Cinematica General

32

description

Posición y desplazamiento, rapidez y velocidad, aceleración, trayectorias. Ecuaciones del movimiento Movimientos de trayectoria unidimensional. Ecuaciones del movimiento, análisis y gráficas.

Transcript of Cinematica General

Page 1: Cinematica General
Page 2: Cinematica General

cinemáticacinemática

• Es la parte de la mecánica clásica que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen limitándose, esencialmente, al estudio de la trayectoria en función del tiempo. En consecuencia, los conceptos básicos de la cinemática son el tiempo, conjunto de todos los instantes posibles, y el espacio, conjunto de todas las posiciones posibles.

• En cinemática se utiliza un sistema de coordenadas para describir las trayectorias y se le llama sistema de referencia.

• La cinemática es un caso especial de geometría diferencial de curvas, en el que todas las curvas se parametrizan de la misma forma: con el tiempo.

• Es la parte de la mecánica clásica que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen limitándose, esencialmente, al estudio de la trayectoria en función del tiempo. En consecuencia, los conceptos básicos de la cinemática son el tiempo, conjunto de todos los instantes posibles, y el espacio, conjunto de todas las posiciones posibles.

• En cinemática se utiliza un sistema de coordenadas para describir las trayectorias y se le llama sistema de referencia.

• La cinemática es un caso especial de geometría diferencial de curvas, en el que todas las curvas se parametrizan de la misma forma: con el tiempo.

Page 3: Cinematica General

Movimiento rectilíneo y uniformeMovimiento rectilíneo y uniforme

Es la parte de la mecánica clásica que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen limitándose, esencialmente, al estudio de la trayectoria en función del tiempo.

Posición .-La posición x del móvil se puede relacionar con el tiempo t mediante una función x=f(t). Desplazamiento.-Supongamos ahora que en el tiempo t, el móvil se encuentra en posición x, más tarde, en el instante t' el móvil se encontrará en la posición x'. Decimos que móvil se ha desplazado Dx=x'-x en el intervalo de tiempo Dt=t'-t, medido desde el instante t al instante t'.

Velocidad.-La velocidad media entre los instantes t y t‘y esta definida por

Es la parte de la mecánica clásica que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen limitándose, esencialmente, al estudio de la trayectoria en función del tiempo.

Posición .-La posición x del móvil se puede relacionar con el tiempo t mediante una función x=f(t). Desplazamiento.-Supongamos ahora que en el tiempo t, el móvil se encuentra en posición x, más tarde, en el instante t' el móvil se encontrará en la posición x'. Decimos que móvil se ha desplazado Dx=x'-x en el intervalo de tiempo Dt=t'-t, medido desde el instante t al instante t'.

Velocidad.-La velocidad media entre los instantes t y t‘y esta definida por

Page 4: Cinematica General

Sabemos que la velocidad es constante. Sabemos que la velocidad es constante.

Ecuaciones del movimiento.

Cálculo del espacio recorrido.

Sabiendo que la velocidad es constante y según la definición de velocidad:

1. ; 2. Tenemos: ; despejando términos:

integrando: ; realizando la integral:

Donde es la constante de integración, que corresponde a la posición del móvil para . Si en el instante , el móvil esta en el origen de coordenadas, entonces . Esta ecuación determina la posición de la partícula en movimiento en función del tiempo.

Sabiendo que la velocidad es constante y según la definición de velocidad:

1. ; 2. Tenemos: ; despejando términos:

integrando: ; realizando la integral:

Donde es la constante de integración, que corresponde a la posición del móvil para . Si en el instante , el móvil esta en el origen de coordenadas, entonces . Esta ecuación determina la posición de la partícula en movimiento en función del tiempo.

Page 5: Cinematica General

Cálculo de la aceleraciónCálculo de la aceleración

Según la ecuación del movimiento y la definición tenemos:

1. 2.

Esto es:

Sabiendo que la velocidad no varia con el tiempo, tenemos:

La aceleración es nula, como ya se sabia

Según la ecuación del movimiento y la definición tenemos:

1. 2.

Esto es:

Sabiendo que la velocidad no varia con el tiempo, tenemos:

La aceleración es nula, como ya se sabia

Page 6: Cinematica General

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado

• El Movimiento rectilíneo uniformemente acelerado (MRUA) o Movimiento rectilíneo uniformemente variado (MRUV)

es aquél en el que un móvil se desplaza sobre una recta con aceleración constante. Esto implica que en cualquier intervalo de tiempo, la aceleración del móvil tendrá siempre el mismo valor. Por ejemplo la caída libre de un móvil, con aceleración de la gravedad constante.

• El Movimiento rectilíneo uniformemente acelerado (MRUA) o Movimiento rectilíneo uniformemente variado (MRUV)

es aquél en el que un móvil se desplaza sobre una recta con aceleración constante. Esto implica que en cualquier intervalo de tiempo, la aceleración del móvil tendrá siempre el mismo valor. Por ejemplo la caída libre de un móvil, con aceleración de la gravedad constante.

Page 7: Cinematica General

ELEMENTOS del M.U.V.): ELEMENTOS del M.U.V.): • Móvil: Es todo cuerpo que es capaz de moverse.• Trayectoria: Es la línea que describe un cuerpo es su desplazamiento.• Velocidad: Es la variación de la posición de un cuerpo por unidad de

tiempo.• Velocidad-Media: Es la velocidad constante que hubiera tenido que llevar

el móvil para recorrer la misma distancia y en el tiempo en que lo hizo con movimiento variado.

• Velocidad-Instantánea: Es la velocidad media en un intervalo muy corto.• Aceleración: Es la variación que experimenta la rapidez por unidad de

tiempo. • Tiempo máximo: Es el tiempo que trascurre desde el momento en que un

móvil inicia un movimiento uniformemente retardado, hasta que detiene.• Desplazamiento máximo: Es el desplazamiento alcanzado por un móvil

desde el momento que se inicia el movimiento uniformemente retardado hasta que se detiene

• Móvil: Es todo cuerpo que es capaz de moverse.• Trayectoria: Es la línea que describe un cuerpo es su desplazamiento.• Velocidad: Es la variación de la posición de un cuerpo por unidad de

tiempo.• Velocidad-Media: Es la velocidad constante que hubiera tenido que llevar

el móvil para recorrer la misma distancia y en el tiempo en que lo hizo con movimiento variado.

• Velocidad-Instantánea: Es la velocidad media en un intervalo muy corto.• Aceleración: Es la variación que experimenta la rapidez por unidad de

tiempo. • Tiempo máximo: Es el tiempo que trascurre desde el momento en que un

móvil inicia un movimiento uniformemente retardado, hasta que detiene.• Desplazamiento máximo: Es el desplazamiento alcanzado por un móvil

desde el momento que se inicia el movimiento uniformemente retardado hasta que se detiene

Page 8: Cinematica General

AceleraciónAceleración

• La aceleración es la magnitud física que mide la tasa de variación de la velocidad respecto del tiempo. Es una magnitud vectorial con dimensiones de longitud/tiempo² (en unidades del sistema internacional se usa generalmente [m/s²]). No debe confundirse la Velocidad con la aceleración, pues son conceptos distintos, acelerar no significa ir más rápido, sino cambiar de velocidad a un ritmo dado.

• La aceleración es la magnitud física que mide la tasa de variación de la velocidad respecto del tiempo. Es una magnitud vectorial con dimensiones de longitud/tiempo² (en unidades del sistema internacional se usa generalmente [m/s²]). No debe confundirse la Velocidad con la aceleración, pues son conceptos distintos, acelerar no significa ir más rápido, sino cambiar de velocidad a un ritmo dado.

Page 9: Cinematica General

Aceleración media e instantáneaAceleración media e instantánea

La aceleración media e instantáneas representada como la pendiente de la recta tangencial de las curva de representación velocidad-tiempo.se define la aceleración media como la relación entre la variación o cambio de velocidad de un móvil el tiempo empleado en dicho cambio de velocidad

La aceleración media e instantáneas representada como la pendiente de la recta tangencial de las curva de representación velocidad-tiempo.se define la aceleración media como la relación entre la variación o cambio de velocidad de un móvil el tiempo empleado en dicho cambio de velocidad

Aceleración instantánea es representada como la pendiente de la recta tangente de la curva de representación velocidad-tiempo

Page 10: Cinematica General

Formulas de M.R.U.V. Formulas de M.R.U.V. Donde v0 es la velocidad del móvil en el instante inicial. Por tanto, la velocidad aumenta cantidades iguales en tiempos iguales.

La ecuación de la posición es:

Si al observar el móvil por primera vez se encontraba en reposo, la velocidad inicial es nula, y las fórmulas del m.r.u.v. se reducen a:

que deberán emplearse cuando no haya velocidad inicial.

Page 11: Cinematica General

CAIDA LIBRE DE LOS CUERPOS CAIDA LIBRE DE LOS CUERPOS

Este fenómeno se debe a la atracción que la tierra ejerce sobre los cuerpos próximos a su superficie y que recibe el nombre de gravedad. Esto es sólo un caso particular de una propiedad general de la materia denominada gravitación universal. En el vacío, todos los cuerpos caen con movimiento uniformemente acelerado, siendo la aceleración la misma por todos los cuerpos en un mismo lugar de la tierra, independientemente de su forma o de la sustancia que los compone.

Este fenómeno se debe a la atracción que la tierra ejerce sobre los cuerpos próximos a su superficie y que recibe el nombre de gravedad. Esto es sólo un caso particular de una propiedad general de la materia denominada gravitación universal. En el vacío, todos los cuerpos caen con movimiento uniformemente acelerado, siendo la aceleración la misma por todos los cuerpos en un mismo lugar de la tierra, independientemente de su forma o de la sustancia que los compone.

Page 12: Cinematica General

El espacio que recorre el pedrusco lo hace, en cambio, a ritmo parabólico, [esto es, que depende del cuadrado del tiempo] de forma mucho más rápida. En el dibujito de antes, vemos cómo el espacio que recorre la piedra aumenta según el tiempo.

El espacio que recorre el pedrusco lo hace, en cambio, a ritmo parabólico, [esto es, que depende del cuadrado del tiempo] de forma mucho más rápida. En el dibujito de antes, vemos cómo el espacio que recorre la piedra aumenta según el tiempo.

Page 13: Cinematica General

Aceleración de la gravedad

Es interesante destacar que cada vez que la piedra cae, tomando el tiempo con nuestro cronómetro, esta tarda 2,47 segundos en tocar la superficie del agua.. ¿Cómo es posible? Sencillamente, como ya se dijo, la trayectoria de la caída libre es recta, movimiento rectilíneo y la variación de la velocidad que sufren ambos cuerpos es la misma. Tanto la piedra como cualquier objeto, arrojados con la misma velocidad inicial y desde la misma altura, caen mediante un movimiento rectilíneo acelerado.

Es interesante destacar que cada vez que la piedra cae, tomando el tiempo con nuestro cronómetro, esta tarda 2,47 segundos en tocar la superficie del agua.. ¿Cómo es posible? Sencillamente, como ya se dijo, la trayectoria de la caída libre es recta, movimiento rectilíneo y la variación de la velocidad que sufren ambos cuerpos es la misma. Tanto la piedra como cualquier objeto, arrojados con la misma velocidad inicial y desde la misma altura, caen mediante un movimiento rectilíneo acelerado.

Page 14: Cinematica General

Ejemplo1Ejemplo1• LAS CAJAS DE EINSTEIN

Supongamos que nos encontramos encerrados en una caja colocada sobre la superficie terrestre. En su interior, sentimos la fuerza gravitacional de la Tierra que nos atrae al suelo, al igual que todos los cuerpos que se encuentran a nuestro alrededor. Al soltar una piedra, ésta cae al suelo aumentando continuamente su velocidad, es decir acelerándose a razón de 9.81 metros por segundo cada segundo, lo que equivale, por definición, a una aceleración de 1 g. Por supuesto, en el interior de la caja la fuerza que actúa sobre un cuerpo es proporcional a su masa gravitacional.

• LAS CAJAS DE EINSTEIN

Supongamos que nos encontramos encerrados en una caja colocada sobre la superficie terrestre. En su interior, sentimos la fuerza gravitacional de la Tierra que nos atrae al suelo, al igual que todos los cuerpos que se encuentran a nuestro alrededor. Al soltar una piedra, ésta cae al suelo aumentando continuamente su velocidad, es decir acelerándose a razón de 9.81 metros por segundo cada segundo, lo que equivale, por definición, a una aceleración de 1 g. Por supuesto, en el interior de la caja la fuerza que actúa sobre un cuerpo es proporcional a su masa gravitacional.

Page 15: Cinematica General

ejemplo2ejemplo2• supongamos que la caja es lo

suficientemente grande para hacer el siguiente experimento: colóquense dos canicas en cada extremo del compartimiento, como se indica en la figura 27. Como las canicas se hallan también en caída libre, permanecen fijas, flotando, para los ocupantes de la caja. Sin embargo, las trayectorias de ambas no son exactamente rectas paralelas, sino rectas que convergen al centro de la Tierra. En consecuencia, vistas desde la caja, las dos canicas no están estrictamente fijas, sino que parecen acercarse lentamente una a otra. Este efecto casi imperceptible no ocurriría si la caja estuviera en el espacio extraterrestre, lejos de todo influjo gravitacional, ya que las dos canicas permanecerían exactamente donde se colocan.

• supongamos que la caja es lo suficientemente grande para hacer el siguiente experimento: colóquense dos canicas en cada extremo del compartimiento, como se indica en la figura 27. Como las canicas se hallan también en caída libre, permanecen fijas, flotando, para los ocupantes de la caja. Sin embargo, las trayectorias de ambas no son exactamente rectas paralelas, sino rectas que convergen al centro de la Tierra. En consecuencia, vistas desde la caja, las dos canicas no están estrictamente fijas, sino que parecen acercarse lentamente una a otra. Este efecto casi imperceptible no ocurriría si la caja estuviera en el espacio extraterrestre, lejos de todo influjo gravitacional, ya que las dos canicas permanecerían exactamente donde se colocan.

Page 16: Cinematica General

Caída totalmente vertical Caída totalmente vertical El movimiento del cuerpo en caída libre es vertical con velocidad creciente

(movimiento uniformemente acelerado con aceleración g). La ecuación de movimiento se puede escribir en términos la altura

Donde: .Son la aceleración y la velocidad verticales. . Es la fuerza de rozamiento fluido dinámica(que es creciente con la velocidad). Si se desprecia en una primera aproximación la fuerza de rozamiento, cosa

que puede hacerse para caídas desde pequeñas alturas de cuerpos relativamente compactos, en las que se alcanzan pequeñas velocidades la solución de la ecuación diferencial (1) para las velocidades y la altura vienen dada por:

Donde v0 es la velocidad inicial, para una caída desde el reposo v0 = 0 y h0 es la altura inicial de caída.

El movimiento del cuerpo en caída libre es vertical con velocidad creciente (movimiento uniformemente acelerado con aceleración g). La ecuación de movimiento se puede escribir en términos la altura

Donde: .Son la aceleración y la velocidad verticales. . Es la fuerza de rozamiento fluido dinámica(que es creciente con la velocidad). Si se desprecia en una primera aproximación la fuerza de rozamiento, cosa

que puede hacerse para caídas desde pequeñas alturas de cuerpos relativamente compactos, en las que se alcanzan pequeñas velocidades la solución de la ecuación diferencial (1) para las velocidades y la altura vienen dada por:

Donde v0 es la velocidad inicial, para una caída desde el reposo v0 = 0 y h0 es la altura inicial de caída.

Page 17: Cinematica General

movimiento circularmovimiento circular

Se basa en:

Eje de jiro: es la línea alrededor de la cual se realiza la rotación, este eje puede permanecer fijo o variar con el tiempo, pero para cada instante de tiempo, es el eje de la rotación.

Arco angular: partiendo de un eje de giro, es el ángulo o arco de radio unitario con el que se mide el desplazamiento angular. Su unidad es el radian.

Velocidad angulares: Es la variación de desplazamiento angular por unidad de tiempo

Se basa en:

Eje de jiro: es la línea alrededor de la cual se realiza la rotación, este eje puede permanecer fijo o variar con el tiempo, pero para cada instante de tiempo, es el eje de la rotación.

Arco angular: partiendo de un eje de giro, es el ángulo o arco de radio unitario con el que se mide el desplazamiento angular. Su unidad es el radian.

Velocidad angulares: Es la variación de desplazamiento angular por unidad de tiempo

Page 18: Cinematica General

Momento de inercia: es una cualidad de los cuerpos que resulta de multiplicar una porción de masa por la distancia que la separa al eje de giro.

Momento de fuerza: o par motor es la fuerza aplicada por la distancia al eje de giro.

Aceleración angular: es la variación de la velocidad angular por unidad de tiempo

Page 19: Cinematica General

Fuerza centrípetaDada la masa del móvil, y basándose en la segunda ley de newton (F=ma) se puede calcular la fuerza centrípeta a la que está sometido el móvil mediante la siguiente fórmula:

Fuerza centrípetaDada la masa del móvil, y basándose en la segunda ley de newton (F=ma) se puede calcular la fuerza centrípeta a la que está sometido el móvil mediante la siguiente fórmula:

Velocidad tangencial:es definida como la velocidad real del objeto que efectúa el movimiento circular, Si llamamos VT a la velocidad

tangencial, a lo largo de la circunferencia de radio r, tenemos que:

Velocidad tangencial:es definida como la velocidad real del objeto que efectúa el movimiento circular, Si llamamos VT a la velocidad

tangencial, a lo largo de la circunferencia de radio r, tenemos que:

Page 20: Cinematica General

Movimiento circular uniformeMovimiento circular uniforme

• Un movimiento circular uniforme es aquél cuya velocidad angular w es constante, por tanto, la aceleración angular es cero. La posición angular q del móvil en el instante t lo podemos calcular integrando q -q0=w(t-t0)

o gráficamente, en la representación de w en función de t.

• Un movimiento circular uniforme es aquél cuya velocidad angular w es constante, por tanto, la aceleración angular es cero. La posición angular q del móvil en el instante t lo podemos calcular integrando q -q0=w(t-t0)

o gráficamente, en la representación de w en función de t.

Las ecuaciones del movimiento circular uniforme son análogas a las del movimiento rectilíneo uniforme

Page 21: Cinematica General

Movimiento circular uniformemente acelerado

Un movimiento circular uniformemente acelerado es aquél cuya aceleración a es constante. Dada la aceleración angular podemos obtener el cambio de velocidad angular w -w0 entre los instantes t0 y t, mediante integración, o gráficamente.

Dada la velocidad angular w en función del tiempo, obtenemos el desplazamiento q -q0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando

Page 22: Cinematica General

Las fórmulas del movimiento circular uniformemente acelerado son análogas a las del movimiento rectilíneo uniformemente acelerado.

Despejando el tiempo t en la segunda ecuación y sustituyéndola en la tercera, relacionamos la velocidad angular ω con el desplazamiento θ-θ0

Page 23: Cinematica General

Movimiento curvilíneoMovimiento curvilíneo

Page 24: Cinematica General

Vector posición r en un instante t.Vector posición r en un instante t.

Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es decir, el conjunto de puntos por los que pasa el móvil. Las magnitudes que describen un movimiento curvilíneo son:

Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es decir, el conjunto de puntos por los que pasa el móvil. Las magnitudes que describen un movimiento curvilíneo son:

Como la posición del móvil cambia con el tiempo. En el instante t, el móvil se encuentra en el punto P, o en otras palabras, su vector posición es r y en el instante t' se encuentra en el punto P', su posición viene dada por el vector r'. Diremos que el móvil se ha desplazado Dr=r’-r en el intervalo de tiempo Dt=t'-t. Dicho vector tiene la dirección de la secante que une los puntos P y P'.

Como la posición del móvil cambia con el tiempo. En el instante t, el móvil se encuentra en el punto P, o en otras palabras, su vector posición es r y en el instante t' se encuentra en el punto P', su posición viene dada por el vector r'. Diremos que el móvil se ha desplazado Dr=r’-r en el intervalo de tiempo Dt=t'-t. Dicho vector tiene la dirección de la secante que une los puntos P y P'.

Page 25: Cinematica General

Vector velocidad Vector velocidad

El vector velocidad media, se define como el cociente entre el vector desplazamiento Dr y el tiempo que ha empleado en desplazarse Dt.

El vector velocidad media tiene la misma dirección que el vector desplazamiento, la secante que une los puntos P y P1 cuando se calcula la velocidad media <v1> entre los instantes t y t1.

El vector velocidad media, se define como el cociente entre el vector desplazamiento Dr y el tiempo que ha empleado en desplazarse Dt.

El vector velocidad media tiene la misma dirección que el vector desplazamiento, la secante que une los puntos P y P1 cuando se calcula la velocidad media <v1> entre los instantes t y t1.

Page 26: Cinematica General

El vector velocidad en un instante, es el límite del vector velocidad media cuando el intervalo de tiempo tiende a cero.

Como podemos ver en la figura, a medida que hacemos tender el intervalo de tiempo a cero, la dirección del vector velocidad media, la recta secante que une sucesivamente los puntos P, con los puntos P1, P2....., tiende hacia la tangente a la trayectoria en el punto P. En el instante t, el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto.

El vector velocidad en un instante, es el límite del vector velocidad media cuando el intervalo de tiempo tiende a cero.

Como podemos ver en la figura, a medida que hacemos tender el intervalo de tiempo a cero, la dirección del vector velocidad media, la recta secante que une sucesivamente los puntos P, con los puntos P1, P2....., tiende hacia la tangente a la trayectoria en el punto P. En el instante t, el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto.

Page 27: Cinematica General

Vector aceleración

En el instante t el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto. En el instante t' el móvil se encuentra en el punto P' y tiene una velocidad v'.El móvil ha cambiado, en general, su velocidad tanto en módulo como en dirección, en la cantidad dada por el vector diferencia Dv=v’-v.

En el instante t el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto. En el instante t' el móvil se encuentra en el punto P' y tiene una velocidad v'.El móvil ha cambiado, en general, su velocidad tanto en módulo como en dirección, en la cantidad dada por el vector diferencia Dv=v’-v.

Se define la aceleración media como el cociente entre el vector cambio de velocidad Dv y el intervalo de tiempo Dt=t'-t, en el que tiene lugar dicho cambio

Se define la aceleración media como el cociente entre el vector cambio de velocidad Dv y el intervalo de tiempo Dt=t'-t, en el que tiene lugar dicho cambio

Y la aceleración a en un instante Y la aceleración a en un instante En resumen:En resumen:

Page 28: Cinematica General

Ecuación de la aceleración.La única aceleración que interviene en este movimiento es la de la gravedad, que corresponde a la ecuación:

Que es vertical y hacia abajo

Ecuación de la velocidadLa velocidad de un cuerpo que sigue una trayectoria parabólica se puede obtener integrando la siguiente ecuación:

Ecuación de la aceleración.La única aceleración que interviene en este movimiento es la de la gravedad, que corresponde a la ecuación:

Que es vertical y hacia abajo

Ecuación de la velocidadLa velocidad de un cuerpo que sigue una trayectoria parabólica se puede obtener integrando la siguiente ecuación:

Page 29: Cinematica General

Ecuación de la posición Ecuación de la posición

Partiendo de la ecuación que establece la velocidad del móvil con relación al tiempo y de la definición de velocidad, la posición pude ser encontrada integrando la siguiente

Partiendo de la ecuación que establece la velocidad del móvil con relación al tiempo y de la definición de velocidad, la posición pude ser encontrada integrando la siguiente

Page 30: Cinematica General

Movimiento parabólico con rozamientoMovimiento parabólico con rozamiento

La presencia en el medio de un fluido, como el aire, ejerce una fuerza de rozamiento que depende del módulo de la velocidad y es de sentido opuesto a esta. En esas condiciones, el movimiento de una partícula en un campo gravitatorio uniforme no sigue estrictamente una parábola y es sólo casi-parabólico. En cuanto a la forma del rozamiento se distinguen dos casos

La presencia en el medio de un fluido, como el aire, ejerce una fuerza de rozamiento que depende del módulo de la velocidad y es de sentido opuesto a esta. En esas condiciones, el movimiento de una partícula en un campo gravitatorio uniforme no sigue estrictamente una parábola y es sólo casi-parabólico. En cuanto a la forma del rozamiento se distinguen dos casos

Movimiento a baja velocidadPara un fluido en reposo y un cuerpo moviéndose a muy baja velocidad, el flujo alrededor del cuerpo puede considerarse laminar y, en ese caso, el rozamiento es proporcional a la velocidad. La ecuación de la trayectoria resulta ser:

Movimiento a baja velocidadPara un fluido en reposo y un cuerpo moviéndose a muy baja velocidad, el flujo alrededor del cuerpo puede considerarse laminar y, en ese caso, el rozamiento es proporcional a la velocidad. La ecuación de la trayectoria resulta ser:

Page 31: Cinematica General

Donde:Donde:

: es altura inicial desde la que cae el cuerpo. : es altura inicial desde la que cae el cuerpo.

son dos parámetros que definen el problema en términos de las magnitudes del problema.

son dos parámetros que definen el problema en términos de las magnitudes del problema.

son la masa del cuerpo que cae, la aceleración de la gravedad, el coeficiente de rozamiento y la velocidad horizontal inicial.

son la masa del cuerpo que cae, la aceleración de la gravedad, el coeficiente de rozamiento y la velocidad horizontal inicial.

Para alturas suficientemente grandes el rozamiento del aire hace que el cuerpo caiga según una trayectoria cuyo último tramo es prácticamente vertical, al ser frenada casi completamente la velocidad horizontal inicial

Para alturas suficientemente grandes el rozamiento del aire hace que el cuerpo caiga según una trayectoria cuyo último tramo es prácticamente vertical, al ser frenada casi completamente la velocidad horizontal inicial

Page 32: Cinematica General

BIBLIOGRAFIA: www.didactika.com/fisica/descargas/mecanica/cinematica.ppt

GRACIAS