t) retrasada un ángulo φ respecto de la tensión aplicada:

La potencia instantánea vendrá dada como el producto de las expresiones anteriores:

Mediante trigonometría, la anterior expresión puede transformarse en la siguiente:

Y sustituyendo los valores de pico por los eficaces:

Potencia aparente

La potencia aparente (también llamada compleja) de un circuito eléctrico de corriente alterna es la suma (vectorial) de la energía que disipa dicho circuito en cierto tiempo en forma de calor o trabajo y la energía utilizada para la formación de los campos eléctricos y magnéticos de sus componentes que fluctuara entre estos componentes y la fuente de energía. Esta potencia no es la realmente consumida "util", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" bobinas y condensadores. Se la designa con la letra S y se mide en voltiamperios (VA). Su fórmula es:

Page 4: Maquinas electricas UNMSM

UNMSM Potencia activa Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos. Cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda. Se designa con la letra P y se mide en vatios (W). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:

Resultado que indica que la potencia activa es debida a los elementos resistivos. Potencia reactiva Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo útil. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltiamperios reactivos (VAR) y se designa con la letra Q. Factor de Potencia Es un indicador del correcto aprovecha-miento de la energía eléctrica. El Factor de Potencia puede tomar valores entre 0 y 1, lo que significa que:

0 1 muy malo 0,95 excelente Por ejemplo, si el Factor de Potencia es 0,95 (valor mínimo exigido por la EPESF) indica que del total de la energía abastecida por la Distribuidora sólo el 95 % de la energía es utilizada por el Cliente mientras que el 5 % restante es energía que se desaprovecha. En los artefactos tales como lámparas incandescentes (focos), planchas, calefón y estufas eléctricas, toda la energía que requieren para su funcionamiento se transforma en energía lumínica o energía calórica, en estos casos el Factor de Potencia toma valor 1 (100 % energía activa). En otros artefactos, por ejemplo lavarropas, heladeras, equipos de aire acondicionado, ventiladores y todos aquellos que poseen un motor para su funcionamiento, como también los tubos fluorescentes, entre otros, una parte de la energía se transforma en energía mecánica, frío, luz o movimiento (energía activa), y la parte restante requiere otro tipo de energía, llamada energía reactiva, que es necesaria para su propio funcionamiento. En estos casos, el Factor de Potencia toma valores menores a 1 1. Tensión de cortocircuito.

De un transformador, es la tensión que se produce en el lado de entrada, para que estando el lado

de salida del transformador en cortocircuito, circule la intensidad nominal. Se indica como tensión

de cortocircuito Ux referida en tanto por ciento a la tensión nominal de entrada.

Page 5: Maquinas electricas UNMSM

UNMSM 2. Regulación de tensión.

Para obtener la regulación de tensión en un transformador se requiere entender las caídas de

tensión que se producen en su interior. Consideremos el circuito equivalente del transformador

simplificado: los efectos de la rama de excitación en la regulación de tensión del transformador

puede ignorarse, por tanto solamente las impedancias en serie deben tomarse en cuenta. La

regulación de tensión de un transformador depende tanto de la magnitud de estas impedancias

como del ángulo fase de la corriente que circula por el transformador. La forma más fácil de

determinar el efecto de la impedancia y de los ángulos de fase de la intensidad circulante en la

regulación de voltaje del transformador es analizar el diagrama fasorial, un esquema de las

tensiones e intensidades fasoriales del transformador.

La tensión fasorial VS se supone con un ángulo de 0° y todas las demás tensiones e intensidades se

comparan con dicha suposición. Si se aplica la ley de tensiones de Kirchhoff al circuito equivalente,

la tensión primaria se halla:

VP / a = VS + REQ IS + j XEQ IS

Un diagrama fasorial de un transformador es una representación visual de esta ecuación.

Dibujamos un diagrama fasorial de un transformador que trabaja con un factor de potencia

retrasado. Es muy fácil ver que VP / a VS para cargas en retraso, así que la regulación de tensión de

un transformador con tales cargas debe ser mayor que cero.

Ahora vemos un diagrama fasorial con un factor de potencia igual a uno. Aquí nuevamente se ve

que la tensión secundaria es menor que la primaria, de donde VR = 0. Sin embargo, en este caso la

regulación de tensión es un número más pequeño que el que tenía con una corriente en retraso.

Page 6: Maquinas electricas UNMSM

UNMSM

Si la corriente secundaria está adelantada, la tensión secundaria puede ser realmente mayor que

la tensión primaria referida. Si esto sucede, el transformador tiene realmente una regulación

negativa como se ilustra en la figura.

3. Ensayo de vacío.

La potencia absorbida por el transformador trabajando en vacío es aproximadamente igual a las

pérdidas en el hierro (las nominales si se aplica la tensión nominal en el primario) y se desprecian

las pequeñas pérdidas que puede haber en el cobre.

La potencia P 0 que absorbe el transformador en vacío la indica el vatímetro W. La lectura del

amperímetro A proporciona la corriente I 0 absorbida desde el primario y los voltímetros V1 y V2

indican, respectivamente, la tensión V o1 a la que hemos conectado el transformador y la tensión V

o2 de circuito abierto en el secundario.

Al realizar el ensayo de vacío, la intensidad que circula por el primario se cierra por la admitancia

de vacío. De esta forma queda determinada la admitancia de vacío referida al secundario.

4. Ensayo de cortocircuito.

Se realiza poniendo el transformador en cortocircuito por uno de los dos arrollamientos. Después

aplicamos al otro lado una tensión reducida hasta que pase por este lado del transformador la

corriente nominal, pueden hallarse fácilmente las constantes más importantes de los devanados,

Page 7: Maquinas electricas UNMSM

UNMSM como son sus tensiones, resistencias, reactancias de dispersión, la reactancia de cortocircuito y las

pérdidas en las bobinas incluidas las adicionales por efecto superficial. La separación de estas

últimas en dos sumandos como son, las pérdidas por corriente continua y las pérdidas por

concentración de corriente, también es fácil de conseguir efectuando mediciones previas de

resistencia con corriente continua. Así pues tomamos nuevamente el circuito equivalente del

transformador y consideremos el caso de que la resistencia y la reactancia de carga sean nulas es

decir que los bornes del secundario estén en cortocircuito, en este caso se cumple:

0s

p

sN

NU

La tensión primaria de cortocircuito Uccp se consume integra en la impedancia, que por esta razón

también se ha denominado impedancia de cortocircuito. El ensayo se efectuará aplicando baja

tensión al primario, a fin de que por el circule justamente la corriente a plena carga. Nótese que

en este caso las resistencias comprenden el aumento debido al flujo de dispersión producido por

la corriente a plena carga, a la vez que por ser muy reducido el flujo que se precisa para inducir en

los devanados de la escasa f.e.m. que debe desarrollarse, la corriente de excitación es

prácticamente despreciable. Así el ensayo con una corriente de cortocircuito igual a la nominal en

plena carga, surgen inmediatamente las pérdidas en los bobinados Cup incluidas las adicionales,

por hallarse presente todo el flujo de dispersión, en tanto por uno:

S

pp Cu

Cu 1

Donde S es la potencia aparente del transformador. De la misma forma, si U es la tensión nominal

del devanado que actúa ahora como primario con el voltaje Uccp, en valor relativo

U

UU

ccp

ccp 1

La potencia perdida de cortocircuito, siendo el flujo tan débil, se consume prácticamente toda la

resistencia de los devanados, dando así de paso la caída de tensión por resistencia, que en valor

relativo de la tensión es:

11 CuR PU

Page 8: Maquinas electricas UNMSM

UNMSM Es igual cual de los dos lados se haya puesto en cortocircuito. Generalmente será el de baja

tensión para que la tensión del lado de alta sea más cómoda de medir. Los valores de todas las

constantes de cortocircuito deben referirse a 75 °C para el cálculo de los rendimientos, si han sido

medidos a otras temperaturas.

Rendimiento.

Los transformadores también se comparan y valoran de acuerdo con su eficiencia. La eficiencia o

rendimiento de un artefacto se puede conocer por medio de la siguiente ecuación:

= PSAL / PENT * 100 %

= PSAL / ( PSAL + PPÉRDIDA ) * 100 %

Esta ecuación se aplica a motores y generadores, así como a transformadores.

Los circuitos equivalentes del transformador facilitan mucho los cálculos de la eficiencia.

Hay tres tipos de pérdidas que se representan en los transformadores:

Pérdidas en el cobre.

Pérdidas por histéresis.

Pérdidas por corrientes parásitas.

Para calcular la eficiencia de un transformador bajo carga dada, sólo se suman las pérdidas de

cada resistencia y se aplica la ecuación:

= PSAL / ( PSAL + PPÉRDIDA ) * 100 %

Puesto que la potencia es PSAL = VS * IS cos , la eficiencia puede expresarse por:

= (VSIS cos S) / (PCU+PNÚCLEO+VSIScos S) * 100%

Page 9: Maquinas electricas UNMSM

UNMSM

III. PROCEDIMIENTO EXPERIMENTAL

II. EQUIPO Y/O INSTRUMENTOS A UTILIZAR

1. 1 transformador monofásico de 1KVA – 220/115 V. 2. 1 auto transformador variable 0 – 220 V, 3. 3 voltímetros c.a 10A. 4. 1 vatímetro monofásico 150 – 300V, 5 – 10 A. 5. 1 puente para medir resistencias. 6. 2 llave cuchilla trifásica 7. Cable para las conexiones. 8. Conectores

POLARIDAD Y RELACION DE TRANSFORMACION

1. Armar el siguiente circuito que se muestra a continuación

2. Energizar el circuito estando el cursor del auto transformador en cero voltios. Luego variar la salida del auto transformador hasta obtener en el voltímetro V1 el voltaje nominal.

3. Determinar la polaridad y calcular la relación de transformación a partir de las medidas realizadas; llenar el cuadro N°1

A=V1/V2

V3=V1+V2 POLARIDAD ADITIVA

V3=V1-V2 POLARIDAD SUSTRACTIVA

Page 10: Maquinas electricas UNMSM

UNMSM

VIN (Vac)

V1 (Vac)

V2 (Vac)

V3 (Vac)

Relación de transformación

Polaridad + y -

OBSERVACIONES

100 100 152 50 A=100/152=0.6578 _ Como podemos observar la relación de transformación es de reducción por lo tanto su polaridad será sustractiva y como vemos la relación es aproximada .

120 120 184 60 A=120/184=0.6521 _

150 150 230 78 A=150/230=0.6521 _

180 180 272 92 A=180/272=0.6617 _

CIRCUITO EQUIVALENTE DEL TRANSFORMADOR

Prueba de circuito abierto(o vacío)

1. Armar el siguiente circuito que se muestra a continuación

2. Después de revisar las conexiones, ajustar el auto transformador a cero voltios. Después proceda a variar la tensión desde 0 a 100% de su tensión nominal del transformador, tomando un juego de valores de la tensión (Voc) corriente (Io) y de la potencia (Wo) respectivamente, en un mínimo de 5 valores

% de Vin (Vac) V (Vac) I(A) Potencia (watts) Cos(φ)

0 1.4 0 1 0

20 33.5 0 1 0

40 96.2 0.04 4 0

60 144 0.07 7 0.69

80 191.6 0.14 11 0.41

100 236 0.39 19 0.23

Page 11: Maquinas electricas UNMSM

UNMSM

Prueba de CORTO CIRCUITO

1. Armar el siguiente circuito que se muestra a continuación

2. Asegúrese que el auto transformador este en tensión cero. Enseguida cerrar el interruptor S1 y alimentar el transformador en ensayo por el lado de alto voltaje (220V), graduar el auto transformador con voltaje reducida de tal modo que el amperímetro registre la corriente nominal.

3. Después ,ir disminuyendo el voltaje para un juego de valores de V-A-W, para 100-80-60-40-20%,anotarlos.

% de Iin (A) I V Potencia (watts) Cos(φ)

100 4.5 22.8 102.6 1

80 4 21.3 89.2 1

60 3.5 18.7 65.45 1

40 3 16.4 49.2 1

20 2 10.4 20.8 1

Page 12: Maquinas electricas UNMSM

UNMSM EFICIENCIA O RENDIMIENTO

1. Armar el siguiente circuito que se muestra a continuación

2. Después de revisar las conexiones, ajustar el auto transformador a cero voltios. Después proceda a variar la tensión desde 0 a 220que es el voltaje nominal del transformador.

3. Luego anotar las corrientes y voltajes tanto del primario como del secundario

Se da por la relación entre la potencia útil y la potencia absorbida por 100 entonces

e= (pot. Útil / pot. Absorvida ) * 100 y como el Cos(φ)= 1

V del autotransformador

I1(A) V1(Vac) I2(A) V2(Vac) EFICIENCIA (WATTS)

Cos(φ)

100 0.01 105 1.5 52 1.34% 1

130 0.02 129 1.8 64 2.23% 1

160 0.25 162 2.6 80 19.4% 1

190 0.3 185 2.8 96 20.64% 1

220 0.3 170 2.5 86 23.72% 1

Page 13: Maquinas electricas UNMSM

UNMSM

IV.-CUESTIONARIO

1. Presentar en forma ordenada los valores obtenidos en la prueba de circuito abierto.

% de Vin (Vac) V (Vac) I(A) Potencia (watts) Cos(φ)

0 1.4 0 1 0

20 33.5 0 1 0

40 96.2 0.04 4 0

60 144 0.07 7 0.69

80 191.6 0.14 11 0.41

100 236 0.39 19 0.23

2. A partir de la prueba de vacío (circuito abierto), graficar la curva de magnetización del transformador.

0

50

100

150

200

250

0 0 0.04 0.07 0.14 0.39

CURVA DE MAGNETIZACION

Page 14: Maquinas electricas UNMSM

UNMSM

3. Presentar en forma ordenada los valores obtenidos en la prueba de corto circuito. % de Iin (A) I V Potencia (watts) Cos(φ)

100 4.5 22.8 102.6 1

80 4 21.3 89.2 1

60 3.5 18.7 65.45 1

40 3 16.4 49.2 1

20 2 10.4 20.8 1

4. De la prueba de corto circuito, graficar a partir de las lecturas de potencia consumida (Wsc)el voltaje de impedancia Vsc(V)y el factor de potencia de corto circuito Cos(ϕ)(%calculado a partir de W ,V e I ),como funciones de la corriente de corto circuito Isc(A)

5. Presentar en forma ordenada los valores obtenidos en el ensayo de eficiencia del transformador, indicar la eficiencia del transformador en%

V del autotransformador

I1(A) V1(Vac) I2(A) V2(Vac) EFICIENCIA (WATTS)

Cos(φ)

100 0.01 105 1.5 52 1.34% 1

130 0.02 129 1.8 64 2.23% 1

160 0.25 162 2.6 80 19.4% 1

190 0.3 185 2.8 96 20.64% 1

220 0.3 170 2.5 86 23.72% 1

0

5

10

15

20

25

1 1 1 1 1

V vs f.p

V vs f.p

Page 15: Maquinas electricas UNMSM

UNMSM

V.-CONCLUSIONES

VI.-BIBLIOGRAFIA

- De acuerdo a la reactancia del núcleo, cuyos parámetros corresponden a la rama de magnetización estas demostraron el porque la poca circulación de la corriente en la prueba en vacío resultaron ser lo suficientemente pequeña lo cual significa una alta impedancia y por ende la poca potencia disipada por los enrollados, lo que fue reflejado en las pequeñas perdidas en la prueba mencionada.

- Se comprueba que la resistencia del bobinado secundario se puede despreciar para los cálculos, ya que afecta en lo mínimo.

- Se demuestra que la potencia activa registrada en el watímetro, es la perdida en el hierro del transformador.

http://www.nichese.com/trans-real.html

http://www.lhusurbil.com/sep/euskera/u07a01/a.htm

Transformadores de potencia, de medida y de protección / Enrique Ras Oliva

Barcelona [etc.] Marcombo-Boixareu, 1994

Máquinas eléctricas / Stephen J. Chapman ; revisión técnica José Demetrio Martínez, Juan Yedra

Morón

Bogotá [etc.] : McGraw-Hill, 1987

Electrotecnia general y aplicada/Moeller-Werr

Barcelona [etc]: Editorial Labor, 1972